首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective To investigate the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)gene transfection mediated by adenovirus into human pancreatic carcinoma cell line Panc-1, and the mechanisms involved in this effect. Methods TRAIL gene was transfected into pancreatic cancer cell line Panc-1 by an adenovirus vector (Ad-TRAIL).Level of TRAIL mRNA expression was determined using RT-PCR, and TRAIL protein synthesis was evaluated with Western blot. Cell-growth activities were determined by MTT assay. The bystander effect was observed by co-culturing the Panc-1cells with the transfected TRAIL gene at different ratios. Apoptosis in pancreatic cancer cells was detected by flow cytometry.Procaspase-8 and procaspase-3 were determined by Western blot. Results The stable overexpression of TRAIL was detected in Panc-1 cells transfected by Ad-TRAIL. Ad-TRAIL significantly inhibited of cell viability of Panc-1 cells. Furthermore,co-culture of cancer cells transfected with TRAIL with that nontransfected resulted in the cell death of both cells by bystander effect. Moreover, the percentage of apoptotic cells was significantly higher in the Ad-TRAIL-treatment group compared to the control groups (P < 0.01). And there was a diminished amount of procaspase-8 and procaspase-3 after infection with Ad-TRAIL. Conclusion The overexpression of TRAIL gene in Panc-1 cells by Ad-TRAIL exerts its antitumor effects, and themechanisms involved in this effect may be proapoptosis and bystander effect.  相似文献   

2.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a new cytokine that was proposed to specifically induce apoptosis of cancer cells. In tumor cells that are resistant to the cytokine, subtoxic concentrations of chemotherapeutic drugs can restore the response to TRAIL. The present study further explores the mechanisms that determine tumor cell sensitivity to TRAIL by comparing four human colon carcinoma cell lines We show that colon cancer cell sensitivity to TRAIL-induced apoptosis and cytotoxicity correlates with the expression of the death receptors TRAIL-R1 and TRAIL-R2 at the cell surface, as determined by now cytometry, whereas the two decoy receptors TRAIL-R3 and TRAIL-R4 can be detected only in permeabilized cells. Clinically relevant concentrations of cisplatin and doxorubicin sensitize the most resistant colon cancer cell lines to TRAIL-induced cell death without modifying the expression nor the localization of TRAIL receptors in these cells. TRAIL induces the activation of procaspase-8 and triggers caspase-dependent apoptosis off colon cancer cells. Cytotoxic drugs lower the signaling threshold required for TRAIL-induced procaspase-8 activation. In turn, caspase-8 cleaves Bid, a BH3 domain-containing proapoptotic molecule of the Bcl-2 family and activates effector caspases. Together, these data indicate that chemotherapeutic drugs sensitize colon tumor cells to TRAIL-mediated caspase-8 activation and apoptosis.  相似文献   

3.
Tumor necrosis factor receptor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis primarily in cancer cells with little or no effect on normal cells; therefore, it has the potential for use in cancer therapy. TRAIL binding to death receptors DR4 and DR5 triggers the death-inducing signal complex formation and activation of procaspase-8, which in turn activates caspase-3, leading to cell death. Like FasL, TRAIL can trigger type 1 (caspase-8 --> caspase-3) or type 2 (caspase-8 --> Bid cleavage --> capsase-9 --> caspase-3) apoptotic pathways depending on the cell type. Some cancers are resistant to TRAIL treatment because most molecules in the TRAIL signaling pathway, including FLIPs and IAPs, can contribute to resistance. In addition, we have identified an essential role for splice variants of the IG20 gene in TRAIL resistance.  相似文献   

