首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cannabis is one of the drugs most commonly consumed in combination with ecstasy (3,4-methylenedioxymethamphetamine, MDMA). Although numerous studies have attempted to further our understanding of the role of the cannabinoid system in drug abuse, few have focused on how it influences the rewarding effects of MDMA. The aim of the present study was to evaluate the role of the CB1 cannabinoid receptor in vulnerability to reinstatement of a MDMA-induced conditioned place preference (CPP). Mice were first conditioned with 5 mg/kg of MDMA. Once the preference had been extinguished, a priming dose of MDMA, alone or plus the CB1 cannabinoid agonist WIN 55,212-2 (0.1 and 0.5 mg/kg) or the CB1 cannabinoid antagonist SR 141716A (0.3 mg/kg), was administered on alternate days. The CB1 receptor antagonist, alone or with any of the priming doses of MDMA, induced reinstatement of the preference. In contrast, WIN 55,212-2 had no effect on reinstatement of the MDMA-induced CPP when administered alone, but potentiated the effects of subthreshold priming doses of MDMA. These results highlight the important role of the CB1 receptor in vulnerability to reinstatement of drug-seeking behavior and point to the importance of the endocannabinoid system in the addictive potential of MDMA.  相似文献   

2.
Rationale. MDMA is a serotonergic neurotoxin but few pre-clinical studies have found long-term behavioural consequences. As human users of MDMA are polydrug users, it is important to investigate whether the behavioural effects of other drugs are modulated by prior exposure to MDMA. Objectives. This study investigated whether pretreatment with a multiple high dose regimen of MDMA altered the rewarding effects of other drugs of abuse. Methods. Adult male Lister Hooded rats (n=10/group) were pretreated with 10 mg/kg MDMA or 1 ml/kg saline vehicle IP every 2 h for 6 h. Fourteen days later, conditioned place preference (CPP) to d-amphetamine (3 mg/kg), cocaine (20 mg/kg), ethanol (2.0 g/kg), heroin (0.5 mg/kg), or MDMA (10 mg/kg) was assessed. Results. In general, MDMA pretreatment had no effect on drug reward or habituation to the place conditioning apparatus. However, in contrast to saline pretreated rats, those animals receiving MDMA failed to show CPP after ethanol. Conclusion. MDMA pretreatment reduced the rewarding properties of ethanol. This finding may represent a functional consequence of MDMA-induced neurotoxicity. By extrapolation, human users of MDMA may be exposed to an increase in risks associated with alcohol abuse. Electronic Publication  相似文献   

3.
4.
MDMA (ecstasy) is a drug commonly used in adolescence, and many users of MDMA also use other illicit drugs. It is not known whether MDMA during adolescence alters subsequent responses to cocaine differently than in adults. This study examined the effects of MDMA in adolescent and adult rats on cocaine conditioned reward. At the start of these experiments, adolescent rats were at postnatal day (PND) 33 and adult rats at PND 60. Each rat was treated for 7 days with MDMA (2 or 5 mg/kg/day or vehicle) and locomotor activity was measured. Five days later cocaine conditioned place preference (CPP) was begun. Rats were trained for 3 days, in the morning with saline and in the afternoon with 10 mg/kg cocaine in 30 min sessions, and tested on the fourth day. MDMA stimulated activity in both age groups, but with a greater effect in the adult rats. Sensitization to the locomotor-stimulant effects of the lower dose of MDMA occurred in adult rats and in both groups to the higher dose. Cocaine did not produce a CPP in vehicle-treated adolescent rats, but a significant CPP was observed subsequent to treatment with MDMA. In contrast, cocaine-induced CPP was diminished after MDMA in adult rats. These effects were still evident 2 weeks later upon retest. Thus, under the present conditions, MDMA increased cocaine conditioned reward in adolescent and decreased it in adult rats. These findings suggest that exposure to MDMA during this critical developmental period may carry a greater risk than during adulthood and that male adolescents may be particularly vulnerable to the risk of stimulant abuse after use of MDMA.  相似文献   

5.
Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring.  相似文献   

6.

