首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basal ganglia lesions, characterized on MR by increased signal intensity on T1-weighted images, were observed in seven patients with documented neurofibromatosis. These lesions most often involved the globus pallidus and internal capsules in a bilateral and symmetric fashion, and extended across the anterior commissure resulting in a "dumbbell" configuration. Smaller and less prominent foci of increased signal also were present on corresponding T2-weighted images. These lesions did not exhibit mass effect, edema, or enhancement with gadolinium-DTPA. They were not visible on CT (performed in two patients) and demonstrated no progression during a 2-year interval in three patients. Their signal characteristics and morphology suggest that they represent heterotopias containing Schwann cells and/or melanin deposits. Migrational abnormalities of these neural crest derivatives are known to occur in neurofibromatosis, and the presence of such heterotopias has been documented pathologically in patients with this disorder. While recent reports discuss foci of increased signal intensity on T2-weighted MR images in patients with neurofibromatosis, signal abnormalities on T1-weighted images have not yet been described. When lesions characterized by similar signal as well as morphologic characteristics are encountered on MR, the diagnosis of neurofibromatosis should be considered.  相似文献   

2.
Basal ganglia lesions, characterized on MR by increased signal intensity on T1-weighted images, were observed in seven patients with documented neurofibromatosis. These lesions most often involved the globus pallidus and internal capsules in a bilateral and symmetric fashion, and extended across the anterior commissure resulting in a "dumbbell" configuration. Smaller and less prominent foci of increased signal also were present on corresponding T2-weighted images. These lesions did not exhibit mass effect, edema, or enhancement with gadolinium-DTPA. They were not visible on CT (performed in two patients) and demonstrated no progression during a 2-year interval in three patients. Their signal characteristics and morphology suggest that they represent heterotopias containing Schwann cells and/or melanin deposits. Migrational abnormalities of these neural crest derivatives are known to occur in neurofibromatosis, and the presence of such heterotopias has been documented pathologically in patients with this disorder. While recent reports discuss foci of increased signal intensity on T2-weighted MR images in patients with neurofibromatosis, signal abnormalities on T1-weighted images have not yet been described. When lesions characterized by similar signal as well as morphologic characteristics are encountered on MR, the diagnosis of neurofibromatosis should be considered.  相似文献   

3.
Magnetic resonance imaging of the breast supplies much information concerning the signal characteristics of a lesion. Among these, high signal intensity on non-fat saturated T1-weighted imaging (WI) is a special finding. Such a finding may result from different causes, such as a paramagnetic substance or fatty, bloody or proteinaceous content. In this article, we present hyperintense breast lesions on T1-WI.  相似文献   

4.
5.
Janardhan V  Suri S  Bakshi R 《Radiology》2007,244(3):823-831
PURPOSE: To retrospectively document hyperintense lesions on nonenhanced T1-weighted magnetic resonance (MR) images in patients with multiple sclerosis (MS) and study their relationship to physical disability, disease course, and other MR markers of tissue damage (brain atrophy). MATERIALS AND METHODS: Institutional review board approval was obtained; informed consent was waived for this HIPAA-compliant study, with 145 patients with MS (mean age, 43 years). Patients had relapsing-remitting (RR) (n=92) or secondary-progressive (SP) (n=49) MS; clinical course was unknown in four. Mean Expanded Disability Status Scale (EDSS) score was 3.5. T1 lesions were compared with normal white matter on nonenhanced images and judged hyperintense. Spearman rank correlation, Wilcoxon rank sum, and Fisher exact probability tests and analysis of variance and analysis of covariance (ANCOVA) were employed. RESULTS: At least one T1 hyperintense lesion was found in 113 patients (total, 340 lesions). Two-thirds of lesions had hyperintense rim; others were uniformly hyperintense. Lesions were more common in patients with SP MS (P=.003, Wilcoxon test) and correlated with EDSS score (Spearman rho=0.19, P=.04) and brain atrophy measures (total cortical atrophy, Spearman rho=0.42, P<.001; third ventricular width, Spearman rho=0.40, P<.001) but not disease duration (Spearman rho=0.038, P=.69). Lesions were more likely multiple in the SP versus RR group (P<.001, Fisher test). After adjustment for disease course, T1 hyperintense lesions remained associated with brain atrophy (P相似文献   