4.
Caspase-8 is a member of the cysteine protease family that modulates apoptosis induced by a variety of cell death signals and has recently been found to be activated during the process of anoikis, which is a form of apoptosis caused by loss of anchorage in epithelial cells. We previously demonstrated that the inhibition of anoikis promotes peritoneal dissemination of human gastric carcinoma MKN45 cells, which are anchorage dependent. This suggests that augmentation of anoikis may suppress dissemination of carcinoma cells. To determine whether extrinsic overexpression of caspase-8 can augment anoikis in MKN45 cells, we transfected them with the caspase-8 gene using an adenoviral (Adv) vector (Adv-caspase-8). Here we demonstrate that Adv-caspase-8 infection, at 15 multiplicity of infection (MOI), can augment anoikis in MKN45 cells and suppresses MKN45 peritoneal dissemination in SCID mice. The inhibitory effect on peritoneal dissemination resulted in a prolonged survival compared with that in control mice. In contrast, the Adv-caspase-8 (15 MOI) had no distinct effect on cell viability or growth either of attached MKN45 cells or of s.c. tumor growth in SCID mice. Thus, Adv-mediated overexpression of caspase-8 suppressed peritoneal dissemination mainly through augmentation of anoikis. In addition, Adv-caspase-8-mediated augmentation of anoikis was similarly observed in another gastric carcinoma MKN74 cell line. In contrast, Adv-p53 could not augment anoikis in MKN45 cells. These results imply that Adv-mediated gene transfer of caspase-8 can selectively induce apoptosis in detached carcinoma cells and, thus, shows potential as a novel cancer therapy against dissemination of gastric and probably other carcinoma cells originating from epithelial tissues.  相似文献   

5.
2-Methoxyestradiol is a physiologic metabolite of 17beta-estradiol. This orally active compound can inhibit tumor growth or metastasis in tumor models without inducing any clinical sign of toxicity. Our previous studies indicated that 2-methoxyestradiol-mediated apoptosis involves the disappearance of intact 21-kDa Bid protein, cytochrome c release, and predominant procaspase-3 cleavage. Here, using MIA PaCa-2 cells as a model, we investigated whether this estrogen metabolite induces apoptosis by converging two major pathways: the death receptor-mediated extrinsic and the mitochondrial intrinsic pathway. Exogenous expression of dominant-negative caspase-8 or dominant-negative FADD reverts the effect of 2-methoxyestradiol-mediated cell death. In parallel with this observation, Z-IETD-FMK, a cell permeable irreversible inhibitor of caspase-8, can render significant protection against 2-methoxyestradiol-induced apoptosis. RNase protection assay and cell surface receptor analysis by flow cytometry show the up-regulation of members of death receptor family in 2-methoxyestradiol-exposed pancreatic cancer cells. Our mechanistic studies also implicate that oxidative stress precedes 2-methoxyestradiol-mediated c-Jun NH2-terminal kinase activation, leading to elevated Fas level. Because 2-methoxyestradiol is able to trigger death receptor signaling, we were interested in examining the effects of 2-methoxyestradiol and Fas ligand (FasL)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) together on pancreatic cancer cell death. Interestingly, the endogenous angiogenesis inhibitor 2-methoxyestradiol augments FasL/TRAIL-induced apoptosis in these cells. Moreover, the combination of 2-methoxyestradiol and TRAIL reduces the tumor burden in vivo in MIA PaCa-2 tumor xenograft model by caspase-3 activation.  相似文献   

6.
Cytokines such as Fas-ligand (Fas-L) and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) can induce human colon cancer cell apoptosis through engagement of their death domain receptors. All the cancer cells are not sensitive to these cytokines. We have shown recently that low doses of cytotoxic drugs could restore TRAIL-induced cell death in resistant colon cancer cell lines. The present work further explores the death pathway triggered by the cytotoxic drug/TRAIL combination in HT-29 colon cancer cells (www.alexis-corp.com). Clinically relevant concentrations of cisplatin, doxorubicin and 5-fluorouracil synergize with TRAIL to trigger HT-29 cell death. Activation of this pathway leads to apoptosis that involves both caspases and the mitochondria. An increased recruitment of Fas-associated death domain (FADD) and procaspase-8 to the TRAIL-induced death-inducing signaling complex (DISC) was shown in cells exposed to anticancer drugs. Following caspase-8 activation at the DISC level, the mitochondria-dependent death pathway is activated, as demonstrated by the cleavage of Bid, the dissipation of DeltaPsi(m), the release of mitochondrial proteins in the cytosol and the inhibitory effect of Bcl-2 expression. Importantly, besides mitochondrial potentiation, we show here that cytotoxic drugs sensitize HT-29 colon cancer cells to TRAIL-induced cell death by enhancing FADD and procaspase-8 recruitment to the DISC, a novel mechanism whose efficacy could depend partly on Bcl-2 expression level.  相似文献   

