首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticle-based delivery has become an important strategy to advance therapeutic oligonucleotides into clinical reality. Delivery by nanocarriers can enhance access of oligonucleotides to their pharmacological targets within cells; preferably, targeting ligands are incorporated into nanoparticles for targeting oligonucleotides to disease sites, often by conjugation to delivery carriers. In this study, a splice-switching oligonucleotide (SSO) was conjugated to a bivalent RGD peptide, and then, the RGD-SSO conjugate was formulated into polyplexes with a cationic polymer polyethylenimine. The resultant polyplexes of RGD-oligonucleotide conjugate demonstrated dramatic increase in the pharmacological response of splicing correction compared to free RGD-SSO conjugate or the polyplexes of unconjugated SSO, through integrin-mediated endocytosis and rapid endosomal release. This study has shown that coupling a targeting ligand to cargo oligonucleotide can maintain the integrin targeting ability after the peptide-oligonucleotide conjugate is complexed with cationic polymer. Preliminary study also revealed that integrin targeting redirects intracellular trafficking of the polyplexes to caveolar pathway and thereby generates greater effectiveness of the oligonucleotide. This study provides a new platform technology to construct multifunctional delivery systems of therapeutic oligonucleotides.  相似文献   

2.
RNA interference is a technique to induce sequence-specific gene silencing, but is hampered by inefficient delivery of its mediator, short interfering RNA, into target cells. This review describes recent advances in siRNA delivery using polymeric carrier systems. Structural variations that have been applied to these polymers for optimizing their intracellular trafficking are discussed, as well as strategies for stabilization and targeting to diseased tissues in vivo. Recent findings have highlighted safety issues that need to be taken into account in the design of nanoparticles for clinical application.  相似文献   

3.
For more than a decade, the understanding of RNA interference (RNAi) has been a growing field of interest. Micro-RNAs (miRNAs) are small regulatory RNAs that play an important role in disease development and progression and therefore represent a potential new class of therapeutic targets. However, delivery of RNAi-based oligonucleotides is one of the most challenging hurdles to RNAi-based drug development. Electropermeabilization (EP) is recognized as a successful non-viral method to transfer nucleic acids into living cells both in vitro and in vivo. EP is the direct application of electric pulses to cells or tissues that transiently permeabilize plasma membranes, allowing the efficient delivery of exogenous molecules. The present review focused on the mechanism of RNAi-based oligonucleotides electrotransfer, from cellular uptake to intracellular distribution. Biophysical theories on oligonucleotide electrotransfer will be also presented. The advantages and few drawbacks of EP-mediated delivery will also be discussed.  相似文献   

4.
Abstract

Except for the few exceptions where topical administration is feasible, progress towards broad clinical application of nucleic acid therapeutics requires development of effective systemic delivery strategies. The central nervous system represents a particularly difficult organ for systemic delivery due to the blood–brain barrier. We previously reported a nanoparticulate delivery system for targeted brain delivery of oligonucleotides upon systemic administration, i.e. liposome-encapsulated polyethylenimine/oligonucleotides polyplexes. In this study, cellular uptake and intracellular trafficking of the nanoparticles were further investigated using in situ brain perfusion technique followed by colocalization and fluorescence resonance energy transfer techniques. The brain endothelial uptake and possibly parenchymal accumulation were readily visualized upon administration via internal carotid artery perfusion. The nanoparticles were colocalized with early-endosome antigen, which confirms the brain endothelial uptake through transferrin receptor-mediated endocytosis. Fluorescence resonance energy transfer analysis also suggested the nanoparticles entered the brain endothelial cells while maintaining their integrity. Together, the enhanced brain uptake, as claimed previously, of the antibody-targeted nanoparticles was clearly confirmed with more convincing evidences. In addition, the experimental techniques described here should be applicable to the studies involving nanoparticle-mediated brain delivery of nucleic acid therapeutics.  相似文献   