6.
PURPOSE: To evaluate the diagnostic value of an imaging protocol that combines dynamic contrast-enhanced T1-weighted magnetic resonance (MR) imaging and T2*-weighted first-pass perfusion imaging in patients with breast tumors and to determine if T2*-weighted imaging can provide additional diagnostic information to that obtained with T1-weighted imaging. MATERIALS AND METHODS: One hundred thirty patients with breast tumors underwent MR imaging with dynamic contrast-enhanced T1-weighted imaging of the entire breast, which was followed immediately with single-section, T2*-weighted imaging of the tumor. RESULTS: With T2*-weighted perfusion imaging, 57 of 72 carcinomas but only four of 58 benign lesions had a signal intensity loss of 20% or more during the first pass, for a sensitivity of 79% and a specificity of 93%. With dynamic contrast-enhanced T1-weighted imaging, 64 carcinomas and 19 benign lesions showed a signal intensity increase of 90% or more in the first image obtained after the administration of contrast material, for a sensitivity of 89% and a specificity of 67%. CONCLUSION: T2*-weighted first-pass perfusion imaging can help differentiate between benign and malignant breast lesions with a high level of specificity. The combination of T1-weighted and T2*-weighted imaging is feasible in a single patient examination and may improve breast MR imaging.  相似文献   

7.
PURPOSETo characterize temporal changes in signal intensity patterns of multiple sclerosis lesions on serial MR.METHODST1-, T2-, proton density-, and contrast-enhanced T1-weighted MR was performed on five patients with relapsing-remitting multiple sclerosis at least 22 times in the course of 1 year.RESULTSForty-three enhancing lesions and 1 new lesion that never showed enhancement were detected and followed for periods ranging from approximately 4 weeks to 1 year (total of 702 time points). At first detection the center of new lesions was brighter than the periphery (20 of 24 new lesions on proton density-weighted and 19 of 23 new lesions on contrast-enhanced images). On contrast-enhanced images, ring hyperintensity was predominant at time points later than 29 days. As lesions aged, a residual rim of "nonenhancing" hyperintensity often was noted on contrast-enhanced images. Some older lesions (> 1 year) showed similar appearance on unenhanced T1-weighted images. On proton density-weighted images ring hyperintensity was most frequent 2 to 4 months after lesion detection. The estimated average duration of gadopentetate dimeglumine enhancement was 1 to 2 months.CONCLUSIONSA lesion evolution pattern relevant to MR was inferred. We believe that specific information about the histopathologic evolution of a lesion may be extracted not only from contrast-enhanced but also from nonenhanced serial MR. Assessment of drugs targeting specific phases of lesion evolution could benefit from quantitative pattern analysis of routine MR images.  相似文献   

8.
Axial and sagittal proton density and T2-weighted MR images (TR 2,500-3,000 ms, TE 15-22 and 85-90 ms) were performed in 50 patients with multiple sclerosis (MS) on a 1.5 T superconductive system. The number of plaques on the axial and sagittal images in the periventricular white matter, the corpus callosum, the brain stem, the cerebellum, and the basal ganglia were counted separately by two independent observers. A total of 858 lesions (mean 17.40 +/- 21.57) were seen on the axial series and 1,196 (mean 24.32 +/- 26.22) on the sagittal scans. More lesions were visualized on sagittal images in the periventricular region (mean 18.79 +/- 21.69 versus 13.34 +/- 16.45; p less than 0.001) and the corpus callosum (mean 3.00 +/- 2.72 versus 0.57 +/- 1.19; p less than 0.001). In the brain stem more lesions were visualized on the axial images (mean 1.55 +/- 2.55 versus 0.87 +/- 1.20; p less than 0.05). In the cerebellum and basal ganglia, scans in the two planes were equivalent (p greater than 0.5). In three patients lesions were seen on the sagittal series, while the axial scans were normal. Sagittal T2-weighted images appear to demonstrate significantly more MS plaques than transverse images, especially in the periventricular region and the corpus callosum. This is explained by partial volume averaging, by the orientation of some cerebral structures (e.g., corpus callosum) with regard to the section plane, and by the longer diameter of the lesions in the axial plane.  相似文献   

