首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
OBJECTIVE: To compare the effect of interleukin (IL)-17, IL-1beta and TNF-alpha on chemokine production by human chondrocytes and synovial fibroblasts isolated from patients with osteoarthritis (OA). The expression of IL-1beta mRNA by OA chondrocytes was also assessed, as well as the presence and expression of IL-17 receptor (IL-17R) in OA chondrocytes and synovial fibroblasts after stimulation with IL-17, IL-1beta and TNF-alpha. DESIGN: Synovial fibroblasts and chondrocytes isolated from patients with OA were stimulated in vitro with IL-17, IL-1beta or TNF-alpha. Supernatants were collected and immunoassayed for the presence of IL-8, GRO-alpha (CXC chemokines) and MCP-1, RANTES (CC chemokines). The cells were used to detect the presence of IL-17R and the expression of IL-17R mRNA. Stimulated chondrocytes were also used to detect IL-1beta production and mRNA expression. RESULTS: IL-17 upregulated the release of IL-8 and GRO-alpha both by synovial fibroblasts and chondrocytes, and the release of MCP-1 only by chondrocytes. IL-17 was a weaker stimulator than IL-1beta and TNF-alpha, except for GRO-alpha release which was maximally upregulated by IL-1beta, less by IL-17 and minimally by TNF-alpha. When compared to IL-1beta, IL-17 was more active on chondrocytes than on fibroblasts. In chondrocytes the expression of IL-1beta mRNA was enhanced by IL-17 and TNF-alpha, with a maximum level reached by IL-1beta. IL-17 and TNF-alpha stimulated IL-1beta release in few subjects. Neither IL-17, IL-1beta nor TNF-alpha modulated the presence of IL-17R and the expression of IL-17R mRNA. CONCLUSIONS: These data suggest that IL-17 could contribute to cartilage breakdown and synovial infiltration in OA by inducing both the release of chemokines by chondrocytes and synovial fibroblasts and, in a less extent, the synthesis of IL-1beta by chondrocytes.  相似文献   

3.
4.
OBJECTIVE: To verify the involvement of proinflammatory cytokines IL-17, IL-1beta and tumor necrosis factor alpha (TNF-alpha) in cartilage vascularization by stimulating the production of vascular endothelial growth factor (VEGF) by chondrocytes isolated from patients with osteoarthritis (OA), in comparison with patients with rheumatoid arthritis (RA) and patients with femoral or humeral neck fracture (FP). DESIGN: Chondrocytes isolated from patients with OA were maintained in monolayer culture for several passages. Chondrocyte dedifferentiation was monitored by the synthesis of cathepsin B by these cells. Chondrocytes freshly isolated at each subculture (subcultures 1-3) were stimulated with IL-17, IL-1beta or TNF-alpha. Supernatants were collected, immunoassayed for the production of VEGF and cathepsin B and assayed as the source of VEGF on the VEGF sensible ECV304 cell line. The cells were used to quantify intracellular cathepsin B enzymatic activity. RESULTS: In differentiated conditions IL-1beta and TNF-alpha, but not IL-17, can inhibit the spontaneous secretion of VEGF by human OA, RA and FP chondrocytes, and IL-17 can restore the decrease in VEGF secretion caused by TNF-alpha. IL-17, together with IL-1beta and TNF-alpha, can enhance VEGF secretion to various extents by dedifferentiated OA chondrocytes. This change in effect with respect to primary culture was observable for all cytokines at the beginning of dedifferentiation, when the production of VEGF by chondrocytes had dramatically fallen and the cathepsin B synthesis had increased. The amount of VEGF induced by cytokines on dedifferentiated chondrocytes never reached the amount of VEGF produced by differentiated chondrocytes. VEGF produced by chondrocytes stimulated the ECV304 cell line proliferation. CONCLUSIONS: These results indicate that dedifferentiated OA chondrocytes secrete VEGF after stimulation with proinflammatory cytokines. This event may be responsible for neovascularization found in OA cartilage.  相似文献   

