首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, the most important synchronizer for endogenous rhythms is the environmental light/dark cycle. In this report we have explored the ability of light/dark cycle and melatonin, the pineal hormone released during the night, to modulate cerebellar cholinergic input by interfering with the nicotinic acetylcholine receptors' (nAChRs) availability. Through the analysis of the response to selective cholinergic agonists and antagonists, we observed that nAChRs containing the alpha7 gene product mediate the release of [(3)H]glutamate from rat cerebellum slices. The [(3)H]glutamate overflow induced by alpha7 nAChR activation was higher during the dark phase, although the number of alpha-[(125)I]bungarotoxin binding sites, but not the [(3)H]nicotine binding sites (B(max)), was reduced. On the other hand, glutamate-evoked [(3)H]glutamate release was not modified by the hour of the day. Finally, we show that the nocturnal increase in nicotine-evoked [(3)H]glutamate release is imposed by a nocturnal surge of melatonin, as it is abolished when pineal melatonin production is inhibited by either maintaining the animals in constant light for 48 h or by injecting propranolol just before lights off for 2 days. The difference between light and dark [(3)H]glutamate-evoked release is restored in propranolol-treated animals that received melatonin during the dark period. In conclusion, we show that nicotine-evoked [(3)H]glutamate release in rat cerebellum presents a diurnal variation, driven by nocturnal pineal melatonin surge.  相似文献   

2.
The structure of the S(-)-nicotine molecule was modified via N-n-alkylation of the pyridine-N atom to afford a series of N-n-alkylnicotinium iodide salts with carbon chain lengths varying between C(1) and C(12). The ability of these analogs to evoke [(3)H] overflow and inhibit S(-)-nicotine-evoked [(3)H] overflow from [(3)H]dopamine ([(3)H]DA)-preloaded rat striatal slices was determined. At high concentrations, analogs with chain lengths > or =C(6) evoked [(3)H] overflow. Specifically, N-n-decylnicotinium iodide (NDNI; C(10)) evoked significant [(3)H] overflow at 1 microM, and N-n-dodecylnicotinium iodide (NDDNI; C(12)) at 10 microM, whereas N-n-octylnicotinium iodide (NONI; C(8)), N-n-heptylnicotinium iodide (NHpNI; C(7)), and N-n-hexylnicotinium iodide (C(6)) evoked [(3)H] overflow at 100 microM. Thus, intrinsic activity at these concentrations prohibited assessment of inhibitory activity. The most potent N-n-alkylnicotinium analog to inhibit S(-)-nicotine-evoked [(3)H] overflow was NDDNI, with an IC(50) value of 9 nM. NHpNI, NONI, and N-n-nonylnicotinium iodide (C(9)) also inhibited S(-)-nicotine-evoked [(3)H] overflow with IC(50) values of 0.80, 0.62, and 0.21 microM, respectively. In comparison, the competitive neuronal nicotinic acetylcholine receptor (nAChR) antagonist, dihydro-beta-erythroidine, had an IC(50) of 1.6 microM. A significant correlation of N-n-alkyl chain length with analog-induced inhibition was observed, with the exception of NDNI, which was devoid of inhibitory activity. The mechanism of N-n-alkylnicotinium-induced inhibition of the high-affinity, low-capacity component of S(-)-nicotine-evoked [(3)H] overflow was determined via Schild analysis, using the representative analog, NONI. Linear Schild regression and slope not different from unity suggested that NONI competitively interacts with a single nAChR subtype to inhibit S(-)-nicotine-evoked [(3)H]DA release (K(i) value = 80.2 nM). Thus, modification of the S(-)-nicotine molecule converts this agonist into an antagonist at nAChRs, mediating S(-)-nicotine-evoked DA release in striatum.  相似文献   

