首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gamma scintigraphic imaging was employed in 10 healthy volunteers to compare the total and regional lung deposition of aerosols generated by two delivery platforms that permitted microprocessor-controlled actuation at an optimal point during inhalation. An aqueous solution containing 99mTc-DTPA was used to assess the deposition of aerosols delivered by inhalation from two successive unit-dosage forms (44 microl volume) using a prototype of a novel liquid aerosol system (AERx Pulmonary Delivery System). This was compared with aerosol deposition after inhalation of two 50 microl puffs of a 99mTc-HMPAO-labeled solution formulation from a pressurized metered dose inhaler (MDI). The in vitro size characteristics of the radiolabeled aerosols were determined by cascade impaction. For the AERx system, the predicted lung delivery efficiency based on the product of emitted dose (60.8%, coefficient of variation (CV)=12%) and fine particle fraction (% by mass of aerosol particles <5.7 microm in diameter) was 53.3% (CV=13%). For the solution MDI, the emitted dose was 62.9% (CV=13%) and the predicted lung dose was 44. 9% (CV=15%). The AERx system demonstrated efficient and reproducible dosing characteristics in vivo. Of the dose loaded into the device, the mean percent reaching the lungs was 53.3% (CV=10%), with only 6. 9% located in the oropharynx/stomach. In contrast, the lung deposition from the solution MDI was significantly less (21.7%) and more variable (CV=31%), with 42.0% of the radiolabel detected in the oropharynx/stomach. Analysis of the regional deposition of the radioaerosol indicated a homogeneous pattern of deposition after delivery from the AERx system. A predominantly central pattern of distribution occurred after MDI delivery, where the pattern of deposition was biased towards a central zone depicting the conducting airways. The AERx system, in contrast to MDIs, seems highly suited to the delivery of systemically active agents via pulmonary administration.  相似文献   

2.
PURPOSE: To compare the pulmonary pharmacokinetics and relative bioavailability of salmon calcitonin delivered as aqueous droplets, pH 6.6 and pH 4.8 with that of a spray dried powder in healthy volunteers. METHODS: Spray dried powders (1.6 microm [GSD 2.1]) containing 5% by wt. sCal, 6.25% human serum albumin, 73.55% mannitol and 15% citric acid/sodium citrate were prepared using a Buchi model 190 spray drier. Aqueous solutions were prepared by dissolving the spray dried powder at a sCal concentration of 1.25 mg/ml, pH was adjusted using 21 mM sodium hydroxide. Aerosols were delivered as part of a 4 way cross-over study to 16 healthy volunteers. The Nektar pulmonary delivery device was used to deliver the dry powder aerosol. A Salter nebulizer controlled by a Rosenthal dosimeter was used to deliver the aqueous aerosols. Miacalcin injection was used as the subcutaneous control. Dose delivered to the lung was estimated by gamma scintigraphy. Plasma concentrations of sCal were measured using a radioimmunoassay. RESULTS: Aerosol size distributions were matched, 3.3 microm MMAD and approximately 2.2 GSD. Inhaled flow rates were similar, although not equal, 5.8 and approximately 9.8 l/min respectively for dry powder and liquid inhalations. Lung doses of sCal ranged from 53 to 88 microgm, peripheral lung doses from 25 to 51 microgm. Pharmacokinetic profiles and lung bioavailability relative to subcutaneous injection for all formulations were similar (not statistically significantly different p > 0.05), relative lung bioavailability ranged from 11% to 18%, estimates of relative bioavailability based on peripheral lung dose ranged from 20% to 33%. CONCLUSION: The study showed no difference in pharmacokinetic profiles between the various aerosol dosage forms. pH of the aqueous solutions did not affect kinetics or relative bioavailability.  相似文献   