9.
PURPOSETo define the relationship between magnetization transfer and blood-brain-barrier breakdown in multiple sclerosis lesions using gadolinium enhancement as an index of the latter.METHODSTwo hundred twenty lesions (high-signal abnormalities on T2-weighted images) in 35 multiple sclerosis patients were studied with gadolinium-enhanced spin-echo imaging and magnetization transfer. Lesions were divided into groups having nodular or uniform enhancement, ring enhancement, or no enhancement after gadolinium administration. For 133 lesions, T1-weighted images without contrast enhancement were also analyzed. These lesions were categorized as isointense or hypointense based on their appearance on the unenhanced T1-weighted images.RESULTSThere was no difference between the magnetization transfer ratio (MTR) of lesions as a function of enhancement. MTR of hypointense lesions on unenhanced T1-weighted images was, however, lower than the MTR of isointense lesions.CONCLUSIONWe speculate that diminished MTR may reflect diminished myelin content and that hypointensity on T1-weighted images corresponds to demyelination. Central regions of ring-enhancing lesions had a lower MTR than the periphery, suggesting that demyelination in multiple sclerosis lesions occurs centrifugally. In addition, the short-repetition-time pulse sequence seems useful in the evaluation of myelin loss in patients with multiple sclerosis.  相似文献   

10.
PURPOSETo characterize the temporal evolution of the foci of T1 shortening in basal ganglia lesions in patients with neurofibromatosis type 1 (NF-1).METHODSA retrospective review of MR images of 37 patients with NF-1 revealed 8 patients in whom regions of T1 shortening were noted in the basal ganglia. We reviewed sequential images obtained in these selected patients with special attention to chronological changes in the foci of T1 shortening and their relationship to changes on T2-weighted images.RESULTSRegions of short T1 in the globus pallidus were observed in 8 patients. In 2 of 3 patients in whom foci of T1 shortening were not identified on the initial imaging study, T1 shortening developed and T2 prolongation diminished after an initial increase. In the third patient, T1 and T2 prolongation appeared simultaneously. Sequential scans in the other 5 patients, in whom areas of increased signal intensity in the globus pallidus were present on both T1-weighted and T2-weighted images on the initial MR examination, showed a diminution in the size of the region of T2 prolongation in 2 patients, an increase in the size of the region of T2 prolongation in 1 patient, a mixed pattern of change in the size of the region of T2 prolongation in 1 patient, and no change in the region of T2 prolongation in 1 patient. During the periods of these T2 changes, the areas of T1 shortening showed no significant interval change.CONCLUSIONThe foci of prolonged T2 relaxation in the basal ganglia appear to evolve in a manner similar to the foci of T2 prolongation in the white matter of the posterior fossa. However, the corresponding foci of short T1 in the basal ganglia may evolve with a different time course. In some patients, the foci of short T1 develop at a later time than the T2 prolongation and progress; these foci of short T1 do not appear to regress over periods as long as 90 months. Possible causes of the T1 shortening are remyelination and calcification.  相似文献   

11.
PURPOSETo investigate the relationship between the appearance of multiple sclerosis lesions identified on unenhanced T1-weighted images and their corresponding magnetization transfer ratios.METHODSA total of 119 white matter lesions seen on T2-weighted images in 17 patients with multiple sclerosis were evaluated. Axial T1-weighted images were used to classify the lesions as isointense to white matter (10 lesions), hypointense to white matter but hyperintense to gray matter (44 lesions), hypointense to gray matter (59 lesions), and relatively isointense to cerebrospinal fluid (6 lesions). The magnetization transfer ratio of each lesion was calculated, and an average magnetization transfer ratio for each subcategory was determined.RESULTSThe magnetization transfer ratio values became progressively lower with increasing hypointensity of lesions on T1-weighted images. The average magnetization transfer ratio for lesions isointense to white matter, hypointense to white matter but hyperintense to gray matter, hypointense to gray matter, and relatively isointense to cerebrospinal fluid was 34.90 +/- 2.67 mean +/- SD), 30.93 +/- 3.57, 27.27 +/- 3.56, and 23.62 +/- 2.83, respectively. All groups were significantly different from each other.CONCLUSIONLesions isointense to white matter exhibited higher magnetization transfer ratio values than lesions that were hypointense. These findings are consistent with relative preservation of the myelin structure in the former, perhaps indicating that these lesions are predominantly inflammatory (edematous) in nature. The proportionately lower magnetization transfer ratio values of lesions that appear progressively more hypointense on T1-weighted images may reflect varying degrees of demyelination, with increasing lesion hypointensity corresponding to more breakdown in the macromolecular structure. These results suggest that T1-weighted images may be useful in characterizing the underlying pathologic substrate in multiple sclerosis plaques.  相似文献   