Objectives

The present studies assessed the effects of adolescent and adult ethanol exposure on the rewarding effects of cocaine as measured with the conditioned place preference procedure.

Methods

Male rats were exposed to intraperitoneal (IP) injections of ethanol or vehicle for 10 days [postnatal days (PNDs) 30-39 or PNDs 70-79; 2 mg/kg]. Place preference conditioning began on PND 65 or PND 105, respectively, and consisted of a baseline test followed by four conditioning cycles with either 0, 5, 10 or 20 mg/kg cocaine. Following the fourth conditioning cycle a final preference test was performed. Changes in time on the drug-paired side between the baseline and final test were analyzed.

Results

Animals exposed to vehicle (during adolescence or adulthood) showed a significant place preference at 20 mg/kg cocaine. Animals exposed to ethanol (during adolescence or adulthood) showed a significant place preference at 10 mg/kg cocaine.

Conclusions

Exposure to ethanol (adolescents or adults) sensitized the rewarding effects of cocaine. This may indicate an increase in the abuse liability of cocaine following a history of ethanol exposure.  相似文献   

7.
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is one of the most widely abused illegal drugs. Some users self-report euphoria and an increased perception and feeling of closeness to others. When taken in warm environments, MDMA users may develop acute complications with potential fatal consequences. In rodents, MDMA increases locomotor activity and, depending on ambient temperature, may produce a dose-dependent, potentially lethal hyperthermia. Like most other recreational drugs, MDMA is frequently taken in combination with other substances including tobacco, EtOH, marijuana, amphetamines, cocaine and, caffeine. Although polydrug use is very common, the understanding of the effects of this multiple substance use, as well as the analysis of consequences of different drug-drug associations, received rather little attention. The purpose of this review is to summarize our current knowledge about the changes on MDMA-related behavior, pharmacology, and neurotoxicity associated with co-consumption of other drugs of abuse and psychoactive agents.  相似文献   

8.
Acamprosate (calcium acetylhomotaurinate) is a glutamatergic neuromodulator efficacious at reducing relapse in alcoholic patients. The effect of acamprosate on relapse to other drugs of abuse has received little attention, however, and given increasing evidence that glutamatergic transmission mediates relapse to cocaine-seeking behavior, the purpose of this study was to assess the effects of acamprosate on the reinstatement of a conditioned place preference for cocaine. Mice were conditioned daily with cocaine (15 mg/kg), tested for the establishment of cocaine conditioned place preference, and then retested once weekly to monitor the extinction of the place preference. Following extinction of cocaine conditioned place preference, animals were treated daily with saline or acamprosate (30 or 100 mg/kg) for 3 days, followed by a single injection of cocaine (15 mg/kg) to reinstate conditioned place preference. In mice treated with saline or the low (30 mg/kg) dose of acamprosate, cocaine induced a significant reinstatement of the previously extinguished conditioned place preference; however, this reinstatement was not observed in mice treated with the high (100 mg/kg) dose of acamprosate. These results indicate that acamprosate can attenuate relapse-like behavior in mice and suggest that this compound may be potentially useful in the treatment for cocaine addiction.  相似文献   