3.
Purpose To develop an aerosol system for efficient local lung delivery of a tuberculostatic drug. Methods The antibiotic, capreomycin sulfate, was spray dried to form a dry powder aerosol. The chemical content and physical properties of resulting particles were assessed under various storage conditions. Plasma concentrations of capreomycin after insufflation into guinea pigs were evaluated at three doses, and compared to IV and IM administration of a capreomycin solution. Results Dry powder aerosols containing capreomycin were formulated to enable efficient delivery of large drug masses to the lungs of guinea pigs. Aerosols loaded with 73% CS were shown to possess good aerosolization properties and physical–chemical stability for up to 3 months at room temperature. Upon insufflation into guinea pigs, the amount of CS reaching the bloodstream was significantly lower compared to IV or IM administration, but resulted in a significantly longer drug half-life. Conclusions The results indicate that large doses of capreomycin in dry powder form can be efficiently delivered to the lungs of guinea pigs, which may result in high local drug exposure but significantly reduced systemic exposure as suggested by plasma concentrations in the present studies. These systems have considerable potential to provide more effective therapy for MDR-TB  相似文献   

4.
The purpose of this study was to evaluate the in vitro and in vivo dose delivery characteristics of the AIR pulmonary delivery system over a range of flow rates. A 5-mg placebo powder of engineered particles with low densities (<0.4 g/cc) and large geometric diameters (>5 microm) was delivered via a simple, capsule based, passive dry powder inhaler. The emitted dose, geometric and aerodynamic particle size distributions (aPSDs) were obtained over a range of flow rates (15-60 LPM). The in vitro results demonstrated improved powder dispersion with increasing flow rate through the inhaler. The in vivo dose delivery characteristics were obtained by gamma scintigraphy. Twelve healthy subjects performed the following three inhalation maneuvers: (i) a targeted peak inspiratory flow rate (PIFR) of 20 +/- 10 LPM, (ii) a deep comfortable inhalation, and (iii) a deep forced inhalation. PIFR and inhaled volume were obtained during the inhalation of the dose using a spirometer. In vivo dose delivery was characterized by high and reproducible emitted doses (mean = 87%; inter and intra-subject CV = 5%) and high lung deposition (mean = 51% of the total dose), with low inter and intra-subject CVs (18% and 13%, respectively) across a range of PIFRs (12-86 LPM). Lung deposition of the total dose was shown not to be dependent on PIFR by analysis of variance across the range of inspiratory flow rates (p = 0.29). This was due to the competing effects of smaller aPSDs, increased extrathoracic deposition and higher emitted doses with increasing PIFR. Fully characterizing the effect of inspiratory flow rate requires analysis of the therapeutic response, as well as in vitro dose delivery and lung deposition.  相似文献   

5.
The aim of the study was to investigate the interdependence of carrier particle size, surface treatment of the carrier, and inclusion of fines on the drug delivery from dry power inhaler formulations. Two size fractions (< 63 and 63-90 microm) of alpha-lactose monohydrate were subjected to treatment with 95% (v/v) ethanol to introduce small asperities or cavities onto the otherwise smooth surface without substantially changing the particle shape. After blending with albuterol sulfate [ALB; volume median diameter (VMD), 1.9 microm; geometric standard deviation (GSD), 1.5], the solvent-treated lactose produced a fine particle fraction (FPF; < 6.18 microm) and dispersibility of the drug that was significantly (ANOVA p < 0.01) lower than that which resulted from formulations containing untreated lactose of a similar size fraction, after aerosolization at 60 L min(-1) via a Rotahaler. The two size fractions of the treated lactose resulted in similar deposition profiles of ALB. The effects of such surface asperities or cavities of lactose were offset by introducing a small amount (5% w/w) of smaller-sized lactose (5-10 microm) to the powder formulations. The fine lactose increased the FPF and dispersibility of ALB to such a level that all lactose batches, regardless of particle size or whether solvent treated, produced a similar fraction of aerosolized ALB. The inclusion of recrystallized needle lactose (5-15 microm) was superior to micronized lactose in improving the aerosolization of ALB. The findings of this study indicate that the presence and characteristics of the finer fraction of lactose carrier particles dominate over the particle size and surface smoothness of the carrier particles in determining dispersion and deaggregation of drugs from dry powder formulations for inhalation.  相似文献   