7.
We have demonstrated that Apo-2 ligand (Apo-2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of human prostate cancer PC-3, DU145, and LNCaP cells in a dose-dependent manner, with PC-3 cells displaying the greatest sensitivity to Apo-2L/TRAIL. Susceptibility of the prostate cancer cell types to Apo-2L/TRAIL-induced apoptosis did not appear to correlate with the levels of the Apo-2L/TRAIL receptors death receptor (DR) 4 (TRAIL receptor 1) or DR5 (TRAIL receptor 2), decoy receptor (DcR) 1 and DcR2, Flame-1, or the inhibitors of apoptosis proteins family of proteins. Apo-2L/TRAIL-induced apoptosis of PC-3 cells was associated with the processing of caspase-8, caspase-10, and the proapoptotic Bid protein, resulting in the cytosolic accumulation of cytochrome c as well as the processing of procaspase-9 and procaspase-3. Cotreatment with the caspase-8 inhibitor z-IETD-fmk or DR4:Fc significantly inhibited Apo-2L/TRAIL-induced apoptosis. Treatment with paclitaxel or taxotere increased DR4 and/or DR5 protein levels (up to 8-fold) without affecting the protein levels of DcR1 and DcR2, Apo-2L/TRAIL, Fas, or Fas ligand. Up-regulation of DR4 and DR5 was not preceded by the induction of their mRNA levels but was inhibited by cotreatment with cycloheximide. Importantly, sequential treatment of PC-3, DU145, and LNCaP cells with paclitaxel followed by Apo-2L/TRAIL induced significantly more apoptosis than Apo-2L/TRAIL treatment alone (P < 0.01). This was also associated with greater processing of procaspase-8 and Bid, as well as greater cytosolic accumulation of cytochrome c and the processing of caspase-3. These findings indicate that up-regulation of DR4 and DR5 protein levels by treatment with paclitaxel enhances subsequent Apo-2L/TRAIL-induced apoptosis of human prostate cancer cells.  相似文献   

8.
TNF-related apoptosis-inducing ligand (TRAIL APO-2L) is a member of the TNF family and induces apoptosis in cancer cells without affecting most non-neoplastic cells. The present investigation is focused on apoptosis induction by combined exposure to TRAIL and ionising radiation (IR) in human renal cell carcinoma (RCC) cell lines. Here, we demonstrate that all RCC cell lines coexpress TRAIL and the death-inducing receptors, TRAIL-R1 and TRAIL-R2. Exposure to TRAIL alone induced marked apoptosis in three out of eight RCC cell lines. Combined exposure to TRAIL and IR resulted in a sensitisation to TRAIL-induced apoptosis in one RCC cell line only. Enhanced apoptosis induction by TRAIL in combination with IR was paralleled by an increase in PARP cleavage and activation of executioner caspase-3, whereas caspases-6 and -7 were not involved. Moreover, exposure to TRAIL and/or IR resulted in a marked activation of initiator caspase-8, possibly augmented by the observed reduction of inhibitory c-FLIP expression. In contrast to other tumour types, activation of initiator caspase-9 was not detectable in our RCC model system after exposure to TRAIL and/or IR. This lack of caspase-9 activation might be related to an impaired 'crosstalk' with the caspase-8 pathway as suggested by the missing Bid cleavage and to the appearance of an XIAP cleavage product known to inhibit caspase-9 activation. Deficient activation of caspase-9, therefore, might contribute to the clinically known resistance of human RCC against IR and also argues against an effective combination therapy with TRAIL and IR in this tumour type.  相似文献   