5.
Drug delivery strategies using cell-penetrating peptides (CPPs) have been widely explored to improve the intracellular delivery of a large number of cargo molecules. Electrostatic complexation of plasmid DNA using CPPs has been less explored due to the relatively large complexes formed and the low levels of gene expression achieved when using these low-molecular-weight polycations as DNA condensing agents. Here, condensing nascent CPP polyplexes using CaCl(2) produced small and stable nanoparticles leading to gene expression levels higher than observed for control polyethylenimine gene vectors. This simple formulation approach showed negligible cytotoxicity in A549 lung epithelial cells and maintained particle size and transfection efficiency even in the presence of serum.  相似文献   

6.
Wu Y  Ho YP  Mao Y  Wang X  Yu B  Leong KW  Lee LJ 《Molecular pharmaceutics》2011,8(5):1662-1668
Lipoplexes and polyplexes represent the two major nanocarrier systems for nucleic acid delivery. Previous studies examining their uptake and intracellular unpacking rely on organic fluorophores fraught with low signal intensity and photobleaching. In this work quantum dot mediated F?rster resonance energy transfer (QD-FRET) was first used to study and compare the cellular uptake and the intracellular fate of oligodeoxynucelotide (ODN)-based lipoplexes and polyplexes. QD605-amine and Cy5-labeled ODN (Cy5-GTI2040) were chosen as the FRET pair. By adjusting the lipid/ODN ratio of lipoplexes and the nitrogen/phosphate (N/P) ratio of polyplexes, lipoplexes and polyplexes with comparable physical properties were produced. The biological activities of dual-labeled lipoplexes and polyplexes remained unaltered compared to their unlabeled counterparts as evidenced by their comparable antisense activities against protein R2 in KB cells. Flow cytometry and confocal microscopy revealed similar pattern of uptake for these two types of nanoparticles, although polyplexes had a higher dissociation rate than lipoplexes in KB cells. We demonstrate that QD-FRET is a sensitive tool to study the uptake and intracellular unpacking of lipoplexes and polyplexes, which may help optimize their formulations for various theranostics applications.  相似文献   

7.
Although being a heterogeneous disease, cancer has certain characteristic features which can be utilized for treatment with novel macromolecular therapeutics. The active cycling status of tumor cells, proliferating tumor endothelium and a leaky vasculature allow the targeted delivery of therapeutically active nucleic acids into tumor tissue. We and others have developed polycationic gene carriers forming so called polyplexes with nucleic acids. Cellular aspects like binding, internalization and intracellular fate were enlightened. Additionally, virus like domains were incorporated into the polyplex. Hydrophilic shielding domains protect the polyplex from unspecific interaction with blood components, targeting ligands allow cell specific binding and internalization into target cells, and membrane active peptides have a favorable influence on intracellular trafficking. Physical targeting of polyplexes, like locoregional hyperthermia and photochemical internalization (PCI) have been further used to enhance the efficiency of nucleic acid transfer. Therapeutic concepts were carried out in different tumor models in mice. Local application of synthetic, double stranded RNA led to eradication of intracranial glioblastoma. A gene directed enzyme prodrug approach utilizing site directed activation of cyclophosphamide with cytochrome P450 gave first, promising results.  相似文献   

8.
RNA interference (RNAi) can be used to inhibit the expression of specific genes in vitro and in vivo, thereby providing an extremely useful tool for investigating gene function. Progress in the understanding of RNAi-based mechanisms has opened up new perspectives in therapeutics for the treatment of several diseases including ocular disorders. The eye is currently considered a good target for RNAi therapy mainly because it is a confined compartment and, therefore, enables local delivery of small-interfering RNAs (siRNAs) by topical instillation or direct injection. However, delivery strategies that protect the siRNAs from degradation and are suitable for long-term treatment would be help to improve the efficacy of RNAi-based therapies for ocular pathologies. siRNAs targeting critical molecules involved in the pathogenesis of glaucoma, retinitis pigmentosa and neovascular eye diseases (age-related macular degeneration, diabetic retinopathy and corneal neovascularization) have been tested in experimental animal models, and clinical trials have been conducted with some of them. This review provides an update on the progress of RNAi in ocular therapeutics, discussing the advantages and drawbacks of RNAi-based therapeutics compared to previous treatments.  相似文献   