6.
The purpose of this study was to evaluate the in vitro and in vivo dose delivery characteristics of two large porous particle placebo formulations with different mass median aerodynamic diameters (MMAD approximately equal to 3 and 5 microm). In vitro dose delivery characteristics were measured using the multistage liquid impinger (MSLI). In vitro lung deposition was predicted by calculating the extrathoracic deposition using the ICRP model, with the remaining fraction assumed to deposit in the lungs. Healthy subjects were trained to inhale through the AIR delivery system at a target peak inspiratory flow rate (PIFR) of 60 l/min, The in vivo dose delivery of large porous particles were obtained by gamma-scintigraphy and was characterized by high ( approximately 90%), reproducible emitted doses for both the small and large MMAD powders. The mean in vivo lung deposition relative to the total metered dose were 59.0 and 37.3% for 3 and 5 microm MMAD powders, respectively. The AIR delivery system produced high in vivo lung deposition and low intersubject CVs (approximately 14%) across the range of PIFRs obtained in the study (50-80 l/min), This is relative to a variety of dry powder inhalers (DPI) that have been published in the literature, with in vivo lung deposition ranging from 13 to 35% with intersubject CVs ranging from 17 to 50%. The ICRP model provided a good estimate of the mean in vivo lung deposition for both powders. Intersubject variability was not captured by the ICRP model due to intersubject differences in the morphology and physiology of the oropharyngeal region. The ICRP model was used to predict the regional lung deposition, although these predictions were only considered speculative in the absence of experimental validation.  相似文献   

7.
There is a lack of in vivo studies focusing on the effect of particle size of dry powder aerosols on lung deposition and distribution. We investigated the dose and distribution of radiolabelled powder aerosols of mannitol in the lungs using single photon emission tomography (SPECT). Three different sized radiolabelled powders were produced by co-spray drying mannitol with 99mTc-DTPA. The primary particle size distribution of the powders measured by laser diffraction showed a volume median diameter of 2, 3 and 4 microm with span 2.3, 2.0 and 2.1, respectively, which corresponded to an aerodynamic diameter of 2.7, 3.6, 5.4 microm and geometric standard deviation of 2.6, 2.4 and 2.7 when the powders were dispersed using an Aeroliser dry powder inhaler. Three capsules each containing approximately 20mg (i.e. a total of 60 mg containing 60-90 MBq) of each of the radiolabelled powders were inhaled by eight healthy volunteers using the Aeroliser inhaler. Images of aerosol deposition in the lungs were acquired using fast, multi-bed position SPECT. The lung dose markedly decreased with increasing aerosol particle size (mean+/-S.E.M.: 44.8+/-2.4, 38.9+/-0.9, 20.6+/-1.6% for 2.7, 3.6, 5.4 microm, respectively, p<0.0001). The sites of deposition of the 2.7 and 3.6 microm aerosols were similar (penetration index, PI=0.63+/-0.05, 0.60+/-0.03, respectively, p>0.3), but different to the 5.4 microm aerosols (PI=0.52+/-0.04, p<0.02). The lung dose followed the in vitro powder dispersion performance, with the % lung dose being related to fine particle fraction by a slope of 0.8 for a regression with intercepts forced through the origin. The SPECT results provide direct evidence that the lung deposition of dry powder aerosols depends on the particle size. The lung dose of the 2.7 and 3.6 microm aerosols using the Aeroliser was double compared to that of the 5.4 microm aerosols and the deposition of the smaller particles was more peripheral.  相似文献   

8.
Corrugated surface microparticles comprising levofloxacin (LEV), chitosan and organic acid were prepared using the 3-combo spray drying method. The amount and the boiling point of the organic acid affected the degree of roughness. In this study, we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler. HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution. The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles. The FPF value of HMP175 L20 was 41.3% ± 3.9% compared with 25.6% ± 7.7% of HMF175 L20. Corrugated microparticles also showed better aerosolization, decreased x-axial velocity, and variable angle. Rapid dissolution of drug formulations was observed in vivo. Low doses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally. Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.  相似文献   

