首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The aim of the present study was to evaluate the effect of low-level laser therapy (LLLT) on odontoblast-like MDPC-23 cells exposed to carbamide peroxide (CP 0.01 %–2.21 μg/mL of H2O2). The cells were seeded in sterile 24-well plates for 72 h. Eight groups were established according to the exposure or not to the bleaching agents and the laser energy doses tested (0, 4, 10, and 15 J/cm2). After exposing the cells to 0.01 % CP for 1 h, this bleaching solution was replaced by fresh culture medium. The cells were then irradiated (three sections) with a near-infrared diode laser (InGaAsP—780?±?3 nm, 40 mW), with intervals of 24 h. The 0.01 % CP solution caused statistically significant reductions in cell metabolism and alkaline phosphate (ALP) activity when compared with those of the groups not exposed to the bleaching agent. The LLLT did not modulate cell metabolism; however, the dose of 4 J/cm2 increased the ALP activity. It was concluded that 0.01 % CP reduces the MDPC-23 cell metabolism and ALP activity. The LLLT in the parameters tested did not influence the cell metabolism of the cultured cells; nevertheless, the laser dose of 4 J/cm2 increases the ALP activity in groups both with and without exposure to the bleaching agent.  相似文献   

2.
The aim of this study was to evaluate the effect of low-level laser irradiation (LLLI) on the proliferation and viability of stem cells from human exfoliated deciduous teeth (SHED). Cells were irradiated or not (control) with an InGaAlP laser diode (660 nm, 30 mW, continuous action mode) using two different energy densities (0.5 J/cm2—16 s; 1.0 J/cm2—33 s). Irradiation was performed at 0 and 48 h, with the laser probe fixed at a distance of 0.5 cm from the cells. Cell proliferation was analyzed at 0, 24, 48, and 72 h by the Trypan blue exclusion method and MTT assay. Cell cycle and Ki67 expression were analyzed by flow cytometry. Apoptosis-related events were evaluated by expression of annexin V/PI and nuclear morphological changes by staining with DAPI. Differences between groups at each time were analyzed by the Kruskal–Wallis and Mann–Whitney tests, adopting a level of significance of 5% (p < 0.05). The results showed that an energy density of 1.0 J/cm2 promoted an increase in cell proliferation at 48 and 72 h compared to the control and 0.5 J/cm2 groups. Cell cycle analysis revealed a predominance of cells in the S and G2/M phases in the irradiated groups. This finding was confirmed by the increased expression of Ki67. Low positive staining for annexin V and PI was observed in all groups, and no nuclear changes were detected, indicating that cell viability was not affected by the energy densities tested. It can be concluded that the LLLI parameters used (660 nm, 30 mW, 1.0 J/cm2) promote the proliferation of SHEDs and the maintenance of cell viability.  相似文献   

3.
The purpose of this study was to evaluate the biological response and gene expression of New Zealand White Rabbit anterior cruciate ligament (ACL) fibroblasts for different wave lengths of light-emitting diode (LED) irradiation. In other words, this study was undertaken to evaluate the effects of different wavelengths of LED irradiation on cell growth, expression of extracellular matrix and growth factors, migration, and expression of actin and integrin. Proliferation assay showed that red (630 nm, 9.5 J/cm2) and green LED (530 nm, 9.8 J/cm2) irradiated cells were more increased than control group but there was no difference between the control group and the blue LED (460 nm, 27 J/cm2) irradiated group. Moreover, the expression of insulin-like growth factor, transforming growth factor-beta (TGF-β1), and collagen I were significantly increased in the red and green LED-irradiated group, but the expression of collagen was decreased in the blue LED-irradiated group. The results of staining showed that collagen and TGF-β1 were weaker in the control group and blue LED-irradiated cells, but stronger in the red and green LED-irradiated cells. Also, in the red and green LED-irradiated group, the expression of actin and integrin was not changed compared to the control group, but the expression of actin and integrin was decreased in the blue irradiated group. This study revealed that irradiation with a wavelength of 460 nm (blue LED) is cytotoxic to ACL cells, but irradiation with nontoxic fluencies of 530 (green LED) and 630 nm (red LED) wavelengths induced cell growth in cultured ACL cells.  相似文献   

