首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli K1 is a major gram-negative organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMEC) are a prerequisite for E. coli penetration into the central nervous system in vivo. In the present study, we showed using DNA microarray analysis that E. coli K1 associated with HBMEC expressed significantly higher levels of the fim genes compared to nonassociated bacteria. We also showed that E. coli K1 binding to and invasion of HBMEC were significantly decreased with its fimH deletion mutant and type 1 fimbria locked-off mutant, while they were significantly increased with its type 1 fimbria locked-on mutant. E. coli K1 strains associated with HBMEC were predominantly type 1 fimbria phase-on (i.e., fimbriated) bacteria. Taken together, we showed for the first time that type 1 fimbriae play an important role in E. coli K1 binding to and invasion of HBMEC and that type 1 fimbria phase-on E. coli is the major population interacting with HBMEC.  相似文献   

2.
Escherichia coli containing the K1 capsule is the leading cause of gram-negative meningitis, but the pathogenesis of this disease is not completely understood. Recent microarray experiments in which we compared the gene expression profile of E. coli K1 associated with human brain microvascular endothelial cells (HBMEC) to the gene expression profile of E. coli K1 not associated with HBMEC revealed that there was a threefold increase in the expression of the fliI gene, encoding an ATP synthase involved in flagellar synthesis and motility, in HBMEC-associated E. coli. In this study, we examined the role of flagella in E. coli K1 association with and invasion of HBMEC by constructing isogenic DeltaflhDC, DeltafliI, DeltafliC, and DeltacheW mutants that represented each class of flagellar genes. Mutations that affected the flagellum structure and flagellum formation (DeltaflhDC, DeltafliI, and DeltafliC) resulted in significant defects in motility, as well as in HBMEC association and invasion, compared to the characteristics of the wild-type strain when preparations were examined with or without centrifugation. Transcomplementation with the corresponding genes restored the levels of these mutants to the levels of the parent strain. These findings suggest that the HBMEC association and invasion defects of the mutants are most likely related to flagella and less likely due to their motility defects. This conclusion was supported by our demonstration that the cheW mutant was not motile but was able to associate with and invade HBMEC. In addition, purified recombinant flagellin reduced the association of the wild-type strain with HBMEC by approximately 40%, while it had no effect on the fliC mutant's association with HBMEC. Together, these findings indicate that flagella promote E. coli K1 binding to HBMEC.  相似文献   

3.
4.
Zhou Y  Tao J  Yu H  Ni J  Zeng L  Teng Q  Kim KS  Zhao GP  Guo X  Yao Y 《Infection and immunity》2012,80(3):1243-1251
Type VI secretion systems (T6SSs) are involved in the pathogenicity of several gram-negative bacteria. Based on sequence analysis, we found that a cluster of Escherichia coli virulence factors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causing E. coli K1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ in E. coli-HBMEC interaction. The deletion mutant of hcp2 showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional in E. coli K1, and two Hcp family proteins participate in different steps of E. coli interaction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causing E. coli K1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis of E. coli meningitis.  相似文献   

5.
Meningitis-causing Escherichia coli K1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved in E. coli entry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causing E. coli K1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not β-Pix, was involved in E. coli K1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined in E. coli K1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreased E. coli invasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response to E. coli is under the control of STAT3. More importantly, two E. coli determinants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specific E. coli determinants regulate a novel mechanism of STAT3 cross talk with Rac1 in E. coli K1 invasion of HBMEC.  相似文献   