9.
Sensitization of cancer cells to TRAIL could improve the effectiveness of TRAIL as an anticancer agent. We explored whether TRAIL in combination with phytosphingosine could sensitize cancer cells to TRAIL. The combined treatment enhanced synergistic apoptotic cell death of Jurkat T cells, compared to TRAIL or phytosphingosine alone. Enhanced apoptosis in response to the combination treatment was associated with caspase-8 activation-mediated Bax and Bak activation and mitochondrial dysfunction. The combination treatment also resulted in synergistic up-regulation of TRAIL receptor R1 (DR4) and R2 (DR5). siRNA targeting of DR5 significantly attenuated the combination treatment-induced caspase-8 activation, mitochondrial dysfunction, and apoptotic cell death. Upon stimulation of cells with the combination treatment, NF-kappaB was activated. Moreover, siRNA targeting of NF-kappaB significantly attenuated the combination treatment-induced DR4 and DR5 expression and receptor-mediated caspase-8 activation. These results indicate that phytosphingosine sensitizes cancer cells to TRAIL through the synergistic up-regulation of DR4 and DR5 in an NF-kappaB-dependent fashion resulting in caspase-8 activation and subsequent mitochondrial dysfunction. These findings support the potential application of combination treatment with TRAIL and phytosphingosine in the treatment of cancers that are less sensitive to TRAIL.  相似文献   

10.
Seven pediatric rhabdomyosarcoma (RMS) cell lines were resistant to the induction of apoptosis via the Fas death receptor. In contrast, four of seven lines (RD, Rh1, Rh18, and Rh30) were highly sensitive to tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL). TRAIL induced apoptosis within 4 h and also reduced clonogenic survival, both reversible by caspase inhibitors. DR5 (but not DR4) was expressed at high level in all cell lines. Expression of the decoy receptors DcR1 and DcR2 did not correlate with TRAIL sensitivity. All RMS lines expressed the adapter molecule FADD, and six of seven expressed procaspase-8. Expression of the inhibitory proteins c-FLIPL and c-FLIPs was high in three TRAIL-sensitive (RD, Rh1, and Rh30) and two TRAIL-resistant (Rh28 and Rh41) lines. All RMS lines expressed Bid and procaspases-3, -6, -7, and -9. Procaspases-8 and -10 were highest in TRAIL-sensitive RMS (RD, Rh1, and Rh30), and procaspase-10 was not expressed in Rh18, Rh36, or Rh41. TRAIL induced loss of mitochondrial membrane potential in TRAIL-sensitive Rh1 but not in TRAIL-resistant Rh41 cells. There was no correlation between expression of members of the Bcl-2 family (Bcl-2, Bcl-xL, Bax, and Bak) and TRAIL sensitivity. TRAIL-sensitive Rh18 expressed procaspase-8 in the absence of procaspase-10 and c-FLIP, and procaspase-10 was not detected in TRAIL-resistant Rh41 in the presence of procaspase-8 and c-FLIP. Data suggest that caspase-8 may be sufficient to deliver the TRAIL-induced apoptotic signal in the absence of both caspase-10 and c-FLIP (Rh18) but not in the presence of c-FLIP (Rh41). In RD, Rh1, and Rh30, the presence of c-FLIP may require amplification of the apoptotic signal via caspase-10.  相似文献   

11.
The aim of this study was to investigate induction of apoptosis by the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and gemcitabine in the pancreatic cancer cell line SW1990. The sensitivity of SW1990 cells to TRAIL and/or gemcitabine-induced apoptosis and the rate of apoptosis were assessed by MTT assay and flow cytometry, respectively. We used Hoechst 33342 staining to observe apoptotic morphology and expression levels of proteins were analyzed by Western blottin. Growth inhibition and apoptosis rates on treatment with the combination of TRAIL and gemcitabine were significantly higher than with each drug alone (p<0.05). Pancreatic cancer cells exhibited a typical apoptosis morphology after treatment with TRAIL or gemcitabine. The levels of cellular apoptosis-associated proteins such as Smac/DIABLO, Cyto C, and the activated fragment of caspase-3 (P17) increased, but the expression of XIAP was significantly decreased after 24 h (p<0.05). SW1990 cells responded to TRAIL and/or gemcitabine-induction of apoptosis in a time and concentration-dependent manner. The mechanism of the apoptosis-sensitization effect appeared associated with significant up-regulation of Smac/DIABLO and cytochrome C, down-regulation of XIAP, and activation of caspase-3.  相似文献   