5.
OBJECTIVE: To investigate the mRNA expression profiles of three mammalian hyaluronan synthases (HAS1, HAS2 and HAS3) in chondrocytes from normal (undiseased) animal cartilage and osteoarthritic human cartilage maintained in experimental culture systems and exposed to catabolic or anabolic stimuli provided by cytokines, growth factors and retinoic acid. DESIGN: Chondrocytes isolated from normal bovine, porcine or from osteoarthritic human cartilage were cultured as monolayers or embedded in agarose. Cultures were maintained for 3-5 days in the presence or absence of catabolic stimuli (IL-1, TNF-alpha or retinoic acid) or anabolic stimuli (TGF-beta or IGF-1) followed by extraction of RNA and analysis of HAS mRNA expression by RT-PCR. RESULTS: Whereas mRNA for HAS1 was not detected in any sample, the mRNAs for HAS2 and HAS3 were expressed in human, bovine and porcine chondrocytes. HAS2 mRNA was present in chondrocytes from all cartilages and under all culture conditions, whereas HAS3 did not show such constitutive expression. In agarose cultures of bovine and porcine chondrocytes HAS2 mRNA was present in control, IL-1 and retinoic acid treated cultures, whereas HAS3 mRNA was only detected in IL-1 stimulated cultures. Mature bovine chondrocytes cultured in monolayers expressed mRNAs for both HAS2 and HAS3 in the presence of IL-1, TNF-alpha, TGF-beta and IGF-1, however immature bovine chondrocytes in monolayer cultures displayed virtually no HAS3 mRNA expression in the presence of these cytokines and growth factors. HAS2 and HAS3 mRNAs were also expressed by bovine chondrocytes isolated from either the superficial or deep zone of articular cartilage, and by human chondrocytes cultured either in the absence or presence of IL-1 and retinoic acid. CONCLUSIONS: Our data indicate that HAS2 and HAS3 (but not HAS1) mRNAs are expressed in several mammalian cartilages. Chondrocyte HAS2 mRNA appears to be constitutively expressed while chondrocyte HAS3 mRNA expression can be differentially regulated in an age-dependent fashion, and may be affected by local and/or systemic catabolic or anabolic stimuli provided by cytokines or growth factors.  相似文献   

6.
7.
OBJECTIVE: Pro-inflammatory cytokines play an important role in osteoarthritis (OA). In osteoarthritic cartilage, chondrocytes exhibit an alteration in mitochondrial activity. This study analyzes the effect of tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) on the mitochondrial activity of normal human chondrocytes. MATERIALS AND METHODS: Mitochondrial function was evaluated by analyzing the activities of respiratory chain enzyme complexes and citrate synthase, as well as by mitochondrial membrane potential (Deltapsim) and adenosine triphosphate (ATP) synthesis. Bcl-2 family mRNA expression and protein synthesis were analyzed by RNase protection assay (RPA) and Western-blot, respectively. Cell viability was analyzed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and apoptosis by 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) stain. Glycosaminoglycans were quantified in supernatant by a dimethyl-methylene blue binding assay. RESULTS: Compared to basal cells, stimulation with TNFalpha (10 ng/ml) and IL-1beta (5 ng/ml) for 48 h significantly decreased the activity of complex I (TNFalpha=35% and IL-1beta=35%) and the production of ATP (TNFalpha=18% and IL-1beta=19%). Both TNFalpha and IL-1beta caused a definitive time-dependent decrease in the red/green fluorescence ratio in chondrocytes, indicating depolarization of the mitochondria. Both cytokines induced mRNA expression and protein synthesis of the Bcl-2 family. Rotenone, an inhibitor of complex I, caused a significant reduction of the red/green ratio, but it did not reduce the viability of the chondrocytes. Rotenone also increased Bcl-2 mRNA expression and protein synthesis. Finally, rotenone as well as TNFalpha and IL-1beta, reduced the content of proteoglycans in the extracellular matrix of normal cartilage. CONCLUSION: These results show that both TNFalpha and IL-1beta regulate mitochondrial function in human articular chondrocytes. Furthermore, the inhibition of complex I by both cytokines could play a key role in cartilage degradation induced by TNFalpha and IL-1beta. These data could be important for understanding of the OA pathogenesis.  相似文献   

