首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
Summary Five men performed submaximal isometric, concentric or eccentric contractions until exhaustion with the left arm elbow flexors at respectively 50%, 40% and 40% of the prefatigued maximal voluntary contraction force (MVC). Subsequently, and at regular intervals, the surface electromyogram (EMG) during 30-s isometric test contractions at 40% of the prefatigued MVC and the muscle performance parameters (MVC and the endurance time of an isometric endurance test at 40% prefatigued MVC) were recorded. Large differences in the surface EMG response were found after isometric or concentric exercise on the one hand and eccentric exercise on the other. Eccentric exercise evoked in two of the three EMG parameters [the EMG amplitude (root mean square) and the rate of shift of the EMG mean power frequency (MPF)] the greatest (P<0.001) and longest lasting (up to 7 days) response. The EMG response after isometric or concentric exercise was smaller and of shorter duration (1–2 days). The third EMG parameter, the initial MPF, had already returned to its prefatigued value at the time of the first measurement, 0.75 h after exercise. The responses of EMG amplitude and of rate of MPF shift were similar to the responses observed in the muscle performance parameters (MVC and the endurance time). Complaints of muscle soreness were most frequent and severe after the eccentric contractions. Thus, eccentric exercise evoked the greatest and longest lasting response both in the surface EMG signal and in the muscle performance parameters.  相似文献   

2.
Maximal isometric force and electromyograph (EMG) activity of biceps brachii muscle during bilateral sustained elbow flexion were followed in 25 right-handed oarsmen. The percentage decline in force was greater for the left than for the right arm. Also, the mean power frequency (MPF) and the root mean square (rms) value of the EMG amplitude decreased more for the left than for the right arm. It was hypothesized that a common drive would indicate that the two forces curves would be highly correlated during the nonfatigued period, but the level of cross-correlation would decline during muscle fatigue. For the first 4 s of the contraction, the cross-correlation between the right and left force was high (r = 0.99), but thereafter it declined rapidly to a constant level. The decline of the cross-correlation was accompanied by a similar decrease in the correlation between the right and left EMG activations (MPF and rms). Thus, the decline in the cross-correlation level of force accompanied by a similar decrease in the correlation level of EMG would suggest a fatigue-induced neural derangement of the common drive.  相似文献   

3.
Summary The objective of the present study was to investigate the myo-electric signs of muscle fatigue and the isometric force tremor of two extrinsic hand muscles, extensor digitorum communis and flexor digitorum superficialis, during isometric power grip. In addition, the synergy between flexor and extensor muscles and hand differences in a right-handed population have been studied. During isometric hand-dynamometry the myo-electric signal was recorded using surface electrodes and isometric force tremor was recorded using a special load cell. Eight subjects participated in this study and contractions were performed at 20%, 40%, 60% and 80% of maximal voluntary contraction (MVC) with left and right hands. The decrease of mean power frequency (MPF) with duration of contraction was greater in the left extensor as compared to the ipsilateral flexor muscle. No differences in the decrease in MPF with the duration of the contraction were found between the right extensor and flexor muscles. Isometric force tremor root mean square did not change during contractions at a given contraction level. Isometric tremor amplitude increased from 20% to 60% MVC and decreased at higher contraction levels. Tremor amplitude was higher in the left hand at all contraction levels but 60% MVC. These data would suggest differences in fatiguability and muscle fibre composition between the dominant and nondominant hand, which may be due to preferred use. The significance of force tremor for the evaluation of recruitment order and muscle fatigue is discussed.  相似文献   