9.
Respiratory spacer devices are used mainly with pressurized metered dose inhalers, especially those containing corticosteroids, to assist with patient coordination and reduce oropharyngeal side effects. This investigation examines the influence of different spacer devices on the delivered fine particle mass (aerodynamic diameter of <3.3 microm and <4.7 microm) of the corticosteroid beclomethasone dipropionate, which approximates the respirable dose. The Anderson Mark II Cascade Impactor was used to characterise the deposition of single doses of beclomethasone dipropionate from several metered-dose inhalers. Following actuation of one single dose the amount of beclomethasone dipropionate deposited on each stage of the impactor was quantified using reverse phase high-performance liquid chromatography and ultraviolet detection. The fine particle mass smaller than 4.7 microm for Respocort delivered by the Sanner and Fisonair spacer devices was 77.7% and 41.3% higher (p < 0.04), respectively, than the metered-dose inhaler alone, while the Breathatech spacer delivered 21.4% lower (p < 0.01). The fine particle mass of Becotide delivered by the Sanner, Fisonair, Nebuhaler, and Volumatic spacer devices were 81%, 42.4%, 46.9%, and 32.8% higher (p < 0.008), respectively, than be metered dose inhaler alone. The fine particle mass for Becloforte delivered by the Sanner, Fisonair, and Volumatic spacer devices was 82.8%, 36.9%, and 48.0% higher (p < 0.009) than that delivered by metered dose inhaler alone. This study suggests that there are significant differences in the fine particle mass of beclomethasone dipropionate delivered by respiratory spacer devices when used in conjunction with commercially available metered dose inhalers of this drug.  相似文献   

10.
Drug particle properties are critical for the therapeutic efficiency of a drug delivered to the lung. Jet-milling, a commonly used technique for micronization of drugs, has several disadvantages such as a non-homogeneous particle size distribution, and unnatural, thermodynamically activated particle surfaces causing high agglomeration. For pulmonary use in a dry powder inhaler, in addition to a small particle size, good de-agglomeration behaviour is required. In this study disodium cromoglycate is prepared in situ in a respirable particle size by a controlled crystallization technique. First the drug is dissolved in water (4%) and precipitated by a solvent change method in the presence of a cellulose ether (hydroxypropylmethylcellulose) as a stabilizing hydrocolloid. By rapidly pouring isopropyl alcohol into the drug solution in a 1:8 (v/v) ratio, the previously molecularly dispersed drug is associated to small particles and stabilized against crystal growth in the presence of the hydrophilic polymer. This dispersion was spray-dried. The mean particle size of the drug was around 3.5 microm and consequently was in the respirable range. The in-situ-micronized drug powder was tested for its aerodynamic behaviour and compared with jet-milled drug powder and with commercial products using the Spinhaler, the Cyclohaler, and the FlowCaps-Inhaler as model devices. The fine particle fraction (FPF) (<5 microm) was increased from 7% for the jet-milled drug to approximately 75% for the in-situ-micronized drug when the pure drug powder was dispersed without any device. Delivery of the engineered particles via the Spinhaler, the FlowCaps-Inhaler and the Cyclohaler increased the FPF from 11 to 46%, 19 to 51%, and 8 to 40%, respectively.  相似文献   

11.
Modern local therapy for lung diseases is now largely based on pressurized metered-dose inhalers (MDIs). The research of alternatives to MDIs has recently accelerated, primarily due to environmental concerns related to the use of chlorofluorocarbon (CFC) propellants. The most recent and attractive solution to this problem is represented by the development of dry powder inhalers (DPIs), particularly designed to avoid the use of propellants. DPIs have been developed for specific products, therefore they possess a reduced versatility in term of application of the same device to different drugs. However, they did introduce new concepts in pulmonary drug delivery, solving some disadvantages of the pressurized devices. They are in their infancy and the efforts of researchers are now impressive. The future will certainly see many other devices containing additional innovative features for the effective respiratory delivery of drug. The goals still remain the delivery of precise and uniform drug doses and increasing the respirable fraction in relation to the dose emitted from the device.  相似文献   

12.
In order to characterize the efficacy of dry powder inhalers, in vitro measurements are much easier to perform than human deposition studies, especially in early stages of drug development. In this study, lung deposition and delivered dose of radiolabeled Foradil P inhaled with the Aerolizer were measured in 10 healthy subjects. These data were then compared with data derived from an in vitro assessment of the device output and particle size distribution combined with mathematical modeling of lung deposition (modified ICRP-model). Delivered dose and lung deposition increased slightly but statistically significant with the inhalation peak flow in both the in vivo data and the in vitro data. The delivered dose ranged from 60% to 80% and lung deposition, relative to the fill weight, from 13% to 28%. Differences between the in vitro and in vivo data were slight and statistically not significant. This study indicates that in vitro assessment of device performance, in combination with lung deposition delivery data, are in good agreement with deposition data measured in healthy subjects. Since there was only a slight flow rate dependency of lung deposition without clinical relevance, it may additionally be concluded that the Aerolizer is a robust, easy to handle inhalation device with stable and reproducible drug delivery characteristics.  相似文献   