3.
Amphetamine, 10(-7) M or greater, evoked the release of [3H]dopamine ([3H]DA) and inhibited subsequent K+-evoked [3H]DA release from striatal synaptosomes superfused at a flow rate (1 ml/min) that prevented reuptake. Amphetamine inhibited the K+-evoked release of [3H]DA to a lesser extent in striatal slices or in synaptosomes superfused at a flow rate (0.35 ml/min) that allowed reuptake. The observed decrease in amphetamine inhibition of K+-evoked release was primarily due to amphetamine blocking [3H]DA reuptake. Interneuronal interactions may account for some of the inhibitory effects of amphetamine on K+-evoked release in the slice. Inhibition of K+-evoked release from either slices or synaptosomes was still evident when 10(-6) M amphetamine was removed from the superfusion buffer and the spontaneous release had returned to control levels. The presence of Ca++ during amphetamine exposure was required for subsequent inhibition of K+-evoked release in synaptosomes. Amphetamine in the presence of Ca++ did not affect the subsequent release of [3H]DA evoked by the Ca++ ionophore, A23187. Therefore, amphetamine inhibition of the K+-evoked release of [3H]DA cannot be explained by prior depletion of Ca++-releasable pools. Nifedipine, 1 microM, failed to block either the Ca++-dependent release of [3H]DA or the inhibition of K+-evoked release by amphetamine. However, 1 mM cobalt inhibited the Ca++-dependent release of [3H]DA by amphetamine and antagonized the inhibition of K+-evoked release after amphetamine exposure. This suggests that amphetamine may open voltage-dependent Ca++ channels sensitive to cobalt but not nifedipine. Amphetamine may desensitize these voltage-dependent Ca++ channels and inhibit their activation by K+ depolarization.  相似文献   

4.
Nicotine's action on the midbrain dopaminergic neurons is mediated by nicotinic acetylcholine receptors (nAChRs) that are present on the cell bodies and the terminals of these neurons. Previously, it was suggested that one of the nAChR subtypes located on striatal dopaminergic terminals may be an alpha3beta2 subtype, based on partial inhibition of nicotine-stimulated [(3)H]dopamine release by alpha-conotoxin MII, a potent inhibitor of heterologously expressed alpha3beta2 nAChRs. More recent studies indicated that alpha-conotoxin MII also potently blocks alpha6-containing nAChRs. In the present study, we have examined the nAChR subtype(s) modulating [(3)H]dopamine release from striatal terminals by using novel alpha-conotoxins that have 37- to 78-fold higher selectivity for alpha6-versus alpha3-containing nAChRs. All of the peptides partially (20-35%) inhibit nicotine-stimulated [(3)H]dopamine release with IC(50) values consistent with those obtained with heterologously expressed rat alpha6-containing nicotinic acetylcholine receptors. These results, together with previous studies by others, further support the idea that alpha6-containing nicotinic receptors modulate nicotine-stimulated dopamine release from rat striatal synaptosomes.  相似文献   

5.
In this study we explored the effect of the stimulation of nicotinic acetylcholine receptors located on interneurons by measuring 4-amino-n-[2,3-(3)H]butyric acid ([(3)H]GABA) release and monitoring [Ca (2+)](i) in superfused hippocampal slices. In the presence of 6-cyano-7-nitroquinoxaline-2,3-dione, (+/-)-2-amino-5-phosphonopentanoic acid, and atropine, i.e., under the blockade of N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate and muscarinic receptors, nicotine did not alter the spontaneous outflow of [(3)H]GABA, but significantly increased the stimulation-evoked [(3)H]GABA efflux. This effect of nicotine depended on the time interval between nicotine treatment and electrical stimulus, the concentration of nicotine (1-100 microM), and the parameters of electrical depolarization. Acetylcholine (0.03-3 mM), and the alpha 7 subtype-selective agonist choline (0.1-10 mM), also potentiated stimulus-evoked release of [(3)H]GABA, whereas 1,1-dimethyl-4-phenilpiperazinium iodide failed to increase the tritium outflow significantly. The effect of nicotine treatment was prevented by tetrodotoxin (1 microM) and by the nicotinic acetylcholine receptor antagonist mecamylamine (10 microM), and the alpha 7 subtype-selective antagonists alpha-bungarotoxin (100 nM) and methyllycaconitine (10 nM), whereas dihidro-beta-erythroidine (20 nM) was without effect. Perfusion of 100 microM nicotine caused a [Ca(2+)](i) transient in about one-third of the tested interneurons; however, the response to subsequent electrical stimulation remained unchanged. Inhibition of the GABA transporter system by nipecotic acid (1 mM) or by decreasing the bath temperature to 12 degrees C abolished completely the effect of nicotine to potentiate the stimulation-evoked release of GABA. These findings indicate that the activation of alpha 7-type nicotinic receptors of hippocampal interneurons results in a long-lasting ability of these cells to respond to depolarization with an increased release of GABA mediated by the transporter system.  相似文献   