4.
This study compared fatigue and the spatial distribution of upper trapezius electromyographic (EMG) amplitude during a 6-min constant force shoulder elevation task at 20% of the maximal voluntary contraction force (MVC) (constant force) and during the same task interrupted by brief (2 s) periodic increases in force to 25% MVC every 30 s (variable force). Surface EMG signals were recorded with a 13 × 5 grid of electrodes from the upper trapezius muscle of nine healthy subjects. The centroid (center of activity) of the EMG root mean square map was computed to assess changes over time in the spatial distribution of EMG amplitude. MVC force decreased by (mean ± SD) 9.0 ± 3.9% after the constant force task (P < 0.05) but was unchanged following the variable force contraction. The centroid of EMG amplitude shifted in the cranial direction across the duration of the variable force contraction (P < 0.05) but not during the constant force contraction (shift of 2.9 ± 2.3 mm and 1.4 ± 1.1 mm, respectively). The results demonstrate that periodic increases in force during a sustained contraction enhance the modifications in spatial distribution of upper trapezius EMG amplitude and reduce fatigue compared to a constant force contraction performed at a lower average load. The change in spatial distribution of EMG amplitude over time during a sustained contraction may reflect a mechanism to counteract fatigue during prolonged muscle activity.  相似文献   

5.
Summary Static contraction to the limit of endurance was performed at 40% and 10% of the maximal voluntary contraction (MVC). A group of 11 men (10 in their twenties, one aged 44) had the surface electromyogram of the brachioradialis and the biceps brachii (BB) muscles of the right arm (elbow angle 135°) recorded. Endurance times were 113 (SD 28) s (40% MVC) and 51 (SD 19) min (10% MVC). Prolonged contraction changed the root mean square (rms) amplitude, the median frequency (f m), and the average muscle fibre conduction velocity (CV, measured by cross-correlation) as follows: 40% MVC: rms amplitude, increase of 150%–200%; fm, decrease of 55%–60%; CV, decrease of 25%–40%; and 10% MVC: rms amplitude, increase of 400%; f m, decrease of 20%; CV, decrease of 0%–10%. Since the CV of 10% MVC changed little or not at all, the large rms amplitude increases were attributed to motor unit (MU) recruitment, i.e. a massively intensified central motor command. The relative f m decreases of both contraction levels surpassed the CV slowing to an extent increasing with the relative contraction time; the additional f m lowering was in part assumed to reflect central nervous system mediated regulation of the time dispersion of MU firing, principally synchronization/grouping of MU action potentials (AP). Electrical stimulation of the BB muscle and the performance of 100% MVC test contractions found uniform relative force failures due to the performance of 40% and 10% MVC contractions. From variations in amplitude and conduction time of compound action potentials (CAP), it seemed unlikely that reduced muscle fibre excitability/AP propagation failure was underlying the force losses at exhaustion. Rather, the well preserved CAP after 10% MVC and the recovery CAP of 40% MVC indicated excitation-contraction failure caused by sustained voluntary contractions.  相似文献   

6.
Summary In 11 patients, all women, 21–55 years of age, with unilateral work-related myalgia of the trapezius muscle, the right and left trapezius muscles were examined simultaneously for electromyogram (EMG) signs of localized muscle fatigue. All patients were tested with 0-kg hand load for 5 min, holding the arms straight at 90° of elevation in the scapular plane. Only 4 of the patients tolerated exposure to higher load levels. They were tested with 1 kg hand load for 3 min and 2 kg hand load for 2 min, with a period of rest of 30 min between the trials. The EMG mean power frequency (MPF) and root mean square (rms) were calculated. Data were normalized with the initial value as a reference and regression analyses were performed. On both sides a decrease of MPF and an increase of rms were found with increasing time and load, i.e. classical EMG signs of localized muscle fatigue. Compared with the nonaffected side smaller changes were found on the affected side, possibly due to pain inhibition, impaired microcirculation and biochemical changes along the muscle fibres. At 0-kg hand load we found no change of MPF on either side despite subjective feelings of fatigue and pain. We interpreted these findings as an indication of reduced capacity of the affected trapezius muscle to sustain static load with early development of pain-associated local fatigue.  相似文献   