13.
Mannitol as a dry powder aerosol is used for bronchoprovocation testing and to enhance mucus clearance in people with excessive airway secretions. The dose and distribution of the deposited aerosol in the lung was investigated using fast single photon emission tomography (SPECT) imaging. Mannitol powder (3 microm particle size) was produced by spray drying and radiolabeled with (99m)Tc-DTPA. Approximately 60 mg of radiolabeled mannitol (containing 52-68 MBq of (99m)Tc-DTPA) was administered to 10 healthy subjects using the Inhalator dry powder inhaler (DPI), and SPECT images (1 min each) were collected. Thirteen percent to 31% of the dose of mannitol loaded in the inhaler deposited in the lungs and the deposited dose correlated positively with the peak inhalation air flow. The regional aerosol lung distribution, as expressed by the penetration index (i.e., ratio of peripheral to central deposition in the lung) varied from 0.31 to 0.88, which however showed no dependency on any flow parameters. The variation in response to the same dose of mannitol within the asthmatic population may in part be explained by these findings.  相似文献   

14.
The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.  相似文献   

15.
A novel active and multi-dose dry powder inhaler (DPI) was developed and evaluated to deliver a small quantity (100-500 μg) of pure drug without any excipient. This dry powder inhaler utilized two compressed air flows to dispense and deliver drug powder: the primary flow aerosolizes the drug powder from its pocket and the secondary flow further disperses the aerosol. In vitro tests by Anderson Cascade Impactor (ACI) indicated that the fine particle fraction (FPF) (<4.7 μm) of drug delivery could reach over a range of 50-70% (w/w). Emitted dose tests showed that delivery efficiency was above 85% and its relative standard deviation (RSD) was under 10%. Confocal microscopy was used to confirm the deposition of fluorescently labeled spray-dried powder in rabbit lungs. Also, a chromatographic method was used to quantify drug deposition. The results of animal tests showed that 57% of aerosol deposited in the rabbit lung and 24% deposited in its trachea. All the results implied that this novel active dry powder inhaler could efficiently deliver a small quantity of fine drug particles into the lung with quite high fine particle fraction.  相似文献   

16.
The aim of this work was to prepare and characterize inhalation dry powders of human parathyroid hormone (PTH), as well as to assess their efficacy for systemic delivery of the peptide and safety in rats. The powders were prepared by spray-drying using PTH, sugars, dipalmitoylphosphatidylcholine, and/or albumin. They presented an average primary particle diameter of 4.5 microm and tap density of 0.06 g/cm(3), a mass median aerodynamic diameter between 3.9 and 5.9 microm, and reached up to 98% emitted dose and up to 61% fine particle fraction in the multi-stage liquid impinger using a Spinhaler inhaler device. Varying the airflow rate from 30 to 100 L/min had limited influence on the aerodynamic behavior of the aerosols. The absolute PTH bioavailability was 21% after intratracheal administration of the powder formed of PTH/albumin/lactose/dipalmitoylphosphatidylcholine and 18% after subcutaneous injection in rats. Equilibrium dialysis revealed a 78% binding of PTH to albumin and the withdrawal of albumin from the powder increased absolute bioavailability after inhalation from 21 to 34%. No acute inflammation appeared in the lung up to 48 h after a single inhalation. The increased bioavailability of the optimized powder aerosol of PTH makes it a promising alternative to subcutaneous injection.  相似文献   

17.
Both the dose delivered from the device and the particle size of the medication are important parameters for inhalation products because they influence the amount of drug that is delivered to the patient's lung. The inspiratory flow rate may vary from dose to dose in a given patient and between patients. The Marple-Miller Cascade Impactor, a new multistage inertial impactor that operates at two flow rates (30 and 60 liters/min) with comparable particle size cut-offs, provides a means to study the effect of inhalation flow rate on the particle size distributions of inhalation products. The medication delivery, mass median aerodynamic diameter (MMAD), and fine particle mass were determined, in a randomized fashion, for albuterol, beclomethasone, budesonide, and terbutaline in both metered dose inhaler (MDI) and dry powder inhaler (DPI) products as a function of flow rate. In all cases, independent of drug or device used, the MDI products had a more reproducible respirable dose than the breath-actuated DPI products tested as a function of inhalation flow rate.  相似文献   