8.
OBJECTIVE: This study addresses the effects of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) on cell death in human chondrocytes. METHODS: Osteoarthritis (OA) human chondrocytes stimulated with Actinomycin-D (ActD) were used as a cellular apoptotic model. Caspase family mRNA expression and protein synthesis were analyzed by the ribonuclease protection assay and Western-blot, respectively. Cell viability and apoptosis were evaluated using the 3-[4,5-dimethylthiazol-2yl] 2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry, respectively. Prostaglandin E2 (PGE2) and nitric oxide (NO) were evaluated by enzyme-linked immunosorbent assay (ELISA) and the Griess method, respectively. RESULTS: TNF-alpha and IL-1beta differentially affected the pattern of caspase mRNA expression by human chondrocytes. TNF-alpha induced a gradual increase in caspase-1 and -8 mRNA levels that was not seen with IL-1beta. The time sequence of caspase-3 and -7 inductions by TNF-alpha differs from that induced by IL-1beta. Cell viability was not modified by TNF-alpha or IL-1beta in cultured chondrocytes. Then, we employed ActD as a model to facilitate cell death. Treatment with TNF-alpha and ActD (TNF-alpha/ActD) increased cell death induced by ActD (23%). Treatment with IL-1beta and ActD (IL-1beta/ActD) did not modulate ActD-induced cell death. Similarly, IL-1beta/ActD did not induce an increase in the activation of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP) cleavage observed by the incubation with TNF-alpha/ActD. These different effects were not due to bcl-2 or mcl-1 levels. Inhibition of PGE2 synthesis by indomethacin increased the cell death induced by IL-1beta/Act-D (59%). An inhibitor of caspase-8 significantly reduced only the TNF-alpha/ActD-induced cell death (58%). CONCLUSION: TNF-alpha and IL-1beta differentially regulate the apoptotic pathway in human chondrocytes. This difference is dependent on PGE2 and caspase-8 levels.  相似文献   

9.
OBJECTIVE: To determine the effects of interleukin (IL)-6 and oncostatin M (OSM) added separately or in combination with IL-1beta on human osteoarthritic (OA) chondrocytes in alginate beads. DESIGN: Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 12 days, in the absence or in the presence of increasing amounts of IL-6 (20-500ng/ml) with its soluble receptor or OSM (0.1-10ng/ml) and with or without IL-1beta (1.7ng/ml). Aggrecan (AGG), transforming growth factor-beta1 (TGF-beta1), stromelysin-1 [matrix metalloprotease (MMP)-3], tissue inhibitor of metalloproteinases-1 (TIMP-1), macrophage inflammatory protein-1 beta (MIP-1beta), IL-6 and IL-8 productions were assayed by specific enzyme amplified sensitivity immunoassays. Prostaglandin (PG)E(2) was measured by a specific radioimmunoassay and nitrite (NO(2)(-)) by a spectrophotometric method based upon the Griess reaction. RESULTS: OSM, but not IL-6, decreased basal AGG and TGF-beta1 synthesis. Although IL-6 stimulated basal TIMP-1 production, it did not significantly modify MMP-3/TIMP-1 ratio. In contrast, 10ng/ml OSM highly increased TIMP-1 production, and decreased by half the ratio MMP-3/TIMP-1. IL-1beta highly stimulated *NO, IL-8, IL-6, MIP-1beta and PGE(2) synthesis but decreased AGG and TGF-beta1 production. Neither IL-6 nor OSM modulated IL-1beta-inhibitory effect on AGG production. IL-6, but not OSM, reversed IL-1beta-induced TGF-beta1 inhibition. At 1-10ng/ml, OSM significantly decreased IL-1beta-stimulated IL-8, MIP-1beta, PGE(2) and *NO production but amplified IL-1beta stimulating effect on IL-6 production. IL-6 had no effect on these parameters. CONCLUSIONS: OSM and IL-6, two glycoprotein 130 binding cytokines, show different activity profiles on OA chondrocytes, indicating that these cytokines could play different roles in the OA disease process.  相似文献   