12.
13.
Tumor targeting is an important issue in cancer gene therapy. We have developed a light-specific transduction method, named photochemical internalization (PCI), to enhance gene expression from adenoviral vectors selectively in illuminated areas. Tumor necrosis factor related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in cancer cells, and the aim of this study was to investigate the potential of PCI to enhance transgene expression from AdhCMV-TRAIL and evaluate its impact on apoptotic induction in the two human colorectal cancer cell lines HCT116 and WiDr. PCI-mediated delivery of AdhCMV-TRAIL enabled an increased expression of TRAIL, induced a synergistic reduction in cell viability compared to the individual action of AdhCMV-TRAIL and photochemical treatment, and enhanced the induction of apoptosis demonstrated by an increase in cytoplasmic histone-associated DNA fragments, caspase-8 and caspase-3 activation, PARP cleavage and a decrease in the mitochondrial membrane potential. The synergistic effect could be related to the enhanced TRAIL expression in PCI-treated samples and a modest sensitization of the cancer cells to TRAIL induced apoptosis due to the photochemical treatment. Furthermore, an increased cleavage of Bid and a cell line dependent reduction in the expression levels of anti-apoptotic Bcl-2 family members were observed and could possibly contribute to the enhanced apoptotic level in samples exposed to the combined treatment. The presented results indicate that photochemically mediated delivery of AdhCMV-TRAIL allows a selective enhancement in cell killing, and suggest that PCI may be relevant and advantageous for therapeutic gene delivery in vivo.  相似文献   

14.
Members of the conserved small heat shock protein (sHSP) family, such as αB-crystallin and Hsp27, are constitutively expressed in diverse malignancies and have been linked to several hallmark features of cancer including apoptosis resistance. In contrast, the sHSP HspB2/MKBP, which shares an intergenic promoter with αB-crystallin, was discovered as a chaperone of the myotonic dystrophy protein kinase and has not been previously implicated in apoptosis regulation. Here we describe a new function for HspB2 as a novel inhibitor of apical caspase activation in the extrinsic apoptotic pathway. Specifically, we demonstrate that HspB2 is expressed in a subset of human breast cancer cell lines and that ectopic expression of HspB2 in breast cancer cells confers resistance to apoptosis induced by both TRAIL and TNF-α. We also show that HspB2 inhibits the extrinsic apoptotic pathway by suppressing apical caspases-8 and 10 activation, thereby blocking downstream apoptotic events, such as Bid cleavage and caspase-3 activation. Consistent with these in vitro effects, HspB2 attenuates the anti-tumor activity of TRAIL in an orthotopic xenograft model of breast cancer. Collectively, our results reveal a novel function of HspB2 as an anti-apoptotic protein that negatively regulates apical caspase activation in the extrinsic apoptotic pathway.  相似文献   