7.
Summary It has been proposed that the mean power frequency (MPF) of the electromyogram (EMG) power spectrum increases gradually with force of contraction and that this increase is a function of the fiber-type content of the muscle investigated and the inter-electrode distance (IED) used when recording the EMG signals. In order to test these hypotheses, the values of the MPF of two elbow extensor muscles, triceps brachii (TB, 65% fast twitch fibers) and anconeus (AN, 65% slow twitch fibers), were compared at different levels of contraction. Subjects (n =13) produced ten static ramp elbow extensions [0–100% maximum voluntary contraction (MVC)]. EMG signals of each muscle were recorded with two pairs of surface miniature electrodes having IEDs of 6 mm and 30 mm respectively. MPFs were obtained at each of the following levels: 10, 20, 40, 60, 80 and 100% MVC. Statistical analyses indicated that the MPF of AN increased significantly (P<0.05) up to 60% MVC. In contrast, the MPF values for TB showed no significant change across different levels of contraction (P>0.05). Since skinfold was on average 3.2 times thicker over TB than over AN it is suggested that the low-pass filtering effect of the skin could have prevented the observation of an increase of the MPF for TB. It thus appears that changes of the MPF with the level of force, as disclosed by surface electrode recordings, is specific to each muscle. Consequently one has to account for factors such as thickness of the skinfold when it comes to the determination of the fiber-type content of different muscles within a subject.  相似文献   

8.
The aim of this work was to evaluate the influence of the ageing process on the time and frequency domain properties of the surface electrical and mechanical activity of muscle. In 20 healthy elderly subjects (10 men and 10 women, age range 65–78 years) and in 20 young controls, during isometric contractions of the elbow flexors in the 20%–100% range of the maximal voluntary contraction (MVC), estimations were made of the root mean square (rms) and the mean frequency (MF) of the power density spectrum distribution, from the surface electromyogram (EMG) and sound myogram (0SMG) signals, detected at the belly of the biceps brachii muscle. Compared to the young controls, the MVC was lower in the elderly subjects (P < 0.05); at the same %MVC the rms and the MF of EMG and SMG were lower (P < 0.05) in elderly subjects; the rms and MF of the two signals increased as a function of the effort level in all groups. Only in the 80%–100% MVC range did the EMG-MF level off and the SMG-rms decrease; in contrast the young controls, at 80% MVC the high frequency peak in the SMG power spectrum density distribution was not present in the elderly subjects. The results for MVC and %MVC can be related to the reduction in the numbers of muscle fibres in aged subjects. In particular, the lack of fast twitch fibre motor units (MU), attaining high firing rates, might also explain the result at 80% MVC. In 80%–100% MVC range the two signals rms and MF behaviour may have been related to the end of the recruitment of larger MU with high conduction velocity, and to the further increment of MU firing rate in the biceps brachii muscle beyond 80% MVC, respectively. Thus, the coupled analysis of the EMG and SMG with force suggests that in the elderly subjects the reduction of the number of muscle fibres may have co-existed with a MU activation pattern similar to that of the young subjects.  相似文献   

9.
Intramuscular and surface electromyographic (EMG) activities were recorded from the left and right upper trapezius muscle of eight healthy male subjects during 5-min long static contractions at 2% and 5% of the maximal voluntary contraction (MVC) force. Intramuscular signals were detected by wire electrodes while surface EMG signals were recorded with linear adhesive electrode arrays. The surface EMG signals were averaged using the potentials extracted from the intramuscular EMG decomposition as triggers. The conduction velocity of single motor units (MUs) was estimated over time from the averaged surface potentials while average rectified value and mean power spectral frequency were computed over time from 0.5 s epochs of surface EMG signal. It was found that (1) MUs were progressively recruited after the beginning of sustained contractions of the upper trapezius muscle at 2% and 5% MVC, (2) the conduction velocity of the MUs active since the beginning of the contraction significantly decreased over time, and (3) although the CV of single MUs significantly decreased, the mean power spectral frequency of the surface EMG did not show a consistent trend over time. It was concluded that spectral surface EMG analysis, being affected by many physiological mechanisms, may show limitations for the objective assessment of localized muscle fatigue during low force, sustained contractions. On the contrary, single motor unit conduction velocity may provide an early indication of changes in muscle fiber membrane properties with sustained activity.  相似文献   