10.
11.
BACKGROUND: There is growing evidence pointing to an involvement of cytokines and growth factors in renal osteodystrophy. In this study, the expression of interleukin-l beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), and basic fibroblast growth factor (bFGF) in bone biopsies taken from uremic patients before and 1 year after parathyroidectomy (PTX) was evaluated. Biochemical features and histomorphometric outcome were also studied. METHODS: Iliac bone biopsies were taken before and 1 year after PTX in nine uremic patients with severe hyperparathyroidism (HPT). Immunohistochemical techniques were used to identify the expression of IL-1 beta, TNF-alpha, TGF-beta, and bFGF in these bone samples. RESULTS: At the time of the second bone biopsy, the mean serum total alkaline phosphatase activity was normal, whereas mean serum intact parathyroid hormone (iPTH) level was slightly above the upper limit of normal values. Histomorphometric analysis showed a decrease in resorption parameters and static bone formation parameters after PTX. Dynamically, mineral apposition rate (MAR) and mineralization surface (MS/BS) decreased significantly. There was a marked local expression of IL-1beta, TNF-alpha, TGF-beta, and bFGF in bone biopsies before PTX, particularly in fibrous tissue and resorption areas. One year after PTX, IL-1beta decreased from 23.6 +/- 7.5% to 9.9 +/- 3.1%, TNF-alpha from 4.5 +/- 1.5% to 0.7 +/- 0.8%, TGF-beta from 49.6 +/- 9.8% to 15.2 +/- 4.6%, and bFGF from 50.9 +/- 12.7% to 12.9 +/- 7.9% (P < 0.001). A significant correlation was documented between cytokines and growth factors expression in bone with iPTH levels before and after PTX (P < 0.05). CONCLUSIONS: Based on these results, we suggest that IL-1beta, TNF-alpha, TGF-beta, and bFGF are involved in bone remodeling regulation, acting as local effectors, possibly under the control of PTH.  相似文献   

12.
OBJECTIVE: Angiogenesis is a process stimulated in inflamed synovium of patients with osteoarthritis (OA), and contributes to the progression of the disease. Synovial fibroblasts secrete angiogenic factors, such as vascular endothelial growth factor (VEGF), an up-regulator of angiogenesis, and this ability is increased by interleukin (IL)-1beta. The purpose of this study was to verify whether IL-17 contributes and/or synergizes with IL-1beta and tumor necrosis factor (TNF)-alpha in vessel development in articular tissues by stimulating the secretion of proangiogenic factors by synovial fibroblasts. DESIGN: We stimulated in vitro synovial fibroblasts isolated from OA, rheumatoid arthritis (RA) and fractured patients (FP) with IL-17 and IL-1beta and from OA patients with IL-17, IL-1beta and TNF-alpha. In the supernatants from the cultures, we assayed the amount of VEGF by immunoassay and other angiogenic factors (keratinocyte growth factor, KGF; hepatocyte growth factor, HGF; heparin-binding endothelial growth factor, HB-EGF; angiopoietin-2, Ang-2; platelet-derived growth factor B, PDGF-BB; thrombopoietin, TPO) by chemiluminescence; semiquantitative RT-PCR was used to state mRNA expression of nonreleased angiogenic factors (Ang-2 and PDGF-BB) and tissue inhibitors of metalloproteinase (TIMP)-1. RESULTS: IL-17, TNF-alpha and IL-1beta increased VEGF secretion by synovial fibroblasts from OA patients. IL-17 and IL-1beta also increased VEGF secretion in RA and FP. Besides, IL-17 increased KGF and HGF secretions in OA, RA and FP; in OA and RA, IL-17 also increased the HB-EGF secretion and the expression of TIMP-1 as protein and mRNA. In OA patients IL-17 had an additive effect on TNF-alpha-stimulated VEGF secretion. CONCLUSIONS: These results suggest that IL-17 is an in vitro stimulator of angiogenic factor release, both by its own action and by cooperating with TNF-alpha.  相似文献   