18.
FK224 is a cyclopeptide drug with poor oral absorption due to proteolysis in the gastrointestinal tract. The objectives of this study were to investigate the absorption of FK224 from the lung in healthy volunteers, and compare the pharmacokinetic profiles of FK224 after inhalation from a pressurized metered dose inhaler (pMDI) and dry powder inhaler (DPI). The pMDI (Suspension type, 1 mg as FK224/puff) and DPI (4 mg and 10 mg as FK224/capsule, using Spinhaler as the device) were developed by formulating the same micronized particles of FK224 which were premixed with beta-cyclodextrin (beta-CyD) to improve the solubility of FK224. In the case of pMDI, 1, 4 or 8 mg was inhaled by the corresponding number of puffs with the pMDI. In addition, the in vitro drug delivery characteristics of the inhalers were evaluated using a multistage liquid impinger. In both inhalers, it was observed that FK224 could be absorbed into the systemic circulation from the lungs of the healthy volunteers, and the AUC and C(max) were proportionally increased depending on the emitted dose after inhalation. However, the pharmacokinetic (PK) parameters for DPI were significantly higher than that of pMDI, in spite of usage of the same fine particles for the formulations in both inhalers. Based on the distribution from the in vitro examination, the fine particle dose, which is defined as the dose region delivered as particles <3.8 microm, was calculated from the emitted dose inhaled by the healthy volunteers. It was found that the PK parameters for both inhalers were proportionally increased depending on the predicted fine particle dose regardless of the type of inhaler. This suggests that the absorption from the lung is influenced by the fine particle dose. We concluded that DPI is a suitable inhaler for FK224, and the alveolus, which is generally known as the site of action of the fine particles, is a possible absorptive site for FK224.  相似文献   

19.
In addition to aerosol particle size and mode of inhalation, the time-point of dose delivery during inhalation may be an important factor governing the intrapulmonary distribution of aerosolized drug. To generate different intrapulmonary deposition patterns of a drug model aerosol, a device with the capability of delivering small amounts of technetium-99m-labeled lactose dry powder at pre-set time-points during inhalation was developed. A single dose of the radioaerosol was delivered after inhalation of 20% (A) or 70% (B) of the vital capacity inhaled through the device. Twelve healthy subjects were studied in a randomized crossover fashion. Planar gamma scintigraphy was carried out, and the penetration index, PI, defined as the ratio of peripheral to central lung zone deposition of radioactivity, was estimated. A significant increase in PI from 3.0 (A) to 3.7 (B) was observed with the change from early to late delivery of the dose (p < 0.01). No difference in the total amount of radioactivity within the lungs could be detected. In conclusion, independent of total pulmonary deposition, deeper dry powder aerosol penetration into the lungs was found for the dose delivered at near end instead of at the beginning of inhalation. By computational modeling of the aerosol transport and deposition, that finding was mechanistically explained by differences in airway caliber as a consequence of the level of lung inflation at the time-point of dose delivery.  相似文献   

20.
PURPOSE: To examine the effect of formulation type on the aerosolization of respirable particles in narrow size distributions. METHODS: Aerosol dispersion of two formulation types (drug alone and 2% w/w drug-lactose blends) containing micronized or spray-dried fluticasone propionate (FP) particles (d50% = 1.3 to 9.6 microm, GSD = 1.8 to 2.2) were examined using cascade impaction at 60 l/min with low and high resistance inhaler devices: Rotahaler and Inhalator, respectively. RESULTS: The aerosol dispersion of FP particles was significantly affected by the particle size, particle type, inhaler device, and formulation type. Interactions were observed between all factors. Generally, greater powder entrainment was obtained with smaller d50%. Higher emitted doses were obtained from drug-alone formulations of spray-dried FP particles and lactose blends of micronized FP particles. Greater aerosol dispersion of spray-dried FP particles was obtained using lactose-blend formulations with d50% around 4 microm. Greater aerosol dispersion of micronized FP particles was obtained using formulations of drug alone. Larger d50% produced larger mass median aerodynamic diameters. CONCLUSIONS: Small changes in the particle size within the 1-10-microm range exerted a major influence on aerosol dispersion of jet-milled and spray-dried FP particles using drug-alone and lactose-blend formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号