4.
This study aimed to compare the effects of photobiomodulation (PBM) in different energy densities and irradiances on maintaining cell viability, and proliferation of pulp fibroblasts from human primary teeth (HPF) were cultured in DMEM and used between the fourth and eighth passages. Then, HPF were irradiated with the following different energy densities: 1.25 J/cm2 (a), 2.50 J/cm2 (b), 3.75 J/cm2 (c), 5.00 J/cm2 (d), and 6.25 J/cm2 (e); but varying either the time of irradiation (groups 1a–1e) or the output power (groups 2a–2e). Positive (groups 1f and 2f) and negative controls (groups 1g and 2g), respectively, comprised non-irradiated cells grown in regular nutritional conditions (10% fetal bovine serum [FBS]) and under nutritional deficit (1% FBS). Cell viability and proliferation were respectively assessed through MTT and crystal violet (CV) assays at 24, 48, and 72 h after irradiation. Statistical analysis was performed by two-way ANOVA, followed by Tukey test (P < 0.05). The negative controls showed significantly lower viability in relation to most of the corresponding subgroups, both for MTT and CV assays. For both assays, the intragroup comparison showed that the periods of 24 h exhibited lower viability than the periods of 48 and 72 h for most of the subgroups, except the negative controls with lower viability. The different irradiation protocols (equal energy densities applied with different irradiances) showed no statistically significant differences on cell viability and proliferation at the evaluated periods. The proposed PBM in different energy densities and irradiance did not affect the viability and proliferation of pulp fibroblasts from human primary teeth.  相似文献   

5.
The handling of bone losses due to different etiologic factors is difficult and many techniques are aim to improve repair, including a wide range of biomaterials and, recently, photobioengineering. This work aimed to assess, through Raman spectroscopy, the level of bone mineralization using the intensities of the Raman peaks of both inorganic (~960, ~1,070, and 1,077 cm?1) and organic (~1,454 and ~1,666 cm?1) contents of bone tissue. Forty rats were divided into four groups each subdivided into two subgroups according to the time of sacrifice (15 and 30 days). Surgical bone defects were made on the femur of each animal with a trephine drill. On animals of group clot, the defect was filled only by blood clot, on group LED, the defect filled with the clot was further irradiated. On animals of groups biomaterial and LED + biomaterial, the defect was filled by biomaterial and the last one was further irradiated (λ850?±?10 nm, 150 mW, Φ?~?0.5 cm2, 20 J/cm2-session, 140 J/cm2-treatment) at 48-h intervals and repeated for 2 weeks. At both 15th and 30th days following sacrifice, samples were taken and analyzed by Raman spectroscopy. At the end of the experimental time, the intensity of hydroxyapatite (HA) (~960 cm?1) were higher on group LED + biomaterial and the peaks of both organic content (~1,454 and ~1,666 cm?1) and transitional HA (~1,070 and ~1,077 cm?1) were lower on the same group. It is concluded that the use of LED phototherapy associated to biomaterial was effective in improving bone healing on bone defects as a result of the increasing deposition of HA measured by Raman spectroscopy.  相似文献   

6.
The acceleration of bone regeneration by low-intensity laser irradiation may hold potential benefits in clinical therapy in orthopedics and dentistry. The purpose of this study is to compare the effects of light-emitting diode (LED) and laser on pre-osteoblast MC3T3 proliferation and differentiation. Cells were irradiated with red, infrared, and LED (3 and 5 J/cm2). Lasers had a power density of 1 W/cm2 and irradiation time of 2 and 5 s. LED had a power density of 60 mW/cm2 and irradiation time of 50 and 83 s. Control group did not receive irradiation. Cell growth was assessed by a colorimetric test (MTT) (24, 48, 72, and 96 h), and cell differentiation was evaluated by alkaline phosphatase (ALP) quantification after growth in osteogenic medium (72 and 96 h and 7 and 14 days). At 24 h, the cell growth was enhanced 3.6 times by LED (5 J/cm2), 6.8 times by red laser (3 J/cm2), and 10.1 times by red laser (5 J/cm2) in relation to control group (p?<?0.05). At the other periods, there was no influence of irradiation on cell growth (p?>?0.05). The production of ALP was not influenced by irradiation at any period of time (p?>?0.05). Low-intensity laser and LED have similar effects on stimulation of cell growth, but no effect on cell differentiation.  相似文献   