10.
Summary The EMG response and the mechanical response to 2 degree stretch of the human anterior tibial muscle was studied during contractions ranging from 0% to 80% of maximal voluntary contraction (MVC). The EMG response showed three distinct peaks M1, M2, and M3 with peak latencies of 59 ms, 86 ms, and 120 ms respectively. At low background torques M1 dominated while M2 and M3 were small or absent. M2 and M3 dominated above 40% of MVC and M2 in particular showed automatic gain compensation, i.e. it constituted a — more or less — constant proportion of the background EMG for all contraction levels. The ratio between M1 amplitude and background EMG steadily decreased with contraction level. Even though the summed contributions of M1, M2, and M3 to some degree showed automatic gain compensation, this was not the case for the mechanical response to stretch. Between 0% and 30% of MVC the reflex mediated mechanical response increased approximately in proportion to the contraction level, but the reflex mediated mechanical response peaked at 40% of MVC and declined to zero at 80% of MVC. This discrepancy between EMG and mechanical response was explained by a simple model. The regression line between rectified and filtered tibialis anterior EMG and torque was used to predict the mechanical response from the EMG response. At increasing contraction levels the twitch elicited by supramaximal electrical stimulation decreases, and we reduced the predicted mechanical response by the same factor as the twitch. This simple model predicted the mechanical response for all contraction levels, making it possible to assess the functionality of reflexes even when accurate measurements of muscle force or intrinsic muscle properties are not possible.  相似文献   

11.
Summary Linear and curvilinear electromyogram (EMG) normalization methods were compared among ten healthy men during a simulated work cycle demanding attention and static holding of the arm (Solitaire test). Maximal voluntary contractions (MVC) and gradually increasing contractions up to 70% of MVC were used for normalization in different arm postures. The test contractions studied included inward and outward rotations, abduction, shoulder elevation, and flexion in different arm positions. The shoulder load moment was calculated for the flexion tests using a simple two-dimensional model. The effect of arm posture on the EMG versus shoulder load moment relationship was studied on the following muscles: supraspinatus, infraspinatus, trapezius (three parts), deltoid (two parts) and pectoralis major. All muscles participated in the MVC tests performed, and its was not possible to suggest a single recommended test for each muscle. Differences in normalized EMG median values ranging up to 30% of MVC were found between linear and curvilinear normalization methods. Short-term repeatability of normalization based on a contraction with gradually increasing force was good. Arm posture affected the relationships between shoulder load moment and EMG activity of all muscles studied. Arm posture did not, however, have a significant effect on the estimated amplitude probability distribution functions during the simulated work task. Therefore, at least for the tasks studied, the principle of normalizing in the middle position of the range of movement was deemed acceptable.  相似文献   

12.
Summary Findings from five separate studies of EMG changes and muscle fatigue during prolonged low-level static contractions are summarized, and the possible mechanisms behind the changes are briefly discussed. Sustained static contractions (10%, 7% and 5% MVC) of up to 1 h duration were performed by finger flexors, elbow flexors and extensors, and knee extensors. In one experiment, intermittent static arm pulling (triceps) (10 s contraction and 5 s rest, average work load 14% and 10% MVC) was performed for 7 h. The endurance time for thesustained contractions was around one hour for 10% MVC, and it was shown — all in all — that the concept of indefinite endurance times at contractions below 15–20% MVC cannot be maintained. After 5% MVCsustained contractions for one hour a 12% reduction in MVC was seen, and significant increases in EMG amplitude and decreases in the mean spectral frequency of the EMG-power spectrum were found. Marked differences were also seen in the EMG changes in the elbow flexors and extensors, and transcutanous electrical stimulation of the knee extensors showed that low frequency fatigue was present after the contraction. Withintermittent contractions similar changes in the EMG parameters were seen after 2–3 h of contractions at 14% MVC. On average, during contractions of 10% MVC no EMG changes were detected. Increased extracellular potassium concentration in the contracting muscles is suggested as a possible explanation of these findings.  相似文献   