15.
Yang L  Cao Z  Yan H  Wood WC 《Cancer research》2003,63(20):6815-6824
It is well known that dysfunction of the apoptotic pathway confers apoptosis resistance and results in a low sensitivity of human cancer cells to therapeutic agents. A novel strategy to overcome the resistance is to target the apoptotic pathway directly. To identify molecular targets in the apoptotic pathway that are differentially regulated in cancer and normal cells, we have examined the levels of apoptotic effectors and inhibitors in human tumor and normal cell lines as well as in cancer and normal tissues. These include three pancreatic cancer lines (BXPC-3, MIA PaCa-2, and Panc-1), four breast cancer cell lines (MDA-MB-231, MDA-MB-435, MDA-MB-361, and MCF-7), and colon carcinoma line (SW620). Additionally, breast carcinoma tissue specimens were examined. Compared with normal human fibroblast and mammary epithelial cell lines, we detected high basal levels of caspase-3 and caspase-8 activities and active caspase-3 fragments in the tumor cell lines and cancer tissues in the absence of apoptotic stimuli. Furthermore, the tumor cells expressed high levels of survivin and XIAP, two members of the inhibitor of apoptosis (IAP) protein family. When the activity of these IAPs was blocked by expression of dominant-negative mutant survivin (survivinT34A) and XIAP-associated factor 1, respectively, apoptosis was induced in tumor but not normal cell lines. Moreover, down-regulation of both survivin and XIAP significantly enhanced tumor-cell apoptosis as compared with inhibition of either survivin or XIAP alone. These results suggest that up-regulated IAP expression counteracts the high basal caspase-3 activity observed in these tumor cells and that apoptosis in tumor cells but not normal cells can be induced by blocking IAP activity. Therefore, IAPs are important molecular targets for the development of cancer-specific therapeutic approaches.  相似文献   

16.
In this study we sought to clarify the role of the proapoptotic potential of mitochondria in the death pathway emanating from the TRAIL (APO-2L) and CD95 receptors in pancreatic carcinoma cells. We focused on the role of the Bcl-2 family member Bcl-XL, using three pancreatic carcinoma cell lines as a model system, two of which have high (Panc-1, PancTuI) and one has low (Colo357) Bcl-XL expression. In these cell lines, the expression of Bcl-XL correlated with sensitivity to apoptosis induced by TRAIL or anti-CD95. Flow cytometric analysis revealed cell surface expression of TRAIL-R1 and TRAIL-R2 on PancTuI and Colo357, and TRAIL-R2 on Panc-1 cells. In Colo357 cells retrovirally transduced with Bcl-XL, caspase-8 activation in response to treatment with TRAIL or anti-CD95 antibody was not different from parental cells and EGFP-transfected controls, however, apoptosis was completely suppressed as measured by the mitochondrial transmembrane potential deltapsim, caspase-3 activity (PARP cleavage) and DNA-fragmentation. Inhibition of Bcl-XL function by overexpression of Bax or administration of antisense oligonucleotides against Bcl-XL mRNA resulted in sensitization of Panc-1 cells to TRAIL and PancTuI cells to anti-CD95 antibody-induced cell death. The results show that Bcl-XL can protect pancreatic cancer cells from CD95- and TRAIL-mediated apoptosis. Thus, in these epithelial tumour cells the mitochondrially mediated 'type II' pathway of apoptosis induction is not only operative regarding the CD95 system but also regarding the TRAIL system.  相似文献   

17.
IL-33 is a member of the IL-1 family of cytokines, and no study has been performed to address its direct anti-tumor effect. This study is designed to investigate whether IL-33 has any direct effect on pancreatic cancer. Clonogenic survival assay, immunohistochemistry, TUNEL staining, proliferation, caspase-3 activity kits and RT-PCR were used to evaluate the effects of IL-33 on cell survival, proliferation and apoptosis of a pancreatic cancer cell line, MIA PaCa-2. We found that the percentage of colonies of MIA PaCa-2 cells, PCNA+ cells and the OD value of cancer cells were all decreased in the presence of IL-33. TUNEL+ cells and the relative caspase-3 activity in cancer cells were increased in the presence of IL-33. We further found that its anti-proliferative effect on cancer cells correlated with downregulation of pro-proliferative molecules cdk2 and cdk4 and upregulation of anti-proliferative molecules p15, p21 and p53. Its pro-apoptotic effect correlated with downregulation of anti-apoptotic molecule FLIP and upregulation of pro-apoptotic molecule TRAIL. These results suggest that IL-33 presents significant anti-tumor effects by inhibition of proliferation and induction of apoptosis of MIA PaCa-2 pancreatic cancer cells. Thus, strength of IL-33/ST2 signal pathway might be a promising way to treat pancreatic cancer.  相似文献   