6.
IbeT is a downstream gene of the invasion determinant ibeA in the chromosome of a clinical isolate of Escherichia coli K1 strain RS218 (serotype 018:K1:H7). Both ibeT and ibeA are in the same operon. Our previous mutagenesis and complementation studies suggested that ibeT may coordinately contribute to E. coli K1 invasion with ibeA. An isogenic in-frame deletion mutant of ibeT has been made by chromosomal gene replacement with a recombinant suicide vector carrying a fragment with an ibeT internal deletion. The characteristics of the mutant in meningitic E. coli infection were examined in vitro [cell culture of human brain microvascular endothelial cells (HBMEC)] and in vivo (infant rat model of E. coli meningitis) in comparison with the parent strain. The ibeT deletion mutant was significantly less adhesive and invasive than its parent strain E. coli E44 in vitro, and the adhesion- and invasion-deficient phenotypes of the mutant can be complemented by the ibeT gene. Recombinant IbeT protein is able to block E. coli E44 invasion of HBMEC. Furthermore, the ibeT deletion mutant is less capable of colonizing intestine and less virulent in bacterial translocation across the blood-brain barrier (BBB) than its parent E. coli E44 in vivo. These data suggest that ibeT-mediated E. coli K1 adhesion is associated with the bacterial invasion process.  相似文献   

7.
The binding of Escherichia coli adhesins to human umbilical vein endothelial cells was studied by a cell monolayer enzyme-linked immunosorbent assay. S fimbriae displayed a concentration-dependent and saturable binding to the endothelial cells which was mediated by their sialylgalactoside-specific lectin activity. P fimbriae exhibited only low binding, and type 1 fimbriae exhibited no binding to these cells.  相似文献   

8.
Bacterial binding to host cell surface is considered an important initial step in the pathogenesis of many infectious diseases including meningitis. Previous studies using a laboratory Escherichia coli (E. coli) strain HB101 possessing a recombinant plasmid carrying the cloned S fimbriae gene cluster have shown that S fimbriae are the major contributor to binding to bovine brain microvascular endothelial cells (BMEC) for HB101. Our present study, however, revealed that S fimbriae did not play a major role for E. coli K1's binding to human BMEC in vitro and crossing of the blood-brain barrier in vivo. This was shown by our demonstration that E. coli K1 strain and its S fimbriae-operon deletion mutant exhibited similar rates of binding to human BMEC and similar rates of penetration into the central nervous system in the experimental hematogenous meningitis model. Studies are needed to identify major determinants of E. coli K1 contributing to BMEC binding and subsequent crossing of the blood-brain barrier in vivo.  相似文献   

9.
We established a protocol for isolation of microarray-grade bacterial RNA from Escherichia coli K1 interacting with human brain microvascular endothelial cells. The extracted RNA was free of human RNA contamination. More importantly, microarray analysis demonstrated that no bias was introduced in the gene expression pattern during the RNA isolation procedure.  相似文献   

10.
Neonatal Escherichia coli meningitis continues to be a diagnostic and treatment challenge despite the availability of active antibiotics. Our earlier studies have shown that outer membrane protein A (OmpA) is one of the major factors responsible for Escherichia coli traversal across the blood-brain barrier that constitutes a lining of brain microvascular endothelial cells (BMEC). In this study we showed that OmpA binds to a 95-kDa human BMEC (HBMEC) glycoprotein (Ecgp) for E. coli invasion. Ecgp was partially purified by wheat germ agglutinin and Maackia amurensis lectin (MAL) affinity chromatography. The MAL affinity-purified HBMEC proteins bound to OmpA(+) E. coli but not to OmpA(-) E. coli. In addition, the deglycosylated MAL-bound proteins still interact with OmpA(+) E. coli, indicating the role of protein backbone in mediating the OmpA binding to HBMEC. Interestingly, the MAL affinity-bound fraction showed one more protein, a 65-kDa protein that bound to OmpA(+) E. coli in addition to Ecgp. Further, the 65-kDa protein was shown to be a cleavage product of Ecgp. Immunocytochemistry of HBMEC infected with OmpA(+) E. coli by using anti-Ecgp antibody suggests that Ecgp clusters at the E. coli entry site. Anti-Ecgp antibody also reacted to microvascular endothelium on human brain tissue sections, indicating the biological relevance of Ecgp in E. coli meningitis. Partial N-terminal amino acid sequence of Ecgp suggested that it has 87% sequence homology to gp96, an endoplasmic reticulum-resident molecular chaperone that is often expressed on the cell surface. In contrast, the 65-kDa protein, which could be the internal portion of Ecgp, showed 70% sequence homology to an S-fimbria-binding sialoglycoprotein reported earlier. These results suggest that OmpA interacts with Ecgp via the carbohydrate epitope, as well as with the protein portion for invading HBMEC.  相似文献   