12.
PURPOSE: Dynamic contrast-enhanced T2*-weighted MR imaging has been helpful in characterizing intracranial mass lesions by providing information on vascularity. Tumefactive demyelinating lesions (TDLs) can mimic intracranial neoplasms on conventional MR images, can be difficult to diagnose, and often result in surgical biopsy for suspected tumor. The purpose of this study was to determine whether dynamic contrast-enhanced T2*-weighted MR imaging can be used to distinguish between TDLs and intracranial neoplasms that share common features on conventional MR images. METHODS: We retrospectively reviewed the conventional and dynamic contrast-enhanced T2*-weighted MR images and medical records of 10 patients with tumefactive demyelinating disease that was diagnosed by either biopsy or strong clinical suspicion supported by laboratory evaluation that included CSF analysis and evoked potential tests. Twelve TDLs in 10 patients and 11 brain tumors that appeared similar on conventional MR images were studied. Relative cerebral blood volume (rCBV) was calculated from dynamic MR data and was expressed as a ratio to contralateral normal white matter. rCBV values from 11 patients with intracranial neoplasms with very similar conventional MR imaging features were used for comparison. RESULTS: The rCBV values of TDLs ranged from 0.22 to 1.79 (n = 12), with a mean of 0.88 +/- 0.46 (SD). The rCBV values of intracranial neoplasms ranged from 1.55 to 19.20 (n = 11), with a mean of 6.47 +/- 6.52. The difference in rCBV values between the two groups was statistically significant (P =.009). The difference in rCBV values between TDLs and primary cerebral lymphomas (n = 4) was less pronounced but was statistically significant (P =.005). CONCLUSION: Dynamic contrast-enhanced T2*-weighted MR imaging is a useful diagnostic tool in differentiating TDLs from intracranial neoplasms and may therefore obviate unnecessary surgical biopsy.  相似文献   

13.
Woo JH  Henry LP  Krejza J  Melhem ER 《Radiology》2006,241(1):206-212
PURPOSE: To determine observer performance in the detection of multiple sclerosis (MS) lesions on magnetic resonance (MR) images of the brain and to assess the dependence of observer performance on lesion size, parenchymal location, pulse sequence, and supratentorial versus infratentorial level. MATERIALS AND METHODS: This HIPAA-compliant protocol was approved by the institutional review board, and previously acquired MR data from a healthy volunteer and a patient with MS were used to derive parameter maps, with waiver of informed consent. Parameter maps and image simulator software were used to generate 320 phantom brain images with simulated supratentorial and infratentorial MS lesions. Images were displayed with T2-weighting or fluid-attenuated inversion recovery (FLAIR) contrast. Four readers independently evaluated the images, rating lesions on a five-point certainty scale. Observer performance was measured by using the area under the alternative free-response receiver operating characteristic curve (A(1)), and significance was determined with the z test. RESULTS: Pooled A(1) scores were significantly better for FLAIR imaging (0.96 +/- 0.01 [standard error]) than for T2-weighted MR imaging (0.89 +/- 0.04) supratentorially (P = .05) but were similar for FLAIR imaging (0.90 +/- 0.06) and T2-weighted MR imaging (0.88 +/- 0.05) infratentorially. A(1) scores for cortical, deep white matter, and periventricular lesions were 0.93 +/- 0.05, 0.97 +/- 0.02, and 0.89 +/- 0.04, respectively, for FLAIR imaging and 0.77 +/- 0.06, 0.99 +/- 0.01, and 0.89 +/- 0.05, respectively, for T2-weighted MR imaging. FLAIR scores were significantly higher than T2-weighted scores for cortical lesions. Linear correlation was found between A(1) and lesion size (r = 0.5). CONCLUSION: Supratentorially, performance was better with FLAIR imaging than with T2-weighted MR imaging. Infratentorially, performance was moderate with both modalities. Observers did better with FLAIR imaging in the detection of cortical lesions, and performance improved with increasing lesion size.  相似文献   

14.
Cranial MRI findings in four patients who had hepatic dysfunction, including one with sole hepatic form of Wilson's disease, were reported. The MR examinations revealed bilateral, symmetric hyperintensity in the globus pallidus, subthalamic nuclei and mesencephalon on T1-weighted images with no corresponding abnormality on T2-weighted sequences. The basal ganglia were normal on CT examinations in all patients. None of the patients had the clinical findings of hepatic encephalopathy. The MR findings in our patients did not correlate with the degree or duration of hepatic dysfunction. Correspondence to: I. Saatci  相似文献   