13.
OBJECTIVE: The death of chondrocytes by apoptosis is characteristic of degenerative joint diseases, such as osteoarthritis (OA). Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) have been shown to play an important role in the development of OA. In this study we analyzed the effects of TNF-alpha and IL-1beta on cell death in normal human chondrocytes. METHODS: Normal human chondrocytes were isolated from knee cartilage obtained at autopsy from 30 adult cadaveric donors. The cells were stimulated with TNF-alpha (10 ng/ml) or IL-1beta (5 ng/ml) in the presence or absence of Ro 31-8220 (Ro: a structurally related analog of bisindolylmaleimide that inhibits mitogen-activated protein kinase phosphatase 1 [MKP-1]) (Ro; 10 microM), an MKP-1 inhibitor, which induces apoptosis in chondrocytes. Apoptosis was evaluated by flow cytometry (propidium iodide) and nuclear morphology was evaluated with 4',6'-dianidino-2-phenylindole dihydrochloride. The expressions of caspase-8, -7 and -3 and Bcl-2 were analyzed by Western blot and the activation of caspase-3 and -8 was measured by flow cytometry. Prostaglandin E2 (PGE2) was evaluated by enzyme-linked immunosorbent assay. RESULTS: At 24 h the percentage of apoptotic (hypodiploid) nuclei induced by TNF-alpha+Ro was higher than the level induced by Ro alone. The combination of IL-1beta (5 ng/ml) with Ro did not show a synergistic effect. A morphological analysis demonstrated that treatment with TNF-alpha+Ro resulted in a large number of cells with condensed nuclei and DNA fragmentation. Western blot studies indicated that IL-1beta+Ro did not induce the time-dependent activation of caspase-8, -7 and -3 as seen with TNF-alpha+Ro. As quantified by flow cytometry, TNF-alpha+Ro induced a higher level of caspase-3 and -8 activation than that seen with IL-1beta+Ro. Pre-incubation for 2h with caspase inhibitors for caspase-3, -7, -8 and pan-caspase significantly decreased the hypodiploid DNA peak induced by treatment with TNF-alpha+Ro at 24 h. Indomethacin increased the cell death induced by IL-1beta+Ro; however, apoptosis induced by TNF-alpha+Ro was not modified by indomethacin. CONCLUSIONS: These results confirm that TNF-alpha and IL-1beta regulate apoptosis differently in this human chondrocyte model and that the differing effects of these cytokines are PGE2-independent. Indomethacin potentiates the effect of IL-1 on cell death and this may explain the reported effect of indomethacin on the progression of joint destruction.  相似文献   

14.
OBJECTIVES: To study the effects exerted by two antioxidants, N-monomethyl-L-arginine (L-NMMA), as an inhibitor of nitric oxide (NO) synthesis, and N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, on the expression of the major growth factor involved in cartilage repair, TGF-beta, under the three isoforms beta1, beta2 and beta3, and the receptors I and II of this factor, using lipopolysaccharide (LPS)-treated human chondrocytes in culture. METHODS: Suspension cultures of human chondrocytes derived from the knee of osteoarthritic patients were treated for 48 h with lipopolysaccharide (LPS) (10 microg/ml), L-NMMA (0.5 mM) or NAC (1 mM). Nitrite levels were assayed on the culture media using the Griess spectrophotometric method. After total RNA extraction, the expression of inducible NO synthase (iNOS), TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta receptors I and II, was determined by semi-quantitative polymerase chain-reaction (RT-PCR). RESULTS: LPS induced a dramatic increase of both NO production and iNOS mRNA level. The addition of L-NMMA (0.5 mM) abolished NO production without affecting iNOS mRNA levels. In contrast NAC (1 mM) strongly synergized with LPS to stimulate NO synthesis. LPS treatment did not significantly alter TGF-beta1 expression whereas L-NMMA inhibited its production. TGF-beta2 mRNA level was decreased by LPS and was not changed in the presence of L-NMMA. On the other hand, NAC was capable of counteracting the LPS-induced inhibition of TGF-beta2 expression. TGFbeta3 mRNA level was markedly reduced by LPS alone, or with both L-NMMA and NAC. Finally, the expression of TGF-betaRI was slightly increased in the presence of combined LPS and L-NMMA or NAC whereas that of TGFbeta-RII was reduced in the same conditions. CONCLUSIONS: The modulation of TGF-beta system was found to be differentially controlled by NO and ROS productions. Indeed, the control exerted on TGF-beta expression varied according to the isoform: TGF-beta1 mRNA level depends on NO whereas that of TGF-beta2 is regulated by ROS and TGF-beta3 seems to be unaffected by both of them. The expression of TGF-beta receptors appeared to be modulated by NO and ROS levels. The relevance of the present findings to osteoarthritis (OA) physiopathology and the potential use of antioxidant therapy to treat this disease are discussed.  相似文献   