7.
Laser and LED phototherapies accelerate tissue repair. Mast cells induce the proliferation of fibroblasts and the development of local fibrosis. Increased numbers of myofibroblasts and mast cells are frequently found together in a normal wound repair, suggesting that mediators produced by the mast cells could play a role in the regulation of myofibroblast differentiation and function. The aim of this study was to analyze the involvement of mast cells on the synthesis of collagen and their influence on myofibroblast differentiation in the late phase of tissue repair on wounds treated with LLLT (λ 660 nm, 10 J/cm2, 40 mW, 252 s) or LED (λ 630?±?10 nm, 10 J/cm2, 115 mW, 87 s). A 1?×?1-cm surgical wound was created on the dorsum of 30 rats divided into three groups of ten animals each: control, laser, and LED. The animals of each group were irradiated and sacrificed 7 and 14 days after injury. The statistical analysis was performed using the Mann–Whitney and Spearman correlation tests. Laser light improved the collagen deposition rate along the time points (p?=?0.22), but when compared to the control groups during the periods studied, the number of mast cells decreased significantly (p?≤?0.05). With respect to myofibroblasts, the results showed a trend to their reduction. No statistical significances were observed for LED light according to the parameters used in this study. It is concluded that the mast cell and myofibroblast population might participate in the collagen formation of irradiated wounds particularly in relation to laser phototherapy.  相似文献   

8.
Epithelial cells play an important role in reparative events. Therefore, therapies that can stimulate the proliferation and metabolism of these cells could accelerate the healing process. To evaluate the effects of low-level laser therapy (LLLT), human keratinocytes were irradiated with an InGaAsP diode laser prototype (LASERTable; 780?±?3 nm; 40 mW) using 0.5, 1.5, 3, 5, and 7 J/cm2 energy doses. Irradiations were done every 24 h totaling three applications. Evaluation of cell metabolism (MTT assay) showed that LLLT with all energy doses promoted an increase of cell metabolism, being more effective for 0.5, 1.5, and 3 J/cm2. The highest cell counts (Trypan blue assay) were observed with 0.5, 3, and 5 J/cm2. No statistically significant difference for total protein (TP) production was observed and cell morphology analysis by scanning electron microscopy revealed that LLLT did not promote morphological alterations on the keratinocytes. Real-time polymerase chain reaction (qPCR) revealed that LLLT also promoted an increase of type I collagen (Col-I) and vascular endothelial growth factor (VEGF) gene expression, especially for 1.5 J/cm2, but no change on fibroblast growth factor-2 (FGF-2) expression was observed. LLLT at energy doses ranging from 0.5 to 3 J/cm2 promoted the most significant biostimulatory effects on cultured keratinocytes.  相似文献   

9.
Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm2 and energy densities of 0.5, 1, and 2 J/cm2). About 10 % of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm2 was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT?+?HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT?+?hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium.  相似文献   

10.
Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine. This study has aimed to evaluate the effects of low-level laser therapy (LLLT) on human skin fibroblasts (HSFs) cultured in a high glucose concentration. HSFs were cultured either in a concentration of physiologic glucose (5.5 mM/l) or high glucose media (11.1 and15?mM/l) for either 1 or 2 weeks after which they were subsequently cultured in either the physiologic glucose or high concentration glucose media during laser irradiation. LLLT was carried out with a helium–neon (He–Ne) laser unit at energy densities of 0.5, 1, and 2 J/cm2, and power density of 0.66 mW/cm2 on 3 consecutive days. HSFs’ viability and proliferation rate were evaluated with the dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. The LLLT at densities of 0.5 and 1 J/cm2 had stimulatory effects on the viability and proliferation rate of HSFs cultured in physiologic glucose (5.5 mM/l) medium compared to their control cultures (p?=?0.002 and p?=?0.046, respectively). All three doses of 0.5, 1, and 2 J/cm2 had stimulatory effects on the proliferation rate of HSFs cultured in high glucose concentrations when compared to their control cultures (p?=?0.042, p?=?0.000, and p?=?0.000, respectively). This study showed that HSFs originally cultured for 2 weeks in high glucose concentration followed by culture in physiologic glucose during laser irradiation showed enhanced cell viability and proliferation. Thus, LLLT had a stimulatory effect on these HSFs.  相似文献   