11.
Neonatal Escherichia coli meningitis remains a devastating disease, with unacceptably high morbidity and mortality despite advances in supportive care measures and bactericidal antibiotics. To further our ability to improve the outcome of affected neonates, a better understanding of the pathogenesis of the disease is necessary. To identify potential bacterial genes which contribute to E. coli invasion of the blood-brain barrier, a cerebrospinal fluid isolate of E. coli K1 was mutagenized with TnphoA. TnphoA mutant 27A-6 was found to have a significantly decreased ability to invade brain microvascular endothelial cells compared to the wild type. In vivo, 32% of the animals infected with mutant 27A-6 developed meningitis, compared to 82% of those infected with the parent strain, despite similar levels of bacteremia. The DNA flanking the TnphoA insertion in 27A-6 was cloned and sequenced and determined to be homologous to E. coli K-12 aslA (arylsulfatase-like gene). The deduced amino acid sequence of the E. coli K1 aslA gene product shows homology to a well-characterized arylsulfatase family of enzymes found in eukaryotes, as well as prokaryotes. Two additional aslA mutants were constructed by targeted gene disruption and internal gene deletion. Both of these mutants demonstrated decreased invasion phenotypes, similar to that of TnphoA mutant 27A-6. Complementation of the decreased-invasion phenotypes of these mutants was achieved when aslA was supplied in trans. This is the first demonstration that this locus contributes to invasion of the blood-brain barrier by E. coli K1.  相似文献   

12.
Escherichia coli K1 traversal across the blood-brain barrier is an essential step in the pathogenesis of neonatal meningitis. We have previously shown that invasive E. coli promotes the actin rearrangement of brain microvascular endothelial cells (BMEC), which constitute a lining of the blood-brain barrier, for invasion. However, signal transduction mechanisms involved in E. coli invasion are not defined. In this report we show that tyrosine kinases play a major role in E. coli invasion of human BMEC (HBMEC). E. coli induced tyrosine phosphorylation of HBMEC cytoskeletal proteins, focal adhesion kinase (FAK), and paxillin, with a concomitant increase in the association of paxillin with FAK. Overexpression of a dominant interfering form of the FAK C-terminal domain, FRNK (FAK-related nonkinase), significantly inhibited E. coli invasion of HBMEC. Furthermore, we found that FAK kinase activity and the autophosphorylation site (Tyr397) are important in E. coli invasion of HBMEC, whereas the Grb2 binding site (Tyr925) is not required. Immunocytochemical studies demonstrated that FAK is recruited to focal plaques at the site of bacterial entry. Consistent with the invasion results, overexpression of FRNK, a kinase-negative mutant (Arg454 FAK), and a Src binding mutant (Phe397 FAK) inhibited the accumulation of FAK at the bacterial entry site. The overexpression of FAK mutants in HBMEC also blocked the E. coli-induced tyrosine phosphorylation of FAK and its association with paxillin. These observations provide evidence that FAK tyrosine phosphorylation and its recruitment to the cytoskeleton play a key role in E. coli invasion of HBMEC.  相似文献   