6.
Bupropion, an efficacious antidepressant and smoking cessation agent, inhibits dopamine and norepinephrine transporters (DAT and NET, respectively). Recently, bupropion has been reported to noncompetitively inhibit alpha3beta2, alpha3beta4, and alpha4beta2 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes or established cell lines. The present study evaluated bupropion-induced inhibition of native alpha3beta2* and alpha3beta4* nAChRs using functional neurotransmitter release assays, nicotine-evoked [(3)H]overflow from superfused rat striatal slices preloaded with [(3)H]dopamine ([(3)H]DA), and nicotine-evoked [(3)H]overflow from hippocampal slices preloaded with [(3)H]norepinephrine ([(3)H]NE). The mechanism of inhibition was evaluated using Schild analysis. To eliminate the interaction of bupropion with DAT or NET, nomifensine or desipramine, respectively, was included in the superfusion buffer. A high bupropion concentration (100 microM) elicited intrinsic activity in the [(3)H]DA release assay. However, none of the concentrations (1 nM-100 microM) examined evoked [(3)H]NE overflow and, thus, were without intrinsic activity in this assay. Moreover, bupropion inhibited both nicotine-evoked [(3)H]DA overflow (IC(50) = 1.27 microM) and nicotine-evoked [(3)H]NE overflow (IC(50) = 323 nM) at bupropion concentrations well below those eliciting intrinsic activity. Results from Schild analyses suggest that bupropion competitively inhibits nicotine-evoked [(3)H]DA overflow, whereas evidence for receptor reserve was obtained upon assessment of bupropion inhibition of nicotine-evoked [(3)H]NE overflow. Thus, bupropion acts as an antagonist at alpha3beta2* and alpha3beta4* nAChRs in rat striatum and hippocampus, respectively, across the same concentration range that inhibits DAT and NET function. The combination of nAChR and transporter inhibition produced by bupropion may contribute to its clinical efficacy as a smoking cessation agent.  相似文献   

7.
The interactions of MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine], glutamate and glutamine with methamphetamine (METH)-evoked release of [3H]dopamine were assessed in vitro to determine whether MK-801 inhibition of METH neurotoxicity might be mediated presynaptically, and to evaluate the effects of glutamatergic stimulation on METH-evoked dopamine release. MK-801 inhibition of glutamate- or METH-evoked dopamine release might reduce synaptic dopamine levels during METH exposure and decrease the formation of 6-hydroxydopamine or other related neurotoxins. Without Mg++ present, 40 microM and 1 mM glutamate evoked a N-methyl-D-aspartate receptor-mediated [3H]dopamine and [3H]metabolite (tritium) release of 3 to 6 and 12 to 16% of total tritium stores, respectively, from striatal slices. With 1.50 mM Mg++ present, 10 mM glutamate alone or in combination with the dopamine uptake blocker nomifensine released only 2.1 or 4.2%, respectively, of total tritium stores, and release was only partially dependent on N-methyl-D-aspartate-type glutamate receptors. With or without 1.50 mM Mg++ present, 0.5 or 5 microM METH evoked a substantial release of tritium (5-8 or 12-21% of total stores, respectively). METH-evoked dopamine release was not affected by 5 microM MK-801 but METH-evoked release was additive with glutamate-evoked release. Without Mg++ present, 1 mM glutamine increased glutamate release and induced the release of [3H]dopamine and metabolites. Both 0.5 and 5 microM METH also increased tritium release with 1 mM glutamine present. When striatal slices were exposed to 5 microM METH this glutamine-evoked release of glutamate was increased more than 50%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Phencyclidine (PCP) has been shown to antagonize the effects of acetylcholine (ACh) in a variety of systems and to inhibit the binding of muscarinic antagonists to brain membranes. Therefore, we have studied the effects of PCP on ACh release from rat striatal slices in order to characterize the effect of PCP in a central cholinergic system. After incubation with [3H]choline, striatal slices were superfused and the superfusate was assayed for radioactivity. The presence of PCP led to dose-related inhibition of K+-stimulated ACh release. This may be due to the reported ability of PCP to enhance dopamine release as both direct (pergolide) and indirect (amphetamine) dopamine agonists also inhibited striatal ACh release. Haloperidol blocked the inhibitory effects of PCP, amphetamine and pergolide on ACh release, supporting the notion that the decrease in ACh release produced by PCP is mediated indirectly via the release of dopamine onto cholinergic neurons.  相似文献   