9.
Rationale In previous studies, we have demonstrated that mice of the inbred strain C57BL/6J (C57) are more susceptible to amphetamine-induced conditioned place preference (CPP) than DBA/2J (DBA) mice. Moreover, we also observed parallel strain differences for the locomotor-stimulant effects of the drug. However, other studies have reported either no difference or opposite strain differences for cocaine- and morphine-induced CPP as well as for the locomotor effects of these drugs, suggesting that amphetamine-related behavioral phenotypes might depend on a specific pharmacological action of the psychostimulant. Objectives This study was aimed at testing strain differences for cocaine- and morphine-related behavioral phenotypes in the same experimental protocol and conditions previously used for amphetamine. Methods C57 and DBA mice were tested for CPP induced by cocaine (0, 5, 10, and 20 mg/kg) and morphine (0, 5, 7.5, and 10 mg/kg). Locomotor activity data were simultaneously obtained by measuring distance moved during all different CPP phases and unconditioned locomotor activity, behavioral sensitization and conditioned hyperactivity were measured together with CPP. Results (a) Either cocaine or morphine promoted significant CPP at lower doses in C57 than in DBA mice; (b) only drug-trained C57 mice showed a significant CPP compared with the control group; and (c) only C57 mice showed dose-dependent effects of cocaine on CPP. Moreover, there was no relationship between drug-induced CPP and locomotion. Conclusions The results demonstrate that C57 and DBA mice differ in their sensitivity to cocaine- and morphine-induced CPP and suggest that the two strains differ in sensitivity to the positive incentive properties of drugs of abuse.  相似文献   

10.

Background

Clock genes have been demonstrated to play a role in behavioral responses to a variety of drugs of abuse, including cocaine, amphetamine, morphine, and ethanol. However, no studies to date have examined the role of Clock genes on nicotine-mediated behaviors. We examined the involvement of Clock, one of several Clock genes, on the effects of nicotine by examining mice with the ClockΔ19 mutation in behaviors commonly used to assess drug effects in rodents.

Methods

We first measured the locomotor effects of nicotine in mutants and wild type mice in response to repeated nicotine injections (0.175 mg/kg, IP). To assess the secondary properties of nicotine, we measured the ability of nicotine (0.175 mg/kg, IP) to induce a conditioned place preference. Finally, we measured the primary reinforcing properties of nicotine at two doses (0.01 and 0.03 mg/kg/infusion, IV) using the self-administration paradigm.

Results

Mutant mice demonstrated no difference in magnitude of the sensitized response to nicotine as compared to wild-type controls. In the conditioned place preference paradigm, mutant and wild-type mice demonstrated a similar preference for a nicotine-paired environment. And finally, mutant and wild-type mice demonstrated a similar acquisition of nicotine self-administration, as indicated by the number of responses on a nicotine-paired lever and the number of nicotine reinforcers achieved during sessions.

Conclusions

The ClockΔ19 mutation appears to have no effect on the reinforcing properties of nicotine, in contrast to its demonstrated role in cocaine reinforcement. Further studies are needed to determine the effect of other Clock genes on nicotine reinforcement.  相似文献   

11.
The recreational drug γ-hydroxybutyrate (GHB) has euphoric effects and can induce sedation and body temperature changes. GHB is frequently combined with other recreational drugs although these interactions are not well characterised. The present study used biotelemetry to provide a fine-grained analysis of the effects of GHB on body temperature and locomotor activity in freely moving rats, and investigated interactions between GHB and 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH) and various antagonist drugs. GHB (1000 mg/kg) caused profound sedation for more than 2 h and a complex triphasic effect on body temperature: an initial hypothermia (5–40 min), followed by hyperthermia (40–140 min), followed again by hypothermia (140–360 min). A lower GHB dose (500 mg/kg) also caused sedation but only a hypothermic effect that lasted up to 6 h. The dopamine D1 receptor antagonist SCH 23390 (1 mg/kg), the opioid antagonist naltrexone (1 mg/kg), the benzodiazepine antagonist flumazenil (10 mg/kg), and the 5-HT2A/2C receptor antagonist ritanserin (1 mg/kg) did not prevent the overall sedative or body temperature effects of GHB (1000 mg/kg). However the GABAB antagonist SCH 50911 (50 mg/kg) prevented the hyperthermia induced by GHB (1000 mg/kg). Repeated daily administration of GHB (1000 mg/kg) produced tolerance to the sedative and hyperthermic effects of the drug and cross-tolerance to the sedative effects of the GABAB receptor agonist baclofen (10 mg/kg). A high ambient temperature of 28 °C prevented the hypothermia obtained with GHB (500 mg/kg) at 20 °C, while GHB (500 mg/kg) reduced the hyperthermia and hyperactivity produced by co-administered doses of MDMA (5 mg/kg) or METH (1 mg/kg) at 28 °C. These results further confirm a role for GABAB receptors in the hypothermic and sedative effects of GHB and show an interaction between GHB and MDMA, and GHB and METH, that may be relevant to the experience of recreational users who mix these drugs.  相似文献   

