首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Econazole is an antifungal drug with different in vitro effects. However, econazole's effect on osteoblast-like cells is unknown. In human MG63 osteosarcoma cells, the effect of econazole on intracellular Ca2+ concentrations ([Ca2+]i) was explored by using fura-2. At a concentration of 0.1 microM, econazole started to cause a rise in [Ca2+]i in a concentration-dependent manner. Econazole-induced [Ca2+]i rise was reduced by 74% by removal of extracellular Ca2+. The econazole-induced Ca2+ influx was mediated via a nimodipine-sensitive pathway. In Ca2+ -free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca+ -ATPase, caused a [Ca2+]i rise, after which the increasing effect of econazole on [Ca2+]i was abolished. Pretreatment of cells with econazole to deplete Ca2+ stores totally prevented thapsigargin from releasing Ca2+. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca2+ mobilizer)-induced, but not econazole-induced, [Ca2+]i rise. Econazole inhibited 76% of thapsigargin-induced store-operated Ca2+ entry. These findings suggest that in MG63 osteosarcoma cells, econazole increases [Ca2+]i by stimulating Ca2+ influx and Ca2+ release from the endoplasmic reticulum via a phospholipase C-independent manner. In contrast, econazole acts as a potent blocker of store-operated Ca2+ entry.  相似文献   

2.
1. The effect of maprotiline, an antidepressant, on human prostate cells is unclear. In the present study, the effect of maprotiline on [Ca2+]i and growth in PC3 human prostate cancer cells was measured using the fluorescent dyes fura-2 and tetrazolium, respectively. 2. Maprotiline caused a rapid, concentration-dependent increase in [Ca2+]i (EC50 = 200 micromol/L). The maprotiline-induced [Ca2+]i increase was reduced by removal of extracellular Ca2+ or pretreatment with nicardipine. 3. The maprotiline-induced Mn2+ influx-associated fura-2 fluorescence quench directly suggests that maprotiline caused Ca2+ influx. 4. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i increase, after which the effects of maprotiline of increasing [Ca2+]i were abolished. In addition, pretreatment with maprotiline reduced a major portion of the thapsigargin-induced increase in [Ca2+]i. 5. U73122, an inhibitor of phospholipase C, abolished the ATP (but not maprotiline)-induced increase in [Ca2+]i. 6. Overnight incubation with 1-10 micromol/L maprotiline did not alter cell proliferation, although incubation with 30-50 micromol/L maprotiline decreased cell proliferation. 7, These findings suggest that maprotiline rapidly increases [Ca2+]i in human prostate cancer cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release and that it may modulate cell proliferation in a concentration-dependent manner.  相似文献   

3.
1. The effects of the antianginal drug fendiline (N-[3,3-diphenylpropyl]-alpha-methyl-benzylamine) on intracellular free Ca2+ levels ([Ca2+](i)) in Chang liver cells were evaluated using fura-2 as a fluorescent Ca2+ indicator. 2. Fendiline (1-100 micromol/L) increased [Ca2+](i) in a concentration-dependent manner, with an EC50 of 25 micromol/L. 3. The [Ca2+](i) response was composed of an initial rise and a slow decay to a sustained phase. Removal of extracellular Ca2+ partly reduced the [Ca2+](i) signals. 4. Fendiline (10 micromol/L)-induced release of intracellular Ca2+ was reduced by 65% following pretreatment with 1 micromol/L thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete Ca2+ stored in the endoplasmic reticulum. 5. After pretreatment with 10 micromol/L fendiline in Ca2+-free medium for several minutes, addition of 3 mmol/L Ca2+ induced an increase in [Ca2+](i) of a magnitude four-fold greater than control. This increase in [Ca2+](i) was not reduced by 10 micromol/L SKF96365, econazole, nifedipine or verapamil. 6. Fendiline (10 micromol/L)-induced release of intracellular Ca2+ was not altered by inhibition of phospholipase C with 2 micromol/L 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino) hexyl)-1H-pyrrole-2,5-dione (U73122). 7. The results of the present study show that fendiline induces an increase in [Ca2+](i) in Chang liver cells by releasing stored Ca2+ in an inositol 1,4,5-trisphosphate-independent manner and by causing extracellular Ca2+ influx.  相似文献   