9.
Structural simplification of N-n-alkylnicotinium analogs, antagonists at neuronal nicotinic acetylcholine receptors (nAChRs), was achieved by removal of the N-methylpyrrolidino moiety affording N-n-alkylpyridinium analogs with carbon chain lengths of C1 to C20. N-n-Alkylpyridinium analog inhibition of [3H]nicotine and [3H]methyllycaconitine binding to rat brain membranes assessed interaction with alpha4beta2* and alpha7* nAChRs, respectively, whereas inhibition of nicotine-evoked 3H overflow from [3H]dopamine ([3H]DA)-preloaded rat striatal slices assessed antagonist action at nAChR subtypes mediating nicotine-evoked DA release. No inhibition of [3H]methyllycaconitine binding was observed, although N-n-alkylpyridinium analogs had low affinity for [3H]nicotine binding sites, i.e., 1 to 3 orders of magnitude lower than that of the respective N-n-alkylnicotinium analogs. These results indicate that the N-methylpyrrolidino moiety in the N-n-alkylnicotinium analogs is a structural requirement for potent inhibition of alpha4beta2* nAChRs. Importantly, N-n-alkylpyridinium analogs with n-alkyl chains < C10 did not inhibit nicotine-evoked [3H]DA overflow, whereas analogs with n-alkyl chains ranging from C10 to C20 potently and completely inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.12-0.49 microM), with the exceptions of N-n-pentadecylpyridinium bromide (C15) and N-n-eicosylpyridinium bromide (C20), which exhibited maximal inhibition of approximately 50%. The mechanism of inhibition of a representative analog of this structural series, N-n-dodecylpyridinium iodide, was determined by Schild analysis. Linear Schild regression with slope not different from unity indicated competitive antagonism at nAChRs mediating nicotine-evoked [3H]DA overflow and a KB value of 0.17 microM. Thus, the simplified N-n-alkylpyridinium analogs are potent, selective, and competitive antagonists of nAChRs mediating nicotine-evoked [3H]DA overflow, indicating that the N-methylpyrrolidino moiety is not a structural requirement for interaction with nAChR subtypes mediating nicotine-evoked DA release.  相似文献   