9.
Intracellularly targeted delivery system based on PLGA nanoparticles decorated with endoplasmic reticulum (ER)-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker, was developed and characterized. The cellular uptake by dendritic cells (murine DC2.4 cells), intracellular trafficking, and cross-presentation efficiency of this delivery system were studied in vitro. The prepared nanoparticles (an average diameter of ~350 nm) efficiently encapsulated antigenic peptide and fluorescent marker and gradually released them over several days. Yet, the nanoparticles' size was small enough to allow their efficient endocytosis by the antigen-presenting cells in vitro. Surface conjugation of the targeting or control peptides enhanced the endocytosis of the nanoparticles, affected their intracellular trafficking, and induced prolonged low-magnitude cross-presentation of the antigenic peptide. We demonstrated in vitro that the intracellular fate of nanoparticulate drug delivery systems can be altered by their surface decoration with peptidic targeting residues. More detailed investigation is required to determine the mechanisms and therapeutic potential of intracellular targeting of nanodelivery systems in vivo for the goal of an anticancer vaccine.  相似文献   

10.
The major limitation in utilizing information rich macromolecules for basic science and therapeutic applications is the inability of these large molecules to readily diffuse across the cellular membrane. While this restriction represents an efficient defense system against cellular penetration of unwanted foreign molecules and thus a crucial component of cell survival, overcoming this cellular characteristic for the intracellular delivery of macromolecules has been the focus of a large number of research groups worldwide. Recently, with the discovery of RNA interference, many of these groups have redirected their attention and have applied previously characterized cell delivery methodologies to synthetic short interfering RNA duplexes (siRNA). Protein transduction domain and cell penetrating peptides have been shown to enhance the delivery of multiple types of macromolecular cargo including peptides, proteins and antisense oligonucleotides and are now being utilized to enhance the cellular uptake of siRNA molecules. The dense cationic charge of these peptides that is critical for interaction with cell membrane components prior to internalization has also been shown to readily package siRNA molecules into stable nanoparticles that are capable of traversing the cell membrane. This review discusses the recent advances in noncovalent packaging of siRNA molecules with cationic peptides and the potential for the resulting complexes to successfully induce RNA interference within both in vitro and in vivo settings.  相似文献   

11.
The cationic polymer poly(2-(dimethylamino)ethyl methacrylate) (p(DMAEMA)) is able to efficiently bind and condense DNA and to mediate transfection of a variety of cell types. In this study, fluorescence activated cell sorting (FACS), confocal laser fluorescence microscopy (CSLM) and electron microscopy (EM) techniques were used to investigate in vitro the cellular interaction of p(DMAEMA)-based polyplexes with human ovarian carcinoma cells (OVCAR-3). Cellular association and subsequent internalization only occurred when the polyplexes exhibited a positive zeta potential. Small-sized polyplexes have an advantage over large-sized complexes regarding cellular entry. The effect of the presence of tertiary amine groups versus the presence of quatenary amine groups was evaluated by comparing p(DMAEMA) with its quaternary ammonium analogue poly(2-(trimethylamino)ethyl methacrylate) (p(TMAEMA)). The combined cellular interaction and transfection results suggest that the latter polymer does not have an intrinsic endosomal escape property, in contrast to the 'proton sponge' effect proposed for p(DMAEMA). PEGylation of p(DMAEMA) effectively shielded the surface charge and yielded a notably lower degree of cellular interaction. Data on the effects of the presence of endocytosis inhibitors and an endosome-disruptive peptide in the culture medium on the cellular interaction and transfection activity of p(DMAEMA)-based polyplexes support endocytosis as being the principal pathway for intracellular delivery of plasmid. Both the CLSM and EM studies did not reveal the presence of polyplexes or plasmid outside the endocytic vesicles or within the nucleus, suggesting that intracellular trafficking from the endosomes to the nucleus is a very inefficient process.  相似文献   