13.
The use of surface electromyography (EMG) for studying the effect of mechanical compression of occupational origin on muscle fatigue has been the subject of poor attention in ergonomic research. This study examined the effect of backpack carrying on fatigue of two shoulder muscles during sustained low force static contraction: the middle deltoid (MD) muscle and the upper trapezius (UT) muscle on which the backpack strap exerted direct compressive force. EMG activities of MD and UT muscles, of the dominant and non-dominant sides, were studied on eight subjects during two tasks, a maximal and an exhausting submaximal bilateral isometric 90° arm abduction, which were performed while carrying a backpack load of 0, 10, and 20 kg, respectively. EMG amplitude (root mean square, RMS) and spectral (mean power frequency, MPF) parameters were computed from the recorded signals. No significant differences between the dominant and non-dominant sides were found for none of the parameters whatever the load-carrying mass. Load-carrying masses which were tested did not influence significantly the maximal bilateral arm abduction performance contrary to the time to exhaustion during the submaximal task, which decreased significantly with increasing load-carrying mass. A significant increase in fatigability, defined by the slope of MPF decrease, was observed for both muscles when load-carrying mass increased; but only UT presented a significant increase in muscle fatigue level, defined by the MPF value with respect to its initial value, at the end of the exhausting submaximal task. Furthermore, the increase in muscle activation of UT, quantified by RMS, during the exhausting task was not significantly higher with increasing load-carrying mass. So, the increased signs of local fatigue of UT may be interpreted by a localised blood flow impairment resulting from the direct compressive force exerted by backpack on this muscle.  相似文献   

14.
This study assessed low back and trapezius muscle activity in bus drivers, with or without recurrent low back pain (LBP), during the long term driving. In addition, low back and neck–shoulder pain intensities and fatigue were measured and the effect of low back support was observed. Also the possible source of LBP was attempted to assess by vibration pain provocation test and lumbar MRI.

Forty bus drivers (recurrent LBP n = 25) participated in this study. Low back and neck–shoulder pain and subjective fatigue intensity was assessed by visual analogue scales (VAS) before and after driving. Lumbar paraspinal and trapezius muscle activation during driving was measured by surface EMG. Vibration pain provocation test was applied for all subjects.

Average paraspinal myoelectric activity during driving was approximately 1% of MVC in both groups. Average trapezius myoelectric activity during driving was from 2 to 4% of MVC. Trapezius muscle activity was higher in back healthy drivers than in those with LBP. The low back support had no effect either on paraspinal or trapezius EMG activity. Low back and neck–shoulder fatigue increased during driving in both groups especially in those subjects with positive vibration pain provocation. The neck–shoulder pain and fatigue were more severe in drivers suffering from LBP. Low back support had no effect on low back and neck–shoulder subjective fatigue and neck–shoulder pain but tended to limit the LBP increase during driving. Paraspinal muscle loading in urban bus drivers was very limited and either LBP or ergonomic low back support had no effect on it. Trapezius muscle seemed to be less active in drivers suffering from recurrent LBP. Internal disc disruptions may expose to pain and fatigability during driving.  相似文献   


15.
The influence of contraction force and velocity during isokinetic contractions on the development of fatigue in the erector spinae muscle was studied. Seven male subjects performed a series of 250 contractions at 25% and 50% of their isometric maximal voluntary contraction (MVC) at 40 and 80°·s–1. Fatigue defined as a decrease of the contractile capacity of the muscles was studied by means of a 15-s maximal test-contraction following the exercise. Both the initial force and the force decrement during the test-contraction were studied. Surface electromyogram (EMG) signals of the main tracts of the erector spinae muscle were recorded. The frequency content was studied by calculating the zero-crossing rate for the signals obtained during dynamic contractions and by means of fast Fourier transformation for the test contraction. After the 50% MVC dynamic contractions the initial force during the postexercise test-contraction was significantly lower than after the 25% MVC contractions. No significant influence of contraction velocity on fatigue development was found. The force decrement during the test-contraction did not depend on the experimental conditions. The EMG amplitude indicated that the subjects were better able to relax their muscles during the counter movement (flexion) at high forces and high velocities compared to the other experimental conditions. The frequency content of the EMG signals during the dynamic contractions and the postexercise test-contraction showed only very weak relationships with fatigue. Therefore, spectrum EMG parameters as determined in the present study do not seem suitable as indicators of muscle fatigue as a consequence of dynamic contractions of trunk extensor muscles.  相似文献   