4.
In human MG63 osteosarcoma cells, the effect of calmidazolium on [Ca(2+)](i) and proliferation was explored using fura-2 and ELISA, respectively. Calmidazolium, at concentrations greater than 0.1 micromol/L, caused a rapid increase in [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 0.5 micromol/L). The calmidazolium-induced [Ca(2+)](i) increase was reduced by 66% by removal of extracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic increase in [Ca(2+)](i), after which the effect of calmidazolium to increase [Ca(2+)](i) was completely inhibited. U73122, an inhibitor of phospholipase C (PLC), abolished histamine (but not calmidazolium)-induced increases in [Ca(2+)](i). Pretreatment with phorbol 12-myristate 13-acetate to activate protein kinase C inhibited the calmidazolium-induced increase in [Ca(2+)](i) in Ca(2+)-containing medium by 47%. Separately, it was found that overnight treatment with 2-10 micromol/L calmidazolium inhibited cell proliferation in a concentration-dependent manner. These results suggest that calmidazolium increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing release of intracellular Ca(2+) from the endoplasmic reticulum in a PLC-independent manner. Calmidazolium may be cytotoxic to osteosarcoma cells.  相似文献   

5.
The effects of BAY 41-2272, a nitric oxide-independent activator of soluble guanylyl cyclase, on Ca2+ signalling and ion currents were investigated in pituitary GH3 cells. Intracellular Ca2+ concentrations ([Ca2+]i) in these cells were increased by BAY 41-2272. Removing extracellular Ca2+ abolished the BAY 41-2272-induced increase in [Ca2+]i. After [Ca2+]i was elevated by BAY 41-2272 (300 nmol/L), subsequent application of 1-benzyl-3-(5'-hydroxymethyl-2'-furyl) indazole (YC-1; 1 micromol/L) did not increase [Ca2+]i further. In whole-cell recordings, BAY 41-2272 reversibly stimulated Ca2+-activated K+ current (I(K(Ca))) with an EC50 of 225 +/- 8 nmol/L. At 3 micromol/L, BAY 41-2272 slightly and significantly decreased L-type Ca2+ current.In the cell-attached configuration, BAY 41-2272 (300 nmol/L) enhanced the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels. After BK(Ca) channel activity was stimulated by spermine NONOate (30 micromol/L) or YC-1 (10 micromol/L) in cell-attached patches, subsequent application of BAY 41-2272 (300 nmol/L) further increased the channel open probability. In the inside-out configuration, BAY 41-2272 applied to the intracellular surface of excised patches enhanced BK(Ca) channel activity. Unlike 1 micromol/L paxilline, 1H-[1,2,4]oxadiazolol-[4,3a] quinoxalin-1-one (ODQ; 10 micromol/L) or heme (10 micromol/L) had no effect on BAY 41-2272-stimulated channel activity. BAY 41-2272 caused no shift in the activation curve of BK(Ca) channels; however, it did increase the Ca2+ sensitivity of these channels. At 300 nmol/L, BAY 41-2272 reduced the firing rate of spontaneous action potentials stimulated by thyrotropin-releasing hormone (10 micromol/L). The BK(Ca) channel activity was also enhanced by 300 nmol/L BAY 41-2272 in neuroblastoma IMR-32 cells. Therefore, the BAY 41-2272-induced increase in [Ca2+]i is primarily explained by an increase in Ca2+ influx. The BAY 41-2272-mediated simulation of IK(Ca) may result from direct activation of BKCa channels and indirectly as a result of elevated [Ca2+]i.  相似文献   

6.
Carvedilol is a useful cardiovascular drug for treating heart failure, however, the in vitro effect on many cell types is unclear. In human MG63 osteosarcoma cells, the effect of carvedilol on intracellular Ca2+ concentrations ([Ca2+]i) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Carvedilol at concentrations greater than 1 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50=15 microM). Carvedilol-induced [Ca2+]i rise was reduced by 60% by removal of extracellular Ca2+. Carvedilol-induced Mn2+-associated quench of intracellular fura-2 fluorescence also suggests that carvedilol induced extracellular Ca2+ influx. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of carvedilol on [Ca2+]i was inhibited by 50%. Conversely, pretreatment with carvedilol to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+. U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca2+ mobilizer)-induced, but not carvedilol-induced, [Ca2+]i rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, did not alter carvedilol-induced [Ca2+]i rise. Separately, overnight treatment with 0.1-30 microM carvedilol inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, carvedilol increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum and other stores via a phospholipase C-independent manner. Carvedilol may be cytotoxic to osteoblasts.  相似文献   