18.
In this issue of the Journal, Soucek et al. challenge the assumption that increased functional granulocytic maturation of HL-60, an ATRA-responsive acute myeloid leukemia cell line devoid of the APL-specific PML-RARalpha fusion protein, results in more rapid or more sustained cell death. In this model cell line, the authors demonstrate that TGFbeta1, a well-known haemopoietic growth factor, enhances retinoid-dependent cyto-differentiation and growth arrest while inhibiting apoptosis. Concomitantly, treatment of HL-60 cells with the combination of TGFbeta1 and the retinoid partially suppresses ATRA-dependent induction of TRAIL. This is a death receptor ligand of the TNF family implicated in the paracrine mechanism underlying the apoptotic action of ATRA in APL blasts The protein activates the death-receptor-dependent or extrinsic apoptotic pathway, which is associated with caspase-8 activation. Down-regulation of TRAIL is correlated to an increase in the levels of the anti-apoptotic c-FLIP(L) and Mcl-1 proteins that are likely to be involved in the suppression of caspase-8 activation and apoptosis.  相似文献   

19.
Sun SY  Yue P  Hong WK  Lotan R 《Cancer research》2000,60(24):7149-7155
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis via the death receptors DR4 and DR5 in different transformed cells in vitro and exhibits potent antitumor activity in vivo with minor side effects. The synthetic retinoid CD437 is a potent inducer of apoptosis in cancer cells through increased levels of death receptors. We demonstrate that treatment of human lung cancer cells with a combination of suboptimal concentrations of CD437 and TRAIL enhanced induction of apoptosis in tumor cell lines with wild-type p53 but not in normal lung epithelial cells. CD437 up-regulated DR4 and DR5 expression. The CD437 and TRAIL combination enhanced activation of caspase-3, caspase-7, caspase-8, and caspase-9 and the subsequent cleavage of poly(ADP-ribose) polymerase and DNA fragmentation factor 45. Caspase inhibitors blocked the induction of apoptosis by this combination. Moreover, this combination induced Bid cleavage and increased cytochrome c release from mitochondria. These results suggest that the mechanism of enhanced apoptosis by this combination involves p53-dependent increase of death receptors by CD437, activation of these receptors by TRAIL, enhanced Bid cleavage, release of cytochrome c, and activation of caspase-3, caspase-7, caspase-8, and caspase-9. These findings suggest a novel strategy for the prevention and treatment of human lung cancer with the CD437 and TRAIL combination.  相似文献   

20.
Chemotherapy-induced apoptosis is generally thought to be dependent on a pathway headed by caspase-9. This model is primarily based on studies performed in leukemia cells; however, little is known about caspase cascades in relatively resistant solid tumor cells, including non-small cell lung cancer (NSCLC) cells. Using the NSCLC cell line NCI-H460 (H460), here, we studied the effect of stable expression of various caspase inhibitors on apoptosis induced by the anticancer drugs cisplatin, topotecan, and gemcitabine. Interestingly, overexpression of caspase-9S and X-linked inhibitor of apoptosis (XIAP), both able to inhibit caspase-9 activity, failed to block apoptosis. In contrast, stable expression of caspase-8 inhibitors, such as cytokine response modifier A (CrmA) and dominant-negative caspase-8, almost completely abrogated apoptosis and also enhanced clonogenic survival. Caspase-8 activation in H460 cells was not mediated by death receptors, inasmuch as overexpression of dominant-negative Fas-associated death domain (FADD-DN) did not prevent procaspase-8 cleavage and subsequent apoptosis. However, stable expression of Bcl-2 and Bcl-xL did suppress these apoptotic events, including the release of cytochrome c from mitochondria, which was observed in drug-treated H460 cells. In the NSCLC cell line H460, we, thus, provide evidence for the existence of a novel drug-inducible apoptotic pathway in which activation of caspase-8, and not of caspase-9, forms the apical and mitochondria-dependent step that subsequently activates the downstream caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号