16.
Summary Laser-Doppler flowmetry (LDF) and electromyography (EMG) were used simultaneously for measuring skeletal muscle blood perfusion in relation to static load and fatigue. Percutaneous single-fibre LDF and bipolar surface EMG of the trapezius muscle were performed continuously during a 10-min series of alternating periods of static contractions and rest, each of 1-min duration. The muscle was exposed to static load expressed as shoulder torque, by keeping the arms straight and elevated at 30, 60, 90 and 135°. On-line computer processing of the LDF and EMG signals made possible the interpretation of the relationship between the perfusion and the activity of the muscle. The LDF and root mean square (rms)-EMG were normalized by using the average value of the serial examinations of each individual as a reference value. Spectrum analyses of EMG showed the lowest variability for median frequency (MDF) in the frequency range 10–1000 Hz and mean power frequency (MPF) at 2–1000 Hz. The LDF power spectrum density during low (muscle rest) and high (high-force muscle contraction) perfusion indicated that disturbances were small when measurements were performed during sustained static contraction with as little movement as possible. Vasomotion, i.e. rhythmic variations in the blood flow, were present and showed a frequency of 5–6 cycles · min–1. Application of a tourniquet to the upper arm caused an arrest of the microcirculation in the distally situated brachioradial muscle which was followed by a postischaemic hyperaemia upon removal of the torniquet. In ten healthy men, regression analyses showed positive correlation between rms-EMG and shoulder torque (r=0.77), negative correlation between MPF and arm elevation angle (r= –0.89) indicating accumulated fatigue, and almost positive correlations between LDF and rms-EMG (r=0.65), and between LDF and shoulder angle (r=0.67) when the right trapezius muscle was examined.  相似文献   

17.
Summary When using electromyographic techniques in the evaluation of muscular load it is necessary to determine the mathematical relationship between the torque and the amplitude of the electromyographic signal. Isometric gradually increasing contractions up to 100% MVC can then be used. Often more than linear increases for the amplitude (RMS) — force regression have been reported. The present study was designed to test whether changes in power spectral density function take place during a gradually increasing isometric contraction (duration 10 s). Twenty-two clinically healthy females performed an increasing isometric shoulder forward flexion for 10 s using an isokinetic dynamometer. Electromyographic activity was measured in trapezius, deltoid, infraspinatus and biceps brachii using surface electrodes. Mean torque values were determined together with mean power frequency (MPF) and root mean square values (RMS) from the EMG signals for each 256 ms period. The RMS-torque regressions showed higher regression coefficients during the 6th to 9th sec than during the first 5 s. No significant correlation existed between MPF for the four muscles and the torque. A gradual decrease in MPF was generally found from the 6th s. It is concluded that this decrease in power spectral density function might have contributed to the significantly higher regression coefficient for the RMS torque regression at the high output part of the gradually increasing isometric contraction.  相似文献   

18.
The aim of the present study was to investigate the extent to which work-related muscular disorders of the upper trapezius affect the activity of other pain-free muscles, in particular in the biceps brachii. Two groups of female subjects (age >43 years) participated in the study: seven affected subjects with self-reported disorders in the shoulder/neck region (cases) and nine healthy subjects (control group). Multi-channel electromyography (EMG) and force were recorded during maximum voluntary contractions (MVC) and during 6 min sustained contractions (at 30% MVC) of the upper trapezius and biceps brachii on the dominant side. From the EMG signals, the root mean square (RMS), median frequency (MDF) and single motor unit (MU) conduction velocity (CV) were estimated. From the force signal, the coefficient of variation was calculated. All data are presented as mean values and standard deviation. Differences between the cases and controls were found in the MVC force of the upper trapezius, which was lower in cases [253 (70) N] than in controls [357 (75) N], while the coefficient of variation of force during the sustained contraction was increased [cases 5.5 (2.2); controls 4.1 (1.9)]. The RMS (normalized to the RMS at MVC) during the 6 min sustained contractions was significantly lower in the cases than in the controls for both the upper trapezius and the biceps brachii. A tendency towards a smaller increase in the RMS with fatigue was only found in the trapezius muscle [slope: cases 6.5 (14.1) %/min, controls 10.2 (12.9) %/min]. No differences were found between the two subject groups with respect to the MDF and single MU CV in both muscles. While the lower RMS for the trapezius muscles of the cases may reflect changes at the local level, as well as in motor control, the lower biceps activity indicates a change in the central control strategies of the primarily unaffected muscle. Indications for a changed fatigability of the muscle were only found in the trapezius.  相似文献   