12.
Neuronal substrates that mediate the conditioned effects of cocaine have not been well characterized. To examine dopaminergic mechanisms, three antagonists were tested for their capacity to inhibit the expression of conditioned locomotor activity and conditioned place preference in rats. Antagonists were also assessed against acute cocaine-stimulated locomotor activity for comparison. For locomotor activity conditioning, six conditioning sessions were conducted over a 10-day period. Paired rats received 10 mg/kg cocaine prior to activity sessions and saline after; unpaired controls received saline prior and cocaine after. For place preference conditioning, eight conditioning sessions were conducted over a 13-day period; rats received 10 mg/kg cocaine while restricted to one of two distinct chambers and, on alternate days, they received saline in the other. Antagonists (haloperidol, raclopride and SCH23390; 0.03-0.1 mg/kg) were given only on test days for conditioned effects. All three antagonists significantly and dose-dependently attenuated the direct stimulatory effect of cocaine. SCH23390 showed a tendency to reduce the expression of conditioned locomotor activity, and only haloperidol blocked the expression of conditioned place preference. Thus, direct and conditioned stimulant effects of cocaine were shown to be differentially sensitive to dopamine receptor blockade. Further, conditioned stimulant effects differed from conditioned reinforcing effects in this regard.  相似文献   

13.
Marijuana (Cannabis sativa) remains one of the most widely used illegal drugs, with adolescents being particularly vulnerable to its use and abuse. In spite of this, most studies are conducted in adult animals even though the effects might be quite different in adolescents. Additionally, the use of marijuana often precedes the use of other psychoactive drugs including cocaine, especially when marijuana exposure begins during early adolescence. The purpose of this study was to examine the effects of repeated Δ9-tetrahydrocannabinol (THC), the major active ingredient in marijuana, in adolescents compared to adults and to determine its subsequent effects on cocaine-stimulated activity. To this end, adolescent (postnatal day PND 34) and adult (PND 66) rats were administered 3 mg/kg/day THC for 8 days and locomotor activity was measured on days 1, 2, 7 and 8 after dosing. On day 12 (4 days after the last dose of THC), rats were injected with escalating doses of cocaine and behavior was recorded. Results show that THC depressed locomotor activity in adult rats but not in adolescents. However, following a cocaine challenge, adolescents exposed to THC showed increased locomotor responses to cocaine compared to chronic vehicle-injected controls. This was not seen in adults. These results show that the effects of cocaine are enhanced after THC in adolescents, but not adults, and that this might account for the greater transition to cocaine after early, as opposed to later, marijuana use.  相似文献   

14.
Daily administration of a drug in a distinctive environment establishes contingencies that support Pavlovian conditioning. Environmental cues that are paired with the drug injection and that predict the onset of drug action can become conditioned stimuli. Ultimately, the conditioned stimuli come to predict the availability of drug and develop the potential to engender conditioned drug responses. Various psychostimulant drugs can produce conditioned locotnotion when tested in the presence of environmental cues that were repeatedly associated with the drug experience. The ability of amphetamine and cocaine to produce conditioned locomotion was demonstrated in the present study. Stimulant-like properties of methylenedioxymethamphetamine (MDMA) have been reported in locomotor paradigms, drug discrimination procedures, and human subjective questionnaires. MDMA (5 mg/kg), paired for 5 days to a distinct environment signalled by the presence of a distinct odor, produced enhanced locomotion during a test probe with the odor alone indicating that MDMA can also produce conditioned locomotion. The observation that the stimulus properties of MDMA can also become associated with environmental cues supports the hypothesis that some of the behavioral effects of MDMA resemble those of other classical psychostimulants such as amphetamine and cocaine.This is publication number 5732BCR from the Research Institute of Scripps Clinic  相似文献   