10.
The effects of ethanol on N-methyl-D-aspartate (NMDA)-stimulated [3H]norepinephrine (NE) release from rat cortical slices was studied. NMDA-stimulated [3H]NE release was inhibited by tetrodotoxin, Mg++ and 2-amino-5-phosphonopentanoic acid, indicating that NMDA receptors in the cortex have characteristics similar to those observed using electrophysiological studies. Ethanol (60-200 mM) decreased the release of [3H]NE evoked by 100 microM NMDA in a concentration-dependent manner (32-52% inhibition), but it did not significantly alter the basal release. The inhibitory effect of 100 mM ethanol was due to a reduction in the maximal response with no significant change in the EC50 for NMDA. Pretreatment of the slices with 100 mM ethanol up to 6 min did not alter the magnitude of inhibition. The inhibition of NMDA-stimulated [3H]NE release due to ethanol was reversible after a 13-min recovery period. The presence of ethanol did not significantly affect the IC50 for Mg++ inhibition of NMDA-stimulated [3H]NE release (23 +/- 3 microM). Glycine (10-300 microM) potentiated the release of [3H]NE stimulated by 250 microM NMDA, and 60 mM ethanol did not alter this effect of glycine. Ethanol (100 mM) inhibited the release of [3H]NE evoked by 18.9 mM KCl in the presence or absence of 2-amino-5-phosphonopentanoic acid, but had no effect on release induced by 49.1 mM KCl. Tetrodotoxin (0.3 mM) significantly decreased the release of [3H] NE evoked by 23.2 mM KCl, and 60 to 200 mM ethanol did not alter this release. These results suggest that NMDA receptors in rat cortical slices are located on nerve cell bodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Steroids have been proposed as endogenous ligands at sigma receptors. In the current study, we examined the ability of steroids to regulate N-methyl-d-aspartate (NMDA)-stimulated [3H]dopamine release from slices of rat striatal tissue. We found that both progesterone and pregnenolone inhibit [3H]dopamine release in a concentration-dependent manner similarly to prototypical agonists, such as (+)-pentazocine. The inhibition seen by both progesterone and pregnenolone exhibits IC50 values consistent with reported Ki values for these steroids obtained in binding studies, and was fully reversed by both the sigma1 antagonist 1-(cyclopropylmethyl)-4-2'-4"flurophenyl)-2'oxoethyl)piperidine HBr (DuP734) and the sigma2 antagonist 1'-[4-[1-(4-fluorophenyl)-1-H-indol-3-yl]-1-butyl]spiro[iso-benzofuran-1(3H), 4'piperidine] (Lu28-179). Lastly, to determine whether a protein kinase C (PKC) signaling system might be involved in the inhibition of NMDA-stimulated [3H]dopamine release, we tested the PKCbeta-selective inhibitor 5,21:12,17-dimetheno-18H-dibenzo[i,o]pyrrolo[3,4 - 1][1,8]diacyclohexadecine-18,20(19H)-dione,8-[(dimethylamino)methyl]-6,7,8,9,10,11-hexahydro-monomethanesulfonate (9Cl) (LY379196) against both progesterone and pregnenolone. We found that LY379196 at 30 nM reversed the inhibition of release by both progesterone and pregnenolone. These findings support steroids as candidates for endogenous ligands at sigma receptors.  相似文献   

12.
An important regulatory mechanism of synaptic dopamine (DA) levels is activation of the dopamine transporter (DAT), which is a target for many drugs of abuse, including amphetamine (AMPH). sigma receptors are located in dopaminergic brain areas critical to reinforcement. We found previously that agonists at sigma2 receptors enhanced the AMPH-stimulated release of [3H]DA from slices of rat caudate-putamen. In the present study, we modeled this response in undifferentiated pheochromocytoma-12 (PC12) cells, which contain both the DAT and sigma2 receptors but not neural networks that can complicate investigation of individual neuronal mechanisms. We found that enhancement of AMPH-stimulated [3H]DA release by the sigma agonist (+)-pentazocine was blocked by sigma2 receptor antagonists. Additionally, the reduction in the effect of (+)-pentazocine by the inclusion of ethylene glycol bis(beta-aminoethyl ether)-N,N,N', N'-tetraacetic acid led us to hypothesize that sigma2 receptor activation initiated a Ca2+-dependent process that resulted in enhancing the outward flow of DA via the DAT. The source of Ca2+ required for the enhancement of reverse transport did not appear to be via N- or L-type voltage-dependent Ca2+ channels, because it was not affected by nitrendipine or omega-conotoxin. However, two inhibitors of Ca2+/calmodulin-dependent protein kinase II blocked enhancement in AMPH-stimulated release by (+)-pentazocine. Our findings suggest that sigma2 receptors are coupled to the DAT via a Ca2+/calmodulin-dependent protein kinase II transduction system in PC12 cells, and that sigma2 receptor antagonists might be useful in the treatment of drug abuse by blocking elevation of DA levels via reversal of the DAT.  相似文献   