19.
This study investigated the adjustments in muscle activation and oxygenation in biceps and triceps brachii during two tasks sustained to failure at 20 and 60% of the maximal voluntary contraction (MVC) force. The tasks required participants either to push against a rigid restraint (force task) or to support an inertial load (position task) with the elbow flexor muscles. The surface EMG was recorded for biceps brachii, brachioradialis, triceps brachii and trapezius superior muscles. Muscle oxygenation of biceps and triceps brachii was measured by near-infrared spectroscopy. The position task was briefer (404 ± 159 s) than the force task (533 ± 194 s) when performed at 20% MVC (P = 0.011), but endurance time did not differ at 60% MVC (54 ± 19 versus 64 ± 16 s, respectively; P = 0.13). Biceps brachii oxygenation decreased slightly (by ~7%) during tasks performed at 20% MVC, whereas it dropped (-40%) for tasks sustained at 60% MVC. However, the decrease in muscle oxygenation was not a significant predictor of time to failure at the two target forces, although its contribution to muscle fatigue cannot be completely ruled out at 60% MVC. In contrast, time to failure was predicted by the increase in EMG of biceps brachii for both tasks at 20% MVC, and EMG of brachioradialis and trapezius for both tasks at 60% MVC. These results suggest that neural adjustments rather than muscle oxygenation limited the time to failure for the force and position tasks at low and high target forces.  相似文献   

20.
The purpose of this study was to assess if chronic low back pain patients have impaired paraspinal muscle O2 turnover and endurance capacity as compared to healthy control subjects during dynamic exercise. Middle-aged healthy male subjects (n = 12, control) and male patients with chronic low back pain (n = 17, CLBP) participated in the study. L4–L5 level paraspinal muscle fatigue was objectively assessed during earlier validated 90 s dynamic back endurance test (spectral EMG, MPFslope). Also EMG amplitude (EMGamplitude) and initial MPF (MPFinitial) were assessed from the initial 5 s of the endurance contraction. Simultaneously near infrared spectroscopy (NIRS) was used for quantitative measurement of local L4–L5 paraspinal muscle O2 consumption. Subcutaneous tissue thickness (ATT) was measured from the EMG and NIRS recording sites. The results indicated that control and CLBP groups were compatible as regarding anthropometric variables, paraspinal muscle activation levels (EMGamplitude), initial MPF (MPFinitial) and ATT. When the ATT was used as a covariate in the ANOVA analysis, CLBP group did not show significantly greater paraspinal muscle fatigability (right MPFslope – 12.2 ± 10.7%/min, left right MPFslope – 12.6 ± 13.3%/min) or O2 consumption (right NIRSslope – 52.8 ± 79.6 μM/l/s) as compared to healthy controls (right MPFslope – 11.9 ± 7.6%/min, left MPFslope – 12.7 ± 8.6%/min, right NIRSslope – 53.7 ± 95.2 μM/l/s). As a conclusion, these CLBP male patients did not show any impaired rate of paraspinal muscle oxygen consumption or excessive paraspinal muscle fatigability during dynamic exercise as compared with healthy controls. Subcutaneous tissue thickness has a strong influence on the NIRS and EMG amplitude measurements and, if unchecked, it could result in the false interpretation of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号