13.
Functional heterogeneity of type 1 fimbriae of Escherichia coli.   总被引:1,自引:4,他引:1       下载免费PDF全文
Escherichia coli and other members of the family Enterobacteriaceae express surface fibrillar structures, fimbriae, that promote bacterial adhesion to host receptors. Type 1 fimbriae possess a lectinlike component, FimH, that is commonly thought to cause binding to mannose-containing oligosaccharides of host receptors. Since adhesion of type 1 fimbriated organisms are inhibited by mannose, the reactions are described as mannose sensitive (MS). We have studied the adhesion of the type 1 fimbriated CSH-50 strain of E. coli (which expresses only type 1 fimbriae) to fibronectin (FN). E. coli CSH-50 does not bind detectable amounts of soluble FN but adheres well to immobilized plasma or cellular FN. This adhesion was inhibited by mannose-containing saccharides. By using purified domains of FN, it was found that E. coli CSH-50 adheres primarily to the amino-terminal and gelatin-binding domains, only one of which is glycosylated, in an MS fashion. Binding of the mannose-specific lectin concanavalin A to FN and ovalbumin was eliminated or reduced, respectively, by incubation with periodate or endoglycosidase. Adhesion of E. coli CSH-50 to ovalbumin was reduced by these treatments, but adhesion to FN was unaffected. E. coli CSH-50 also adheres to a synthetic peptide copying a portion of the amino-terminal FN domain (FNsp1) in an MS fashion. Purified CSH-50 fimbriae bound to immobilized FN and FNsp1 in an MS fashion and inhibited adhesion of intact organisms. However, fimbriae purified from HB101 (pPKL4), a recombinant strain harboring the entire type 1 fim gene locus and expressing functional type 1 fimbriae, neither bound to FN or FNsp1 nor inhibited E. coli adhesion to immobilized FN or FNsp1. These novel findings suggest that there are two forms of type 1 MS fimbriae. One form exhibits only the well-known MS lectinlike activity that requires a substratum of mannose-containing glycoproteins. The other form exhibits not only the MS lectinlike activity but also binds to nonglycosylated regions of proteins in an MS manner.  相似文献   

14.
To assess the role of S fimbriae in the pathogenesis of Escherichia coli meningitis, transformants of E. coli strains with or without S fimbriae plasmid were compared for their binding to microvessel endothelial cells isolated from bovine brain cortices (BMEC). The BMEC's displayed a cobblestone appearance, were positive for factor VIII, carbonic anhydrase IV, took up fluorescent-labeled acetylated low density lipoprotein, and exhibited gamma glutamyl transpeptidase activity. Binding of S fimbriated E. coli to BMEC was approximately threefold greater than nonfimbriated E. coli Similarly S fimbriated E. coli bound to human brain endothelial cells approximately threefold greater than nonfimbriated E. coli. Binding was reduced approximately 60% by isolated S fimbriae and about 80% by anti-S adhesin antibody. Mutating the S adhesin gene resulted in a complete loss of the binding, whereas mutagenesis of the major S fimbriae subunit gene sfaA did not significantly affect binding. Pretreatment of BMEC with neuraminidase or prior incubation of S fimbriated E. coli with NeuAc alpha 2,3-sialyl lactose completely abolished binding. These findings indicate that S fimbriated E. coli bind to NeuAc alpha 2,3-galactose containing glycoproteins on brain endothelial cells via a lectin-like activity of SfaS adhesin. This might be an important early step in the penetration of bacteria across the blood-brain barrier in the development of E. coli meningitis.  相似文献   