7.
(1R,9S)-beta-Hydrastine (BHS), at 100 microM, has been shown to mainly reduce the K+-induced dopamine release and Ca2+ influx by blocking the L-type Ca2+ channel and inhibit the caffeine activated store-operated Ca2+ channels, but not those activated by thapsigargin, in PC12 cells. In this study, the effects of BHS on Ca2+ transport from Ca2+ stores in the absence of external Ca2+ were investigated in PC12 cells. BHS decreased the basal intracellular Ca2+ concentration ([Ca2+]i) in the absence of external Ca2+ in PC12 cells. In the absence of external Ca2+, pretreating PC12 cells with 100 microM BHS reduced the rapid increase in the [Ca2+]i elicited by 20 mM caffeine, but not that by 1 microM thapsigargin. In addition, BHS inhibited the increase in the [Ca2+]i elicited by restoration of 2 mM CaCl2 after the Ca2+ stores had been depleted by 20 mM caffeine, but not those depleted by 1 microM thapsigargin, in the absence of external Ca2+. These results suggested that BHS mainly inhibited Ca2+ leakage from the Ca2+ stores and the caffeine-stimulated release of Ca2+ from the caffeine-sensitive Ca2+ stores in PC12 cells.  相似文献   

8.
目的:研究粉防己碱对培养乳牛基底动脉平滑肌细胞游离钙浓度([Ca^2 ]i)的影响。方法:利用AR-CM-MIC阳离子测定系统,采用Fura 2-AM为指示剂,测量单个细胞内[Ca^2 ]i。结果:粉防己碱10-100μmol/L对培养乳牛基底动脉平滑肌细胞静息[Ca^2 ]i无明显影响。在细胞外钙为1.3mmol/L,粉防己碱可浓度依赖性地抑制KC1引起[Ca^2 ]i的升高。咖啡因10mmol/L可诱导一次[Ca^2 ]i瞬间快速升高,随后自发回复到静息水平,粉防己碱10和30μmol/L对咖啡因诱导的[Ca^2 ]i瞬间升高没有作用,但高浓度(100μmol/L)粉防己碱抑制了[Ca^2 ]i瞬间升高。在细胞外钙为1.3mmol/L,苯肾上腺素10μmol/L可引起双相[Ca^2 ]i变化,包括快速升高相和持续升高相。在细胞外钙为零,苯肾上腺素仅引起[Ca^2 ]i的快速升高相。粉防己碱可浓度依赖性地抑制苯肾上腺素引起[Ca^2 ]i快速升高相。结论:在培养乳牛基底动脉平滑肌细胞,粉防己碱可能通过影响电压依赖性和苯肾上腺素受体介导的钙通道而抑制钙内流。高浓度粉防己碱也可能影响肌浆网钙释放或钙摄取。  相似文献   

9.
Jan CR  Yu CC  Huang JK 《Pharmacology》2001,62(4):218-223
The effect of fendiline, an antianginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of bladder female transitional carcinoma (BFTC) cells was explored using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 3 and 200 micromol/l increased [Ca2+]i in a concentration-dependent manner and the signal saturated at 100 micromol/l. The [Ca2+]i signal was biphasic, with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by about half in peak amplitude. Adding 3 mmol/l Ca2+ increased [Ca2+]i in cells pretreated with 100 micromol/l fendiline in Ca2+ -free medium, suggesting that fendiline induced Ca2+ influx via capacitative Ca2+ entry. In Ca2+ -free medium, pretreatment with 1 micromol/l thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store inhibited most of the 100 micromol/l fendiline-induced internal Ca2+ release; and conversely, pretreatment with 100 micromol/l fendiline partly inhibited 1 micromol/l thapsigargin-induced Ca2+ release. This indicates that the major internal Ca2+ store of fendiline-induced [Ca2+]i increases is located in the endoplasmic reticulum. The Ca2+ release induced by 100 micromol/l fendiline may be partly mediated by inositol 1,4,5-trisphosphate, because the [Ca2+]i increase was inhibited by 50% by inhibiting phospholipase C with 2 micromol/l U73122. Fendiline (100 micromol/l) decreased cell viability by 12-44% after being added to cells for 2- 30 min. Together, the findings indicate that in BFTC cells, fendiline exerts a dual effect: mobilization of intracellular Ca2+ and induction of cell death.  相似文献   