11.
The aim of this study was to analyze the effect of laser or LED phototherapy on the acceleration of bone formation at the midpalatal suture after rapid maxilla expansion. Forty-five rats were divided into groups at 7 days (control, expansion, expansion and laser irradiation, and expansion and LED irradiation) and into 14 days (expansion, expansion and laser in the 1st week, expansion and LED in the 1st week, expansion and laser in the 1st and 2nd weeks, expansion and LED in the 1st and 2nd weeks). Laser/LED irradiation occurred every 48 h. Expansion was accomplished with a spatula and maintained with a triple helicoid of 0.020-in stainless steel orthodontic wire. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm2, t?=?257 s, SAEF of 18 J/cm2) or a LED (λ850?±?10 nm, 150?±?10 mW, spot of 0.5 cm2, t?=?120 s, SAEF of 18 J/cm2) was applied in one point in the midpalatal suture immediately behind the upper incisors. Raman spectroscopy and histological analyses of the suture region were carried and data was submitted to statistical analyses (p?≤?0.05). Raman spectrum analysis demonstrated that irradiation increases hydroxyapatite in the midpalatal suture after expansion. In the histological analysis of various inflammation, there was a higher production of collagen and osteoblastic activity and less osteoclastic activity. The results showed that LED irradiation associated to rapid maxillary expansion improves bone repair and could be an alternative to the use of laser in accelerating bone formation in the midpalatal suture.  相似文献   

12.
Low-level laser irradiation (LLLI) has various effects on cultured human lymphocytes in vitro, but little is known about such effects in whole blood. This study investigated whether LLLI affected lymphocyte count in human whole blood in vitro. A total number of 130 blood samples were collected from apparently healthy adult patients through venipuncture into tubes containing EDTA. Each sample was divided into two equal aliquots to be used as a non-irradiated control sample and an irradiated sample. The irradiated aliquot was subjected to laser wavelengths of 405, 589, and 780 nm with different fluences of 36, 54, 72, and 90 J/cm2, at a fixed irradiance of 30 mW/cm2. A paired student t test was used to compare between non-irradiated and irradiated samples. The lymphocyte counts were measured using a computerized hematology analyzer and showed a significant (P?<?0.02) maximum increase (1.6%) at a fluence of 72 J/cm2 when compared with non-irradiated samples. This increase in lymphocyte count upon irradiation was confirmed by flow cytometry. At a wavelength of 589 nm and fluence of 72 J/cm2, irradiation of whole blood samples showed a significant increase in CD45 lymphocytes and natural killer (NK) (CD16, CD56) cells, but no significant changes in CD3 T lymphocytes, T-suppressor (CD3, CD8) cells, T-helper (CD3, CD4) cells, and CD19 B lymphocytes when compared with their non-irradiated counterparts. Our results clearly demonstrate that NK cell count is altered by irradiation, which ultimately affects the whole lymphocyte count significantly.  相似文献   

13.
Angiogenesis is a key process for wound healing. There are few reports of LED phototherapy on angiogenesis, mainly in vivo. The aim of the present investigation was to evaluate histologically the angiogenesis on dorsal cutaneous wounds treated with laser (660 and 790 nm) or LEDs (700, 530, and 460 nm) in a rodent model. Twenty-four young adult male Wistar rats weighting between 200 and 250 g were used on the present study. Under general anesthesia, one excisional wound was created on the dorsum of each animal that were then randomly distributed into six groups with four animals each: G0—control; G1—laser λ660 nm (60 mW, ? ~2 mm, 10 J/cm2); G2—laser λ790 nm (50 mW, ? ~2 mm, 10 J/cm2); G3—LED λ700?±?20 nm (15 mW, ? ~16 mm, 10 J/cm2); G4—LED λ530?±?20 nm (8 mW, ? ~16 mm, 10 J/cm2); G5—LED λ460?±?20 nm (22 mW, ? ~16 mm, 10 J/cm2). Irradiation started immediately after surgery and was repeated every other day for 7 days. Animal death occurred at the eighth day after surgery. The specimens were removed, routinely processed to wax, cut and stained with HE. Angiogenesis was scored by blood vessel counting in the wounded area. Quantitative results showed that green LED (λ530?±?20 nm), red LED (λ700?±?20 nm), λ790 nm laser and λ660 nm laser caused significant increased angiogenesis when compared to the control group. It is concluded that both laser and LED light are capable of stimulating angiogenesis in vivo on cutaneous wounds and that coherence was not decisive on the outcome of the treatment.  相似文献   

14.
The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020″ stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm2, t?=?257 s, spatial average energy fluence (SAEF) of 18 J/cm2) or a LED (λ850 nm, 150 mW?±?10 mW, spot of 0.5 cm2, t?=?120 s, SAEF of 18 J/cm2) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ~960 (phosphate hydroxyapatite) and ~1,450 cm?1 (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p?≤?0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.  相似文献   