15.
Escherichia coli K1 is the most common Gram-negative bacillary organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMECs) is a prerequisite for its traversal of the blood-brain barrier (BBB) and penetration into the brain. In the present study, we identified NlpI as a novel bacterial determinant contributing to E. coli K1 interaction with HBMECs. The deletion of nlpI did not affect the expression of the known bacterial determinants involved in E. coli K1-HBMEC interaction, such as type 1 fimbriae, flagella, and OmpA, and the contribution of NlpI to HBMECs binding and invasion was independent of those bacterial determinants. Previous reports have shown that the nlpI mutant of E. coli K-12 exhibits growth defect at 42°C at low osmolarity, and its thermosensitive phenotype can be suppressed by a mutation on the spr gene. The nlpI mutant of strain RS218 exhibited similar thermosensitive phenotype, but additional spr mutation did not restore the ability of the nlpI mutant to interact with HBMECs. These findings suggest the decreased ability of the nlpI mutant to interact with HBMECs is not associated with the thermosensitive phenotype. NlpI was determined as an outer membrane-anchored protein in E. coli, and the nlpI mutant was defective in cytosolic phospholipase A2α (cPLA2α) phosphorylation compared to the parent strain. These findings illustrate the first demonstration of NlpI''s contribution to E. coli K1 binding to and invasion of HBMECs, and its contribution is likely to involve cPLA2α.Neonatal Gram-negative bacillary meningitis continues to be an important cause of mortality and morbidity (12, 26, 35). The key aspect of pathogens associated with neonatal bacterial meningitis is related to their ability to traverse the blood-brain barrier (BBB), but the microbe-host interactions involved in microbial traversal of the BBB remain incompletely understood (17). Escherichia coli K1 is the most common Gram-negative bacillary organism causing neonatal meningitis (12, 26, 35), and most cases of neonatal E. coli meningitis develop via hematogenous spread, but it is incompletely understood how circulating E. coli K1 traverses the BBB (16).The BBB is a structural and functional barrier formed by brain microvascular endothelial cells to protect the brain from microbes and toxins circulating in the blood. The in vitro BBB model has been developed by isolation and cultivation of human brain microvascular endothelial cells (HBMECs) (31). This in vitro model makes it feasible to study the mechanisms on how meningitis-causing pathogens cross the BBB. It has been shown that E. coli K1 binding to and invasion of HBMECs is a prerequisite for its penetration into the brain (3, 13, 14, 17, 18), but the microbe-host interactions involved in HBMEC binding and invasion remain incompletely understood.NlpI is a lipoprotein that was first identified in E. coli K-12 (22). The nlpI mutant of E. coli K-12 exhibited growth defect at 42°C on low-salt medium. This phenotype can be suppressed by a mutation on the spr gene. The spr single mutation of E. coli K-12 also exhibited the similar thermosensitive phenotype (32). In addition, NlpI is shown to be an important component of Crohn''s disease-associated E. coli strain LF82 (O83:H1) to interact with intestine epithelial cells (5, 6). Deletion of nlpI in E. coli strain LF82 decreases expression of type 1 fimbriae and flagella (5). However, it is unknown whether NlpI is involved in extraintestinal E. coli infection such as meningitis.While investigating the microbe-host interactions involved in E. coli K1 binding to and invasion of HBMECs, we noted that deletion of nlpI decreased the ability of E. coli K1 to interact with HBMECs. The present study examined and characterized the role of NlpI in E. coli K1 binding to and invasion of HBMECs.  相似文献   

16.
Escherichia coli K1 invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for penetration into the central nervous system. We previously have shown that outer membrane protein A (OmpA) and cytotoxic necrotizing factor-1 (CNF1) contribute to E. coli K1 invasion of BMEC. In this study we constructed a double-knockout mutant by deleting ompA and cnf1. We demonstrated that the double-knockout mutant was significantly less invasive in human BMEC as compared with its individual Delta ompA and Delta cnf1 mutants, suggesting that the contributions of OmpA and CNF1 to BMEC invasion are independent of each other. In addition, we showed that OmpA treatment of human BMEC resulted in phosphatidylinositol 3-kinase (PI3K) activation with no effect on RhoA, while CNF1 treatment resulted in RhoA activation with no effect on PI3K, supporting the concept that OmpA and CNF1 contribute to E. coli K1 invasion of BMEC using different mechanisms. This concept was further confirmed by using both PI3K inhibitor (LY294002) and Rho kinase inhibitor (Y27632), which exhibited additive effects on inhibiting E. coli K1 invasion of BMEC. We isolated a 96KD OmpA interacting human BMEC protein by affinity chromatography using purified OmpA, which was identified as gp96 protein, a member of the HSP90 family. This receptor differed from the CNF1 receptor (37LRP) identified from human BMEC. Taken together, these data indicate that OmpA and CNF1 contribute to E. coli K1 invasion of BMEC in an additive manner by interacting with different BMEC receptors and using diverse host cell signaling mechanisms.  相似文献   