15.
RATIONALE: There is compelling support for the contribution of dopamine and the D1R-like (D1R, D5R) receptor subfamily to the behavioral and neural effects of psychostimulant drugs of abuse. The relative roles of D1R and D5R subtypes in mediating these effects are not clear. OBJECTIVES: The objectives of this study are to directly compare (C57BL/6J congenic) D1R knockout (KO) and D5R KO mice for baseline locomotor exploration, acute locomotor responses to cocaine, and locomotor sensitization to repeated cocaine administration, and to examine cocaine conditioned place preference (CPP) in D5R KO. MATERIALS AND METHODS: D1R KO, D5R KO, and wild-type (WT) were assessed for baseline open field exploration, locomotor-stimulating effects of 15 mg/kg acute cocaine and sensitized locomotor responses to cocaine after repeated home cage treatment with 20 or 30 mg/kg cocaine. D5R KO and WT were tested for CPP to 15 mg/kg cocaine. RESULTS: D1R KO showed modest basal hyperactivity and increased center exploration relative to WT. Acute locomotor responses to cocaine were consistently absent in D1R KO, but intact in D5R KO. D5R KO showed normal locomotor sensitization to cocaine and normal cocaine CPP. D1R KO failed to show a sensitized locomotor response to 30 mg/kg cocaine. Failure to sensitize in D1R KO was not because of excessive stereotypies. Surprisingly, D1R KO showed a strong trend for sensitization to 20 mg/kg cocaine. CONCLUSIONS: D5R KO does not alter acute or sensitized locomotor responses to cocaine or cocaine CPP. D1R KO abolishes acute locomotor response to cocaine, but does not fully prevent locomotor sensitization to cocaine at all doses.  相似文献   

16.
Stimulants such as d-amphetamine (AMPH) are used commonly to treat attention-deficit hyperactivity disorder (ADHD), but concerns have been raised regarding the use of AMPH due to its reinforcing and potentially addictive properties. The current study examined if individual differences in impulsive choice predict AMPH-induced hyperactivity and conditioned place preference (CPP). Rats were first tested in delay discounting using an adjusting delay procedure to measure impulsive choice and then were subsequently tested for AMPH CPP. High impulsive (HiI) and low impulsive (LoI) rats were conditioned across four sessions with 0.1, 0.5, or 1.5 mg/kg of AMPH. AMPH increased locomotor activity for HiI and LoI rats following 0.5 mg/kg but failed to increase activity following 0.1 and 1.5 mg/kg. CPP was established for HiI rats with both 0.5 and 1.5 mg/kg of AMPH, whereas LoI rats did not develop CPP following any dose of AMPH; HiI and LoI groups differed significantly following 0.5 mg/kg of AMPH. These results indicate that HiI rats are more sensitive to the rewarding effects of AMPH compared to LoI rats, which is consistent with research showing that high impulsive individuals may be more vulnerable to stimulant abuse.  相似文献   

17.
Conditioned place preference (CPP), a commonly used model for studying the role of contextual cues in drug reward and drug seeking, was employed to explore possible behavioral interactions between (+/-)3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") and cocaine. On each of four occasions, adult male rats received one of three doses of MDMA (0 mg/kg, 5 mg/kg, 10 mg/kg; administered subcutaneously [s.c.]) combined with one of three doses of cocaine (0 mg/kg, 2.5 mg/kg, 5 mg/kg; administered intraperitoneally [i.p.]), and were then tested in a CPP paradigm. The results showed MDMA-induced CPP at a unit dose of 5 mg/kg, but at the 10 mg/kg dose there was a return to baseline (control) performance levels. For cocaine alone, CPP increased in a linear fashion as the drug dose was increased. Concurrent administration resulted in antagonism of each drug, but there was evidence that this pattern was reversible at higher doses of the respective drugs. These data are instructive insofar as they suggest that the behavioral and neurochemical effects of MDMA and cocaine presented in isolation are dramatically altered when the two drugs are presented in combination.  相似文献   