15.
OBJECTIVE: Many studies have evidenced the clinical efficacy of hyaluronan (HA) in the treatment of osteoarthritis (OA). However, human and animal studies have described proinflammatory effects of HA on cells not involved in OA. We therefore investigated whether different molecular weight HA preparations can affect proinflammatory cytokine (IL1beta and TNFalpha) or chemokine (IL8, MCP-1 and RANTES) expression in human chondrocytes and synoviocytes isolated from OA patients. DESIGN: Human chondrocytes and synoviocytes were cultured in vitro in the presence or absence of three different purified HA pharmaceutical preparations (1x10(6) Kd, 5x10(5) Kd and 6.5x10(4) Kd) and assessed for the production of proinflammatory cytokines and chemokines and their mRNA expression. RESULTS: basal conditions, both chondrocytes and synoviocytes produce only MCP-1 and IL8, along with low quantities of IL1beta and TNFalpha, but not RANTES. IL8 production was generally about 100 times higher in chondrocytes than in synoviocytes, while MCP-1 was roughly twice as high in synoviocytes than in chondrocytes. At the mRNA level, expression of IL1beta, TNFalpha, IL8, MCP-1 and RANTES did not change in the presence of the three HA preparations either in synoviocytes or in chondrocytes with respect to basal condition. None of the three different HA preparations significantly affected production of IL8 or MCP-1. CONCLUSIONS: These data demonstrate that preparations of HA of the same origin but with different MWs do not induce proinflammatory cytokines and chemokines expressed by chondrocytes and synoviocytes that are either directly or indirectly involved in OA progression.  相似文献   

16.
Cytokines and chemokine gene expression in human kidney transplantation   总被引:14,自引:0,他引:14  
Despite advances in immunosuppression in past decades, allograft rejection remains the main reason for kidney graft failure. Recently, despite great improvements in understanding of molecular basis of allograft rejections, renal histology remains the primary method to monitor the onset of graft rejection. The aim of the present study was to ascertain whether cytokine and chemokine expression profiles in kidney allografts contributed to the diagnosis of graft dysfunction. We analyzed mRNA expression in 174 kidney graft biopsies for the following cytokines: TGF-beta1, TNF-alpha, IL-10, and chemokine RANTES. Based on the expression levels obtained by real-time RT-PCR, we correlated data with the results of morphologic examinations. All tested cytokines and chemokines were upregulated (P < .001) during acute rejection compared to nonrejecting controls. Upregulation was also found in chronic allograft nephropathy (CAN) group for TGF-beta1, IL-10 (P < .001), TNF-alpha, and RANTES (P < .01). Upregulated expression of IL-10 (P < .001), TGF-beta1, (P < .01) and RANTES (P < .05) showed borderline changes. Higher expression levels (P < .001) of TGF-beta1 and IL-10 were also found during ATN. IL-10 was upregulated (P < .01) in specimens with recurrent glomerulonephritis. Weakly increased (P < .05) expressions of TGF-beta1 were found during CsA toxicity. Distinctive expression levels between acute rejection and CAN were only found for IL-10 (P < .01). TNF-alpha showed a different expression profile in acute rejection versus ATN (P < .001). These findings suggest that distinct cytokine and chemokine expression profiles in grafts may contribute to the diagnosis for and elucidation of the immunopathologic process during graft dysfunction.  相似文献   

17.
Cytokine and chemokine expression kinetics after corneal transplantation   总被引:17,自引:0,他引:17  
  相似文献   

18.
19.
20.
Recent studies have identified osteoprotegerin ligand (OPG-L) as the essential factor required for osteoclastogenesis, and that the effects are prevented by its soluble receptor, osteoprotegerin (OPG). However, there are limited data at present on the regulation of OPG-L expression in human osteoblastic cells by other cytokines. Because interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6 all increase osteoclastogenesis, we assessed whether OPG-L mRNA steady-state levels were regulated by these cytokines in human osteoblastic cells. By northern analysis, IL-1beta (5 nmol/L) and TNF-alpha (9 nmol/L) increased OPG-L mRNA steady-state levels by up to two- to three-fold in normal marrow stromal cells (MS), an immortalized marrow stromal cell line (hMS), and the osteosarcoma cell line, MG-63, whereas IL-6 (2 nmol/L, with or without its soluble receptor) had no effect on OPG-L mRNA levels in any of these cells. IL-1beta and TNF-alpha increased OPG-L mRNA steady-state levels in the normal MS cells and the hMS cell line in a time- and dose-dependent fashion by up to 4.1-fold and up to 2.6-fold, respectively. Our data are thus consistent with the hypothesis that the proinflammatory and bone-resorbing cytokines, IL-1beta and TNF-alpha, but not IL-6, may stimulate osteoclastogenesis by inducing the expression of OPG-L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号