13.
Release of [3H]dopamine ([3H]DA) from striatal synaptosomes is evoked most commonly by elevating potassium levels in the presence of calcium. However, it has been difficult to show that DA agonists or antagonists can modify K+-evoked release of [3H]DA. DA. In this study [3H]DA release evoked by exposure of synaptosomes (isolated and superfused previously with 0.0 mM Ca++ and 0.1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid) to 1.25 mM Ca++ can be modulated by the DA (D2) agonists apomorphine, pergolide and quinpirole and antagonists l-sulpiride and domperidone. The release was evoked under low potassium (6 mM or less) concentrations and the potassium concentration in the superfusion medium was not elevated before or during Ca++ exposure. Analysis of the superfusates obtained during Ca++ exposure revealed that approximately 80% of the tritium released was [3H]DA. The ability of DA (D2) agonists to inhibit the Ca++-evoked release from synaptosomes superfused with 9 mM K+ was greatly reduced. Therefore, prolonged depolarization may block DA (D2) regulation of [3H]DA release from synaptosomes. The Ca++-evoked release of [3H]DA was reduced greatly when 1 microM tetrodotoxin was present indicating sodium channels play a role in triggering the processes involved in Ca++-evoked [3H]DA release.  相似文献   

14.
Exogenous glutamate will evoke dopamine (DA) release from striatal slices in vitro. To further characterize glutamate-evoked DA release from striatal slices, experiments were designed to: 1) determine if sufficient endogenous glutamate can be released in vitro to presynaptically mediate [3H]DA release in the absence of Mg++ and 2) reevaluate how K+ depolarization affects glutamate-evoked [3H]DA release. Removal of Mg++ to potentiate N-methyl-D-aspartate (NMDA) receptor-mediated DA release increased 15 mM K(+)-evoked [3H]DA release to about 200% of control. The potentiation of this release was probably not mediated by NMDA receptors because it was not blocked by the glutamate receptor antagonists MK-801, 6,7-dinitroquinoxalinedione (DNQX) or kynurenate. Furthermore, the removal of Mg++ increased DA release substantially (200%) in the presence of 5 microM sulpiride and 10 microM nomifensine, indicating that DA reuptake and DA D2 autoreceptors are not primarily responsible for increased DA release. In the absence of Mg++, depolarization produced by 20 mM or greater [K+] inhibited DA released by exogenous glutamate, whereas a much higher [K+] was necessary to evoke endogenous glutamate release. In the presence of 1.5 mM Mg++, a reduction of the "Mg++ blockade" of NMDA receptors by 15 mM K+ depolarization during glutamate-evoked DA release was evaluated with and without the DA reuptake inhibitor nomifensine and the DA D2 antagonist sulpiride. DA released by K+ depolarization (Mg++ present) was markedly increased by 1 mM glutamate, but this effect was only partially reversed by kynurenate or high concentrations of either MK-801 (25 microM) or DNQX (100 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The mechanism of nicotinic acetylcholine receptor (nAChR)-induced hippocampal dopamine (DA) release was investigated using rat hippocampal slices. nAChRs involved in hippocampal DA and norepinephrine (NE) release were investigated using prototypical agonists and antagonists and several relatively novel compounds: ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine], (+/-)-UB-165 [(2-chloro-5-pyridyl)-9-azabicyclo [4.2.1]non2-ene], and MG 624 [N,N,N-triethyl-2-[4-(2 phenylethenyl)phenoxy]-ethanaminium iodine]. (+/-)-Epibatidine, (+/-)-UB-165, anatoxin-a, ABT-594, (-)-nicotine, 1,1-dimethyl-4-phenyl-piperazinium iodide, and (-)-cytisine (in decreasing order of potency) evoked [(3)H]DA release in a mecamylamine-sensitive manner. Aside from (+/-)-UB-165, all the agonists displayed full efficacy relative to 100 microM (-)-nicotine in [(3)H]DA release. In contrast, (+/-)-UB-165 was a partial agonist, evoking 58% of 100 microM (-)-nicotine response. Mecamylamine, MG 624, hexamethonium, d-tubocurare, and dihydro-beta-erythroidine (in decreasing order of potency), but not alpha-conotoxin-MII, methyllycaconitine, alpha-conotoxin-ImI, or alpha-bungarotoxin, attenuated 100 microM (-)-nicotine-evoked [(3)H]DA release in a concentration-dependent manner. (+/-)-UB-165, ABT-594, and MG 624 exhibited different pharmacologic profiles in the [(3)H]NE release assay when compared with their effect on [(3)H]DA release. ABT-594 was 4.5-fold more potent, and (+/-)-UB-165 was a full agonist in contrast to its partial agonism in [(3)H]DA release. MG 624 potently and completely blocked NE release evoked by 100 microM (-)-nicotine and 10 microM (+/-)-UB-165, whereas it only partially inhibited (-)-nicotine-evoked [(3)H]DA release. In conclusion, we provide evidence that [(3)H]DA can be evoked from the hippocampus and that the pharmacologic profile for nAChR-evoked hippocampal [(3)H]DA release suggests the involvement of alpha3beta4(*) and at least one other nAChR subtype, thus distinguishing it from that of nAChR-evoked hippocampal [(3)H]NE release.  相似文献   