10.
The effect of N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404), a drug commonly used to inhibit the anandamide transporter, on intracellular free Ca2+ levels ([Ca2+]i) and viability was studied in human MG63 osteosarcoma cells using the fluorescent dyes fura-2 and WST-1, respectively. AM404 at concentrations > or = 5 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 60 microM. The Ca2+ signal was reduced partly by removing extracellular Ca2+. AM404 induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was sensitive to La3+, Ni2+, nifedipine and verapamil. In Ca2+-free medium, after pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), AM404-induced [Ca2+]i rise was abolished; and conversely, AM404 pretreatment totally inhibited thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not change AM404-induced [Ca2+]i rise. At concentrations between 10 and 200 microM, AM404 killed cells in a concentration-dependent manner presumably by inducing apoptotic cell death. The cytotoxic effect of 50 microM AM404 was partly reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Collectively, in MG63 cells, AM404 induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via L-type Ca2+ channels. AM404 caused cytotoxicity which was possibly mediated by apoptosis.  相似文献   

11.
The effect of the carcinogen safrole on intracellular Ca2+ movement has not been explored in osteoblast-like cells. This study examined whether safrole could alter Ca2+ handling and viability in MG63 human osteosarcoma cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at concentrations above 130 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 450 microM. The Ca2+ signal was reduced by 30% by removing extracellular Ca2+. Addition of Ca2+ after safrole had depleted intracellular Ca2+ induced Ca2+ influx, suggesting that safrole caused Ca2+ entry. In Ca2+-free medium, after pretreatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release more Ca2+; and pretreatment with thapsigargin inhibited most of the safrole-induced [Ca2+]i increases. Inhibition of phospholipase C with U73122 did not affect safrole-induced Ca2+ release; whereas activation of protein kinase C with phorbol ester enhanced safrole-induced [Ca2+]i increase. Trypan exclusion assays revealed that incubation with 65 microM safrole for 30 min did not kill cells, but incubation with 650 microM safrole for 10-30 min nearly killed all cells. Flow cytometry demonstrated that safrole evoked apoptosis in a concentration-dependent manner. Safrole-induced cytotoxicity was not reversed by chelation of Ca2+ with BAPTA. Collectively, the data suggest that in MG63 cells, safrole induced a [Ca2+]i increase by causing Ca2+ release mainly from the endoplasmic reticulum in a phospholipase C-independent manner. The safrole response involved Ca2+ influx and is modulated by protein kinase C. Furthermore, safrole can cause apoptosis in a Ca2+-independent manner.  相似文献   

12.
Huang CC  Cheng HH  Lin KL  Cheng JS  Tsai JY  Liao WC  Fang YC  Jan CR 《Toxicology》2009,255(1-2):58-64
The effect of tamoxifen on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability has not been explored in corneal epithelial cells. This study examined whether tamoxifen altered [Ca2+]i and viability in SIRC corneal epithelial cells. Tamoxifen at concentrations > or = 1 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 6 microM. The Ca2+ signal was reduced substantially by removing extracellular Ca2+. Tamoxifen induced Mn2+ quench of fura-2 fluorescence implicating Ca2+ influx. The Ca2+ influx was insensitive to Ca2+ entry inhibitors and protein kinase C modulators. After pretreatment with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), tamoxifen-induced [Ca2+]i rises were abolished; conversely, tamoxifen pretreatment abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not change the [Ca2+]i rises. At concentrations of 5-30 microM, tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 15 microM tamoxifen was not reversed by prechelating cytosolic Ca2+ with BAPTA/AM. Apoptosis was induced by 5-30 microM tamoxifen. Tamoxifen (30 microM did not induce production of reactive oxygen species (ROS). Collectively, in SIRC cells, tamoxifen induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx via unknown pathways. Tamoxifen-caused cytotoxicity was partly mediated by a Ca2+-independent apoptotic pathway.  相似文献   

13.
目的研究环维黄杨星D(CD)对大鼠心室肌细胞内Ca2+动员和L型钙电流(ICa-L/sub>)的影响。方法采用全细胞膜片钳和激光扫描共聚焦显微术研究CD对心肌细胞ICa-L/sub>以及氯化钾、咖啡因诱发心肌细胞内Ca2+动员的影响。结果CD浓度依赖性抑制ICa-L/sub>。指令电压为10 mV时,1和10 μmol·L-1 CD分别使ICa-L/sub>电流密度从(-9.9±1.8)pA/pF降至(-6.4±1.4)pA/pF和(-4.2±0.6)pA/pF。共聚焦实验显示1和10 μmol·L-1 CD不影响静息心肌细胞[Ca2+i?/sub>,对氯化钾诱发[Ca2+i?/sub>升高水平无明显抑制作用;咖啡因引起的细胞内Ca2+动员可被CD进一步增强。结论CD浓度依赖性抑制大鼠心室肌细胞ICa-L/sub>,并有促进咖啡因诱发心肌细胞内Ca2+释放的作用。  相似文献   