17.
Comparison of Escherichia coli fimbrial antigen F7 with type 1 fimbriae.   总被引:12,自引:42,他引:12       下载免费PDF全文
Two Escherichia coli O6:K2:H1 strains, C1212 and C1214, isolated from urinary tract infections, were compared for their capacity to adhere to various cells. After growth on solid medium, only C1212 bacteria agglutinate human erythrocytes and attach to urinary epithelial cells. Both of these reactions are mannose resistant. In contrast, C1214 bacteria cause a mannose-sensitive agglutination of guinea pig erythrocytes, show a mannose-sensitive attachment to buccal epithelial cells, and attach to urinary mucus. Immunoelectron microscopy revealed that C1214 bacteria possess type 1 fimbriae (mannose sensitive), which are not present in C1212 bacteria when this strain is grown on solid medium. The fimbriae of C1212 (mannose resistant) were also demonstrated by immunoelectron microscopy. We call these fimbriae demonstrated in C1212 the E. coli F7 antigen. Urinary mucus, and probably mucous material elsewhere, may function as a trap for Enterobacteriaceae with type 1 fimbriae by the specific adherence of such bacteria. We consider this a nonimmune resistance mechanism against disease caused by Enterobacteriaceae.  相似文献   

18.
Production of type 1 fimbriae by Escherichia coli HB101.   总被引:4,自引:0,他引:4  
Escherichia coli HB101 is frequently used as a host in the cloning of bacterial virulence genes because of its reported lack of virulence determinants such as fimbriae, adhesins and haemagglutinins. However, passage of HB101 in standing broth culture rapidly induced the production of fimbriae which mediated adhesion to HEp-2 cells and mannose-sensitive haemagglutination of human and guinea-pig erythrocytes. Fimbrial serology, morphology and pilin molecular mass of 18 kDa were consistent with those of type 1 fimbriae.  相似文献   

19.
Escherichia coli is the most common gram-negative bacteria causing meningitis during the neonatal period, but is unclear what microbial factors mediate traversal of E. coli across the blood-brain barrier. Outer membrane protein A (OmpA), a highly conserved 35-kDa protein, was examined for its role in E. coli K1 invasion of brain microvascular endothelial cells (BMEC). The invasive capability of the OmpA+ strains was 25- to 50-fold greater than that of OmpA- strains, and the invasive capability of OmpA- strains was restored to the level of the OmpA+ strain by complementation with the OmpA+ E. coli into BMEC. Two short synthetic peptides (a hexamer, Asn-27-Glu-32, and a pentamer, Gly-65-Asn-69) generated from the N-terminal amino acid sequence of OmpA exhibited significant inhibition of OmpA+ E. coli invasion, suggesting that these two sequences represent the OmpA domains involved in E. coli invasion of BMEC. These findings suggest that OmpA is the first microbial structure identified to enhance E. coli invasion of BMEC, an important event in the pathogenesis of E. coli meningitis.  相似文献   

20.
In the present study, we assayed protein iodination in human granulocytes after interaction of the cells with mannose-specific (MS) type 1 fimbriated (MS+) and nonfimbriated (MS-) phenotypes of Escherichia coli pretreated with various amounts of anti-E. coli and antifimbrial antibodies. The MS+ phenotype stimulated protein iodination in granulocytes and possessed potent MS activity as measured by yeast aggregometry. In contrast, the MS- phenotype lacked all these activities. MS+ pretreated with moderate concentrations of antibodies, however, showed up to a 15-fold increase in granulocyte stimulation as compared to granulocyte stimulation induced by the non-antibody-treated MS+ phenotype or by the antibody-treated MS- phenotype. This marked antibody-mediated increase in stimulation of granulocytes was (i) dependent on the antibody concentrations, (ii) markedly reduced by methyl-alpha-D-mannoside, (iii) caused by immunoglobulin G as well as by F(ab')2, (iv) caused only by antifimbrial antibodies, (v) associated with cross-linked fimbriae seen as "bundles" under an electron microscope, and (vi) mimicked by treating MS+ bacteria with a certain range of glutaraldehyde. The data taken together support the hypothesis that, although cross-linking of fimbriae reduced the density of functional MS fimbriae over the surface of antibody-treated bacteria and consequently reduced the ability of these organisms to agglutinate yeast cells, the resulting bundles of MS fimbriae were far more effective at stimulating granulocytes because, bound together, they were better equipped to aggregate the mannose-containing receptors on the granulocyte surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号