16.
It is not clear whether dopamine D(3) receptor contributes to the regional difference in dopamine antagonist-induced increase in the evoked dopamine release from the nucleus accumbens and striatum. We investigated the regional differences in augmentation of electrically evoked dopamine release induced by preferential dopamine D(2) or D(3) receptor antagonists from slices of the rat striatum and nucleus accumbens. Haloperidol, a preferential dopamine D(2) receptor antagonist, enhanced the evoked dopamine release from both the striatum and nucleus accumbens. Preferential dopamine D(3) antagonists, cis-(+)-(1S, 2R)-5-methoxy-1-methyl-2-(di-n-propylamino)tetralin HCl [(+)-UH232] and 5,6-dimethoxy-2-(di-n-propylamine)indan (U-99194A) resulted in a greater increase in the evoked dopamine released from the nucleus accumbens compared with that from the striatum. Moreover, U-99194A attenuated the quinpirole-induced reduction of evoked dopamine release from the nucleus accumbens but not from the striatum. When slices were superfused with pirenzepine, a muscarinic receptor antagonist, the increase in the evoked dopamine release by (+)-UH232 or U-99194A was reduced in the nucleus accumbens to the same level as that in the striatum. Our results indicate that the preferential D(3) receptor antagonists-induced increase in evoked dopamine release is probably mediated by the cholinergic system in the nucleus accumbens, which contains more postsynaptic dopamine D(3) receptors than the striatum.  相似文献   

17.
The inhibition of uptake of [(3)H]dopamine into synaptosomes prepared from four mouse brain regions was investigated. The inhibition curves demonstrated that in three regions, striatum, nucleus accumbens, and olfactory tubercle, [(3)H]dopamine was taken up exclusively by dopaminergic terminals. In frontal cortex, however, only a portion of the uptake was into dopaminergic terminals, with a larger amount taken up by noradrenergic terminals, and another small portion by serotonergic terminals. Release studies in frontal cortex indicated that in this region only dopaminergic and noradrenergic terminals are capable of packaging [(3)H]dopamine in a form allowing vesicle-mediated release; additionally, only the dopaminergic terminals have functional presynaptic nAChRs that, when stimulated by nicotinic agonists, evoke [(3)H]dopamine release. Agonist-stimulated [(3)H]dopamine release was characterized from synaptosomes prepared from four mouse brain regions. alpha-Conotoxin MII was a partial inhibitor of dopamine release in all of the brain regions, which suggests that a minimum of two nicotinic cholinergic receptors (nAChRs) are expressed in the nerve terminals of all four brain regions. No nicotine-induced [(3)H]dopamine release was detected in any brain region when the synaptosomes were prepared from beta2 null mutant mice, which indicates that the beta2 subunit is required for all nAChRs mediating this release. Dose-response curves were constructed for seven agonists in each of the brain regions. The pharmacological properties of synaptosomal [(3)H]dopamine release appear similar across the four brain regions. The results suggest that all four regions express the same nAChRs, although subtle regional differences may exist.  相似文献   