14.
The effect of the environmental toxicant nonylphenol on cytosolic free Ca2+ concentration ([Ca2+]i) and proliferation has not been explored in human osteoblast-like cells. This study examined whether nonylphenol alters Ca2+ levels and causes cell death in MG63 human osteosarcoma cells. [Ca2+]i and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Nonylphenol at concentrations above 3 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 90% by removing extracellular Ca2+. The nonylphenol-induced Ca2+ influx was insensitive to blockade of L-type Ca2+ channel blockers. After pretreatment with 10 microM nonylphenol, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to induce [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change nonylphenol-induced [Ca2+]i rises. The nonylphenol-induced [Ca2+]i rises were enhanced or inhibited by phorbol myristate acetate or GF 109203X, respectively. At concentrations of 10 and 20 microM nonylphenol killed 55% and 100% cells, respectively. The cytotoxic effect of 10 microM nonylphenol was unaltered by pre-chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, nonylphenol induced [Ca2+]i rises by causing Ca2+ release from intracellular stores and Ca2+ influx from extracellular space. Furthermore, nonylphenol can cause Ca2+-unrelated cytotoxicity in a concentration-dependent manner.  相似文献   

15.
1. The effects of (-)-epigallocatechin gallate (EGCG), a green tea polyphenol, on glutamate-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) and cytotoxicity in PC12 cells were investigated. 2. Changes in [Ca2+]i were measured using Fura-2/AM calcium indicator dye and cellular viabilities were determined by a viable cell count and a 3-(4,4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. 3. Glutamate increased [Ca2+]i in PC12 cells in a dose-dependent manner. (-)-Epigallocatechin gallate attenuated this glutamate (30 mmol/L)-induced [Ca2+]i increase and EGCG (50 micromol/L) increased the viability of PC12 cells against glutamate-induced cytotoxicity. The EGCG effect was also found to be independent of its general anti-oxidant mechanism. In contrast, EGCG directly suppressed both N-methyl-D-aspartate (50 mmol/L)- and kainate (20 mmol/L)-mediated Ca2+ influx, but not metabotropic receptor-mediated Ca2+ release. 4. These results suggest that EGCG reduces the glutamate-induced [Ca2+]i increase by attenuating ionotropic Ca2+ influx and that this promotes the viability of PC12 cells.  相似文献   

16.
The cardiac antidysrrhythmic drug amiodarone can give rise to potentially fatal pulmonary toxicity in large numbers of patients. The effect of amiodarone on Ca2+ homeostasis and cell injury has been studied using human pulmonary artery endothelial (HPAE) cells in vitro. Amiodarone produced a concentration-dependent increase in intracellular free Ca2+ concentration ( [Ca2+]i) to micromolar levels that are similar to those seen with physiological stimuli that increase [Ca2+]i. Unlike physiological stimuli, the rise in [Ca2+]i produced by amiodarone developed slowly and was maintained over at least 30 min. Omitting Ca2+ from the external medium reversibly prevented the amiodarone-induced rise in [Ca2+]i. Amiodarone treatment increased the apparent first order rate constants for 45Ca2+ influx and efflux in intact HPAE cells. 45Ca2+ accumulation into the endoplasmic reticulum of saponin-permeabilized HPAE cells was decreased by amiodarone treatment. The release of 45Ca2+ from the endoplasmic reticulum stores by the putative intracellular second messengers inositol-1,4,5-trisphosphate, arachidonic acid, and Ca2+ was blocked by amiodarone treatment. The changes in Ca2+ homeostasis coincide with an increase in [3H]deoxyglucose release as a measure of early cell injury by amiodarone. It is concluded that amiodarone can produce an increase in [Ca2+]i by an action on the plasma membrane that allows the influx of external Ca2+. This increase in [Ca2+]i, together with other changes in Ca2+ homeostasis, may be responsible for the early cell injury associated with amiodarone toxicity.  相似文献   