15.
Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjuvant treatment of dental caries, although there are no well-defined protocols to its clinical application. This study aimed to evaluate the influence of aPDT on the viability of microorganisms, vitality of biofilms, and lactic acid production of dentin caries microcosms. Biofilms were grown on bovine dentin discs in anaerobic conditions at 37 °C for 5 days, inoculating infected carious dentin in modified McBain medium plus 1% sucrose. The biofilms were treated by the combination of deionized water or 100 mg L?1 methylene blue (MB) with 0, 37.5, or 75 J cm?2 LED at 630 nm. The counts of total microorganisms, total streptococci, mutans streptococci, and total lactobacilli were determined by colony-forming units (CFU). The vitality of microbial cells in intact biofilms was measured by confocal laser scanning microscope (CLSM). The lactic acid production was analyzed by enzymatic spectrophotometry at 340 nm. Statistical analysis was conducted by Kruskal-Wallis and post hoc Dunn’s tests (P < 0.05). MB and 37.5 J cm?2 LED alone did not interfere in the viability of microorganisms, unlike 75 J cm?2 LED alone that decreased the total microorganism and lactobacillus counts. The combination of MB and 75 J cm?2 LED reduced the viability of all microorganisms and the vitality of intact biofilms. The production of lactic acid was statistically lower in all treatment groups in comparison with that of the control (no treatment), except for MB alone. Therefore, the MB-mediated aPDT was effective in controlling the viability, vitality and the acidogenicity of dentin caries microcosms.  相似文献   

16.
Photobiomodulation (PBM) and photodynamic therapy (PDT) are two major methods, which use light in medicine and dentistry. PBM uses low-level laser light to induce cell proliferation and activity. In contrast, PDT use laser light combined with a photosensitizer (PS) to cause cell death. Due to similar, not fully understood mechanisms and biphasic response of light, unexpected and complex outcomes may be observed. In the present study, the effect of 635 nm laser light, with power density 50 mW/cm2, at three different energy densities (0.5, 1, and 2 J/cm2 which last 10, 20, and 40 s, respectively) mediated by methylene blue (MB) on the human osteoblast cell line (ATCC-CRL-11372, Rockville, MD, USA) was investigated. Cell viability (MTT assay and acridine orange/propidium iodide staining) and proliferation (Alamar Blue assay) were assessed at 24, 48, and 72 h post irradiation. Alkaline phosphatase (ALP) activity, mineralization (Alizarin Red staining) and gene expressions (RT-PCR analysis) were analyzed at 7th and 14th days after treatment. Five groups were formed as the control group (no MB, no irradiation), MB (only 0.05 μM MB), MB + 0.5 J/cm2, MB + 1 J/cm2, and MB + 2 J/cm2. Cell viability was decreased at 72 h (ANOVA; p < 0.05) for MB + 0.5 J/cm2, MB + 1 J/cm2, and MB + 2 J/cm2 groups. Although proliferation does not seem to be effected by MB-mediated laser application, osteo-anabolic activity is altered. ALP activity was significantly increased at day 7 (ANOVA; p < 0.05) for MB-combined laser groups; on the other hand, mineralization was significantly decreased (ANOVA; p < 0.05) in all treatment groups. Alkaline phosphatase and collagen-I expressions were upregulated in MB + 2 J/cm2 group at 7th and 14th days, respectively. These results may contribute to the low-dose PDT researches and understanding PBM effects on osteoblast behavior but further studies are needed since inappropriate conditions may lead to undesirable results for both therapies.  相似文献   

17.
The current study evaluated the photobiomodulatory effect of visible red light on cell proliferation and viability in various fibroblast diabetic models in vitro, namely, unstressed normal (N) and stressed normal wounded (NW), diabetic wounded (DW), hypoxic wounded (HW) and diabetic hypoxic wounded (DHW). Cells were irradiated at a wavelength of 660 nm with a fluence of 5 J/cm2 (11.23 mW/cm2), which related to an irradiation time of 7 min and 25 s. Control cells were not irradiated (0 J/cm2). Cells were incubated for 48 h and cellular proliferation was determined by measuring 5-bromo-2′-deoxyuridine (BrdU) in the S-phase (flow cytometry), while viability was assessed by the Trypan blue exclusion test and Apoptox-glo triplex assay. In comparison with the respective controls, PBM increased viability in N- (P?≤?0.001), HW- (P?≤?0.01) and DHW-cells (P?≤?0.05). HW-cells showed a significant progression in the S-phase (P?≤?0.05). Also, there was a decrease in the G2M phase in HW- and DHW-cells (P?≤?0.05 and P?≤?0.05, respectively). This study concludes that hypoxic wounded and diabetic hypoxic wounded models responded positively to PBM, and PBM does not damage stressed cells but has a stimulatory effect on cell viability and proliferation to promote repair and wound healing. This suggests that the more stressed the cells are the better they responded to photobiomodulation (PBM).  相似文献   