12.
The cellular machinery involved in the internalization of nonviral gene carriers and their subsequent trafficking to the nucleus directly impacts their therapeutic efficiency. Hence, identifying key endocytic pathways and organelles that contribute to the successful transfer of polyplexes to the nucleus generates new opportunities for improving carrier design. Previously, we showed that histone H3 tail peptides encoding a sequence known to participate in chromatin activation exhibit synergistic gene delivery activity with poly(ethylenimine) (PEI). Polyplexes containing H3 and PEI exhibited a reduced dependence on endocytic pathways that trafficked to lysosomes, and had enhanced sensitivity to an inhibitor associated with retrograde trafficking through the Golgi apparatus. Thus, we sought to determine whether caveolar uptake and transport through the Golgi and/or endoplasmic reticulum (ER) preceded nuclear delivery. By the use of a panel of chemical endocytic inhibitors, we determined that H3 polyplexes utilized caveolar pathways to a greater degree than PEI polyplexes. Caveolae-mediated endocytosis was found to be a productive route for gene expression by the H3/PEI-pDNA polyplexes, consistent with previous studies of polymer-mediated gene delivery. Additionally, the polyplexes substantially colocalized within the ER after only 5 min of incubation, and utilized retrograde Golgi-to-ER pathways at levels similar to pathogens known to traffic by these routes during infection. The results of this study have expanded our understanding of how caveolar polyplexes are trafficked to cell nuclei, and provide new evidence for the role of Golgi-ER pathways in transfection. These findings suggest new design criteria and opportunities to stragetically target nonviral gene delivery vehicles.  相似文献   

13.
14.
Lee D  Kim D  Mok H  Jeong JH  Choi D  Kim SH 《Pharmaceutical research》2012,29(8):2213-2224

Purpose

Bioreducible crosslinked polyplexes were prepared via disulfide bond formation after siRNA condensation with polyethylenimine-modified by deoxycholic acid (PEI-DA) to stabilize polyplex structure in an extracellular environment and to promote transfection efficiency in human smooth muscle cells (hSMCs).

Methods

The PEI-DA/siRNA polyplexes were further modified by crosslinking the primary amines of PEI with thiol-cleavable crosslinkers. The effect of disulfide crosslinked PEI-DA/siRNA (Cr PEI-DA/siRNA) polyplexes on target gene silencing was investigated by transfecting hSMCs with matrix metalloproteinase-2 (MMP-2) siRNA under serum conditions. The MMP-2 levels in the conditioned medium were examined using gelatin zymography.

Results

The Cr PEI-DA/siRNA polyplexes showed increased stability against heparin exchange reactions, while their disulfide linkages were successfully cleaved under reducing conditions. The polyplex crosslinking reaction led to a slight decrease in MMP-2 gene silencing activity in hSMCs due to the insufficient redox potential. However, the gene silencing efficiency of the Cr PEI-DA/siRNA polypexes was gradually improved in response to increasing intracellular reduction potential. The increased serum stability of the Cr PEI-DA/siRNA polyplexes resulted in significant enhancement of the intracellular delivery efficiency especially under serum conditions.

Conclusion

The Cr PEI-DA/siRNA polyplex formulation may be a promising siRNA delivery system for the treatment of incurable genetic disorders.  相似文献   

15.
Biodegradable nanoparticles for cytosolic delivery of therapeutics   总被引:7,自引:2,他引:5  
Many therapeutics require efficient cytosolic delivery either because the receptors for those drugs are located in the cytosol or their site of action is an intracellular organelle that requires transport through the cytosolic compartment. To achieve efficient cytosolic delivery of therapeutics, different nanomaterials have been developed that consider the diverse physicochemical nature of therapeutics (macromolecule to small molecule; water soluble to water insoluble) and various membrane associated and intracellular barriers that these systems need to overcome to efficiently deliver and retain therapeutics in the cytoplasmic compartment. Our interest is in investigating PLGA and PLA-based nanoparticles for intracellular delivery of drugs and genes. The present review discusses the various aspects of our studies and emphasizes the need for understanding of the molecular mechanisms of intracellular trafficking of nanoparticles in order to develop an efficient cytosolic delivery system.  相似文献   

16.
Recent efforts combining nanotechnology and magnetic properties resulted in the development and commercialization of magnetic nanoparticles that can be used as carriers for nucleic acids for in vitro transfection and for gene therapy approaches including DNA-based vaccination strategies. The efficiency of intracellular delivery is still a limiting factor for basic cell biological research and also for emerging technologies such as temporary gene silencing based on inhibitory RNA/siRNA. Nanotechnology has resulted in a variety of different nanostructures and especially nanoparticles as carriers in a wide range of new drug delivery systems for conventional drugs, recombinant proteins, vaccines and more recently nucleic acids. It is possible to combine superparamagnetic nanoparticles with magnetic forces to increase, direct and optimize intracellular delivery of biomolecules. This article discusses the main approaches in the field of magnet assisted transfection (MATra) focusing on the transfection or intracellular delivery of nucleic acids, although also suitable to improve the intracellular delivery of other biomolecules.  相似文献   