18.
Tetrodotoxin reduced N-methyl-D-aspartate (NMDA)-evoked release of adenosine by 35% but virtually abolished [3H]norepinephrine release. Although [3H]norepinephrine release from rat cortical slices evoked by 500 microM NMDA was abolished by 1.2 mM Mg++, which produces a voltage-sensitive, uncompetitive block of NMDA-channels, adenosine release was increased in the presence of Mg++. Partial depolarization with 12 mM K+ relieved the Mg++ block of 500 microM NMDA-evoked [3H]norepinephrine release but did not affect adenosine release, indicating that a Mg++ requirement for the adenosine release process per se cannot account for this discrepancy. NMDA was 33 times more potent in releasing adenosine than [3H]norepinephrine. At submaximal concentrations of NMDA (10 and 20 microM), adenosine release was augmented in Mg+(+)-free medium. Although a high concentration of the uncompetitive NMDA antagonist MK-801 [(+)-5-methyl-10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-10-imine maleate] (3 microM) blocked NMDA-evoked release of [3H]norepinephrine and adenosine, a lower concentration (300 nM) decreased NMDA-evoked [3H]norepinephrine release by 66% without affecting adenosine release. These findings suggest that maximal adenosine release occurs when relatively few NMDA receptors are activated, raising the possibility that spare receptors exist for NMDA-evoked adenosine release. Rather than acting as a protectant against excessive NMDA excitation, released adenosine might provide an inhibitory threshold which must be overcome for NMDA-mediated neurotransmission to proceed.  相似文献   

19.
The putative D2 dopamine receptor agonist quinpirole (LY 171,555) is the most widely used D2 agonist in in vivo and in vitro studies of D2 receptor-mediated effects. In addition, quinpirole may have even higher affinity for the recently described D3 dopamine receptor. The present study describes the in vitro binding properties of newly developed [3H]quinpirole in rat brain. [3H]Quinpirole binding was characterized in striatal membrane homogenate preparations using a filtration assay. Nonspecific binding was defined by 1 microM (+)-butaclamol. Specific [3H]quinpirole binding was saturable, and dependent on temperature, membrane concentration, sodium concentration and guanine nucleotides. Saturation analysis revealed high affinity binding characteristics (KD = 2.3 +/- 0.3 nM) which were confirmed by association-dissociation kinetics. The pharmacological profile of [3H]quinpirole binding in striatum was: (-)-N-n-propylnorapomorphine (+/-)-2-amino-6,7-dihydroxyl-1,2,3,4-tetrahydronaphthalene greater than or equal to quinpirole greater than apomorphine greater than bromocriptine greater than dopamine greater than SKF 38393 much greater than 5-hydroxytryptamine for putative dopamine agonists; spiperone greater than (+)-butaclamol greater than haloperidol greater than (-)-sulpiride greater than clozapine greater than SCH 23390 much greater than cinanserin for antagonists. [3H]Quinpirole binding exhibited stereoselectivity: (-)-sulpiride greater than (+)-sulpiride and (+)-butaclamol greater than (-)-butaclamol. This pharmacological profile is similar, though-not identical, to that observed for [3H] spiperone-labeled D2 receptors. The regional distribution of [3H]quinpirole binding sites roughly paralleled the distribution of [3H]spiperone binding sites, with greatest densities present in the striatum, nucleus accumbens and olfactory tubercles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A number of cholinergic muscarinic (M) agonists and antagonists were studied for their ability to enhance tritiated acetylcholine ([3H]ACh) release from electrically field-stimulated rat hippocampal slices. A Ca++-free medium and carbachol, but not nicotine, inhibited [3H]ACh release. Atropine, methylatropine and dexetimide produced concentration-dependent increases in [3H]ACh release to a maximum of about 50% above control. Aprophen and benactyzine produced a maximal response 25 to 35% above control. The selective M1 antagonist pirenzepine had the least effect on [3H]ACh release. Of the nonspecific M1-M2 antagonists studied, benactyzine produced the least amount of [3H]ACh release. The order of potency of the M antagonists in promoting a 15% increase in [3H]ACh release was aprophen greater than benactyzine greater than methylatropine greater than dexetimide greater than pirenzepine greater than atropine. However, the order of promoting maximal release of [3H]ACh was atropine greater than dexetimide greater than methylatropine greater than aprophen greater than benactyzine greater than pirenzepine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号