18.
A large body of evidence suggests that genetic factors may affect the reinforcing properties of drugs of abuse. This study investigated the involvement of the serotonin 1B (5-HT1B) receptor in modulating cocaine-induced place conditioning by comparing the response of 5-HT1B receptor gene knock-out mice with wild type 129/Sv-ter mice. The rewarding effects of various doses of cocaine (0, 2.5, 5, 10, 20, and 40 mg/kg) were examined in both strains. Results clearly show that 5-HT1B receptor knock-out mice failed to display a conditioned place preference for stimuli paired with cocaine while wild type mice exhibited a conditioned place preference for the compartment paired with cocaine (5 and 20 mg/kg). As other studies showed that 5-HT1B knock-out mice self-administer cocaine, these results suggest a dissociation between the psychologic state linked to self-administration and the one measured in conditioned place preference.  相似文献   

19.
Effects of the novel NMDA/glycine receptor antagonist, L-701,324, on morphine- and cocaine-induced conditioned place preference (CPP) were examined in male Wistar rats. After determination of initial preference, animals were conditioned with morphine (5 mg/kg, i.p.) or cocaine (5 mg/kg, i.p.) for 3 conditioning trials, alone or in combination of these drugs with L-701,324 (2.5 mg/kg and 5 mg/kg, p.o.). L-701,324 prevented acquisition of the place preference produced by morphine and cocaine. Administration of L-701,324 on the test day attenuated the expression of morphine-induced CPP, whereas it had no effect on cocaine CPP. When L-701,324 was given alone it did not affect dependent variables (i.e. time spent in non-preferred compartment) suggesting that L-701,324 did not display any reinforcing properties by itself. Our current data suggest that glycine site on the NMDA receptor complex may be involved in the mediation of the rewarding effects of drugs of abuse.  相似文献   

20.
Pre-exposure to psychostimulants enhances the rewarding and psychomotor stimulating effects of subsequent drug exposure. Currently, there is a prevalence of adolescent exposure to the psychostimulants methylphenidate (MPD) and 3,4-methylenedioxymethamphetamine (MDMA). However, there is a paucity of investigation concerning the long-term behavioral consequences of exposure to these stimulants during adolescence. The aim of the present study was to investigate the effect of MPD and MDMA exposure in adolescence on cocaine-induced reward and psychomotor stimulation in adulthood. Adolescent Swiss-Webster mice received intraperitoneal injections of saline, MPD (10 mg/kg) or MDMA (10 mg/kg) from PD 26 to PD 32. Animal weights were monitored during and after drug administration. One month later, cocaine-induced conditioned place preference (CPP) and locomotor activity (LMA) were investigated. MPD and MDMA inhibited weight increase from PD 28 to PD 39 compared to the saline group, but weights amongst the three groups equalized by PD 46. MDMA exposure resulted in the same magnitude of cocaine (20 mg/kg)-induced CPP as saline exposure; however, MPD exposure caused significantly less CPP. Two weeks following extinction of CPP and withdrawal from cocaine, a priming injection of cocaine (5 mg/kg) reinstated significantly higher CPP in the MPD and MDMA groups than in the saline group. In the LMA experiments, cocaine (15 mg/kg) was administered for 5 consecutive days. On days 1 and 5, cocaine-induced hyperlocomotion in the MPD group was significantly higher than in the saline and MDMA groups. After a 2-week withdrawal period, cocaine (5 mg/kg) evoked significantly higher LMA responses in the MPD and MDMA groups compared to the saline group. Results suggest that exposure of mice to both MPD and MDMA during adolescence involves long-lasting neural adaptations, manifested as sensitized responses to cocaine-induced reward and psychomotor stimulation following cocaine withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号