18.
The study of the effects of low-level laser (LLL) radiation on blood is important for elucidating the mechanisms behind the interaction of LLL radiation and biologic tissues. Different therapy methods that involve blood irradiation have been developed and used for clinical purposes with beneficial effects. The aim of this study was to compare the effects of different irradiation protocols using a diode-pumped solid-state LLL (λ = 405 nm) on samples of human blood by measuring the erythrocyte sedimentation rate (ESR). Human blood samples were obtained through venipuncture into tubes containing EDTA as an anticoagulant. Every sample was divided into two equal aliquots to be used as an irradiated sample and a non-irradiated control sample. The irradiated aliquot was subjected to a laser beam with a wavelength of 405 nm and an energy density of 72 J/cm2. The radiation source had a fixed irradiance of 30 mW/cm2. The ESR change was observed for three different experimental protocols: irradiated whole blood, irradiated red blood cells (RBCs) samples re-suspended in non-irradiated blood plasma, and non-irradiated RBCs re-suspended in irradiated blood plasma. The ESR values were measured after laser irradiation and compared with the non-irradiated control samples. Irradiated blood plasma in which non-radiated RBCs were re-suspended was found to result in the largest ESR decrease for healthy human RBCs, 51%, when compared with RBCs re-suspended in non-irradiated blood plasma. The decrease in ESR induced by LLL irradiation of the plasma alone was likely related to changes in the plasma composition and an increase in the erythrocyte zeta potential upon re-suspension of the RBCs in the irradiated blood plasma.  相似文献   

19.
This study evaluated the effect of polymerization mode and time and thermal and mechanical loading cycling (TMC) on microleakage in composite resin restorations. One hundred and eighty cavities were prepared and randomly divided according to the light curing time (20, 40, or 60 s), modes (quartz–tungsten–halogen (QTH)—420 mW/cm2, LED 2 (2nd degree generation)—1,100 mW/cm2, or LED 3 (3rd degree generation)—700 mW/cm2), and TMC. Following standard restorative procedures, the samples were prepared for analysis in an absorbance spectrophotometer. All results were statistically analyzed using the three-way ANOVA and Tukey test (p?≤?0.05). The results revealed that the groups QTH and LED 3 submitted to TMC showed higher microleakage than those that were not submitted to TMC. Only for LED 3, 60 s showed higher microleakage than 20 s. For LED 2 and QTH, there were no differences between the times. QTH showed lower microleakage means than LED 2, when photoactivated for 20 s, without TMC. When photoactivated for 60 s, QTH showed lower microleakage means than LED 3, for the groups with or without TMC. It was concluded that TMC, the increase in polymerization time, and the irradiance were factors that may increase the marginal microleakage of class II cavities.  相似文献   

20.
The objective of this study was to evaluate the effects of chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on the acid resistance of dental enamel. Forty human enamel samples were divided into four groups. They were manually irradiated with an Er,Cr:YSGG laser device (λ?=?2.78 µm, 20 Hz, 20 s), in a scanning mode, with and without water cooling, according to the following parameters: Group 1: 0.25 W, 62.5 J/cm2, no water cooling; group 2: 0.25 W, 62.5 J/cm2, 5.0 ml/min; group 3: 0.5 W, 125 J/cm2, no water cooling; group 4: 0.5 W, 125 J/cm2, 5.0 ml/min. No airflow was used. Afterwards, the samples were submitted to an acid challenge and assessed by cross-sectional Knoop microhardness at different depths (20, 40, 60, 80, and 100 µm) from the outer enamel surface. Average values were obtained for both irradiated and control areas in each sample and they were compared to obtain a percentage of microhardness increase. Data were analyzed by analysis of variance and Fisher’s exact test (α?=?5%). The percentage of microhardness increase observed in group 1 (+23.58%) was similar to group 3 (+19.12%), but higher than groups 2 (+3.61%) and 4 (10.9%) (p?<?0.05). The comparison of the depths showed that the Er,Cr:YSGG laser acted in the superficial layers of the dental enamel. The findings of the present study suggest that the energy densities of 62.5 and 125 J/cm2 were capable of increasing the acid resistance of human enamel. The presence of water during irradiation makes it difficult to obtain an enamel surface more resistant to acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号