17.
The successful delivery of therapeutic genes to the designated target cells and their availability at the intracellular site of action are crucial requirements for successful gene therapy. Nonviral gene delivery is currently a subject of increasing attention because of its relative safety and simplicity of use; however, its use is still far from being ideal because of its comparatively low efficiency. Most of the currently available nonviral gene vectors rely on two main components, cationic lipids and cationic polymers, and a variety of functional devices can be added to further optimize the systems. The design of these functional devices depends mainly on our understanding of the mechanisms involved in the cellular uptake and intracellular disposition of the therapeutic genes as well as their carriers. Macromolecules are internalized into cells by a variety of mechanisms, and their intracellular fate is usually linked to the entry mechanism. Therefore, the successful design of a nonviral gene delivery system requires a deep understanding of gene/carrier interactions as well as the mechanisms involved in the interaction of the systems with the target cells. In this article, we review the different uptake pathways that are involved in nonviral gene delivery from a gene delivery point of view. In addition, available knowledge concerning cellular entry and the intracellular trafficking of cationic lipid-DNA complexes (lipoplexes) and cationic polymer-DNA complexes (polyplexes) is summarized.  相似文献   

18.
Biodegradable nanoparticles for drug and gene delivery to cells and tissue   总被引:51,自引:0,他引:51  
Biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted/localized delivery of different agents including plasmid DNA, proteins and peptides and low molecular weight compounds. Research about the mechanism of intracellular uptake of nanoparticles, their trafficking and sorting into different intracellular compartments, and the mechanism of enhanced therapeutic efficacy of nanoparticle-encapsulated agent at cellular level is more recent and is the primary focus of the review. Recent studies in our laboratory demonstrated rapid escape of PLGA nanoparticles from the endo-lysosomal compartment into cytosol following their uptake. Based on the above mechanism, various potential applications of nanoparticles for delivery of therapeutic agents to the cells and tissue are discussed.  相似文献   

19.
Information about the intracellular trafficking of exogenous DNA delivered by nonviral gene delivery systems is of major importance for optimization of such gene carriers. We used fluorescence in situ hybridization (FISH) as a tool to visualize polyplex-delivered pDNA inside cells. This avoids the need to directly label DNA inside the polyplexes, which may influence their cellular behavior and fate. Using FISH the introduced plasmid DNA could be detected in the cytosol and nucleus of different cell lines. The FISH probe itself did not interact with cells nor different polymers used for condensing the DNA. We further demonstrate differences in accessibility of polyplex-delivered DNA when different polymers were used for DNA complexation. Therefore, FISH is a valuable tool to detect location and accessibility of exogenous plasmid DNA delivered in the cell by cationic polymers.  相似文献   

20.
Bioreducible polyplexes are promising vectors for delivery of nucleic acids due to low toxicity and favorable transfection activity. The often improved transfection is usually explained by enhanced intracellular reductive disassembly of the polyplexes. This study evaluated the effect of enhanced reductive disassembly on transfection activity of plasmid DNA and antisense oligonucleotide (AON) polyplexes based on a series of bioreducible poly(amido amine)s (PAA). We found that the presence of disulfide bonds in PAA had no effect on nucleic acid binding, hydrodynamic size and zeta potential of polyplexes. Increasing the disulfide content in PAA increased susceptibility to reduction-triggered DNA and AON release from the polyplexes. Increasing the disulfide content in PAA increased DNA transfection but had no effect on AON transfection. Plasma membrane protein thiols played a key role in the observed enhancement of DNA transfection. The presence of disulfide bonds in PAA had no significant effect on the rate of intracellular DNA clearance, suggesting that enhanced intracellular disassembly of the bioreducible polyplexes is not a major contributing factor to the improved transfection activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号