17.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells and the underlying mechanism were evaluated using fura-2 as a Ca2+ dye. Histamine at concentrations between 0.1 and 50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 1 microM. The [Ca2+]i response comprised an initial rise and a slow decay, which returned to baseline within 3 min. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In the absence of extracellular Ca2+, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 10 microM histamine did not increase [Ca2+]i. After pretreatment with 10 microM histamine in a Ca2+-free medium for several minutes, addition of 3 mM Ca2+ induced [Ca2+]i increases. Histamine (10 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17 beta-3- methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 10 microM pyrilamine but was not altered by 50 microM cimetidine. Collectively, the present study shows that histamine induced [Ca2+]i transients in PC3 human prostate cancer cells by stimulating H1 histamine receptors leading to Ca2+ release from the endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, and by inducing Ca2+ entry.  相似文献   

18.
The effects of the environmental toxicant, triethyltin, on Ca2+ mobilization in Madin-Darby canine kidney (MDCK) cells have been examined. Triethyltin induced an increase in cytosolic free Ca2+ levels ([Ca2+]i) at concentrations larger than 2 microM in a concentration-dependent manner. Within 5 min, the [Ca2+]i signal was composed of a gradual rise and a sustained phase. The [Ca2+]i signal was partly reduced by removing extracellular Ca2+. In Ca(2+)-free medium, pretreatment with thapsigargin (1 microM), an endoplasmic reticulum Ca2+ pump inhibitor, reduced 50 microM triethyltin-induced [Ca2+]i increase by 80%. Conversely, pretreatment with triethyltin abolished thapsigargin-induced Ca2+ release. Pretreatment with U73122 (2 microM) to inhibit phospholipase C-coupled inositol 1,4,5-trisphosphate formations failed to alter 50 microM triethyltin-induced Ca2+ release. Incubation with triethyltin at a concentration (1 microM) that did not increase basal [Ca2+]i for 3 min did not alter ATP (10 microM)- and bradykinin (1 microM)-induced [Ca2+]i increases. Collectively, this study shows that triethyltin altered Ca2+ movement in renal tubular cells by releasing Ca2+ from multiple stores in an inositol 1,4,5-trisphosphate-independent manner, and by inducing Ca2+ influx.  相似文献   

19.
Riluzole is a drug used in the treatment of amyotrophic lateral sclerosis; however, its in vitro action is unclear. In this study, the effect of riluzole on intracellular Ca2+ concentration ([Ca2+]i) in Madin-Darby canine kidney (MDCK) cells was investigated using the Ca2+ -sensitive fluorescent dye, fura-2. Riluzole (100-500 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50 = 150 microM). Some 40 and 50% of this [Ca2+]i increase was prevented by the removal of extracellular Ca2+ and the addition of La3+, respectively, but was unchanged by dihydropyridines, verapamil and diltiazem. In Ca2+ -free medium, thapsigargin - an inhibitor of the endoplasmic reticulum (ER) Caz+ -ATPase--caused a monophasic [Ca2+]i increase, after which the increasing effect of riluzole on [Ca2+]i was attenuated by 70%; in addition, pre-treatment with riluzole abolished thapsigargin-induced [Ca2+]i increases. U73122, an inhibitor of phospholipase C (PLC), abolished ATP (but not riluzole)-induced [Ca2+]i increases. At concentrations of 250 and 500 microM, riluzole killed 40 and 95% cells, respectively. The cytotoxic effect of riluzole (250 microM) was unaltered by pre-chelating cytosolic Ca2+ with BAPTA. Collectively, in MDCK cells, riluzole rapidly increased [Ca2+]i by stimulating extracellular Ca2+ influx via an La3+ -sensitive pathway and intracellular Ca2+ release from the ER via, as yet, unidentified mechanisms. Furthermore, riluzole caused Ca2+ -unrelated cytotoxicity in a concentration-dependent manner.  相似文献   

20.
The effect of the antidepressant nortriptyline, on bone cells is unknown. In human osteosarcoma MG63 cells, the effect of nortriptyline on intracellular Ca2+ concentration ([Ca2+]i) and proliferation was measured by using fura-2 and tetrazolium, respectively. Nortriptyline (> or = 10 microM) caused a [Ca2+]i rise in a concentration-dependent manner (EC50 = 200 microM). Nortriptyline-induced [Ca2+]i rise was prevented by 60% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca2+ -free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ -ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of nortriptyline on [Ca2+]i was abolished; also, pretreatment with nortriptyline abolished thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not affect nortriptyline-induced [Ca2+]i rise; however, activation of protein kinase C decrease nortriptyline-induced [Ca2+]i rise by 32%. Overnight incubation with 50 and 100 microM nortriptyline killed 78% and 97% of cells, respectively; while 10 microM nortriptyline had no effect. These data suggest that nortriptyline rapidly increases [Ca2+]i in human osteosarcoma cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic at high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号