15.
The authors reviewed their 21/2-year experience with a magnetic resonance (MR) imaging protocol for a 1.5-T MR imager that included T2-weighted fat-suppressed spin-echo, T1-weighted breath-hold gradient-echo, and serial dynamic gadolinium-enhanced T1-weighted gradient-echo imaging to identify histologic types of malignant liver lesions more apparent on T1- than on T2-weighted images. MR images of 212 consecutive patients with malignant liver lesions were reviewed. T2-weighted, T1-weighted, and dynamic contrast-enhanced T1-weighted images were examined separately in a blinded fashion. Seven patients demonstrated liver lesions (lymphoma [two patients] and carcinoid, hepatocellular carcinoma, colon adenocarcinoma, transitional cell carcinoma, and melanoma [one patient each]) on T1-weighted images that were inconspicuous on T2-weighted images. In all cases, the lesions were most conspicuous on T1-weighted images obtained immediately after administration of contrast agent. Histologic confirmation was present for all seven patients. The consistent feature among these lesions was that they were hypovascular, due either to a fibrous stroma or to dense monoclonal cellularity. These results suggest that in some patients with hypovascular primary neoplasms, the lesions may be identified only on T1-weighted images, and that immediate postcontrast T1-weighted images are of particular value in demonstrating lesions.  相似文献   

16.
Yoon HK  Shin HJ  Chang YW 《Radiology》2002,223(2):384-389
PURPOSE: To compare contrast material-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) images with or without gadolinium in depicting the leptomeningeal ivy sign in children with moyamoya disease. MATERIALS AND METHODS: Twenty-nine sets of FLAIR and postcontrast T1-weighted MR images were available in 19 consecutive children with primary moyamoya disease confirmed with conventional and MR angiography. Contrast-enhanced FLAIR MR images also were available in 15 sets. Two pediatric radiologists reviewed FLAIR and postcontrast T1-weighted images in separate sessions for the leptomeningeal ivy sign and assigned a rating of "present," "absent," or "equivocal" by consensus. Unenhanced and contrast-enhanced FLAIR MR images were compared side by side to determine which better depicted leptomeningeal high signal intensities. RESULTS: Postcontrast T1-weighted MR images revealed the leptomeningeal ivy sign in 40 hemispheres (frequency of visualization, 71% [40 of 56 hemispheres]), whereas unenhanced FLAIR MR images depicted it in 26 hemispheres (frequency of visualization, 46% [26 of 56 hemispheres]). An equivocal rating was given in 21 hemispheres versus in 11 on FLAIR and postcontrast T1-weighted images, respectively. FLAIR and postcontrast T1-weighted images agreed in 40 hemispheres. There was no case with a positive rating on FLAIR images when postcontrast T1-weighted images were negative. Unenhanced FLAIR MR imaging was superior to contrast-enhanced FLAIR imaging in seven hemispheres, whereas enhanced FLAIR was better in four of 28 hemispheres. In the remaining 17, findings with each sequence were similar. CONCLUSION: Contrast-enhanced T1-weighted images are better than FLAIR images for depicting the leptomeningeal ivy sign in moyamoya disease.  相似文献   

17.
BACKGROUND AND PURPOSE: In multiple sclerosis (MS), the severity of tissue damage can vary from edema and inflammation to irreversible demyelination and axonal loss. Compared with conventional T2-weighted MR imaging, magnetization transfer (MT) and diffusion tensor (DT) MR imaging provide quantitative indices with increased specificity to the most destructive aspects of MS. To increase our understanding of the pathophysiologic processes of MS, we assessed the correlations between MT and DT MR imaging-derived metrics and the correlations between these quantities and measures derived from conventional MR in patients with MS. METHODS: T2-weighted, T1-weighted, MT, and DT MR images of the brain were obtained from 34 patients with relapsing-remitting MS (RRMS) and 15 age-matched control subjects. T2 and T1 lesion volumes (LV) and brain volume were measured. MT ratio (MTR), mean diffusivity (D macro), and fractional anisotropy (FA) histograms from the overall brain tissue (BT) and the normal-appearing brain tissue (NABT) were obtained. Average lesion MTR, D macro, and FA were also calculated. The correlations between T2 and T1 LV, brain volume, MT-, and DT-derived metrics were assessed with the Spearman rank correlation coefficient. RESULTS: No significant correlations were found between MT and FA histogram-derived metrics and quantities derived from conventional MR scans (T2 and T1 LV and brain volume). On the contrary, T2 and T1 LV (but not brain volume) were significantly correlated with the average D macro values of BT and NABT (r values ranging from 0.52 to 0.78). No significant correlation was found between MT- and DT-derived metrics. CONCLUSION: These results suggest that MT and DT MR imaging provide, at least partially, independent measures of lesion burden in patients with RRMS. This suggests that a multiparametric MR approach has the potential for increasing our ability to monitor MS evolution.  相似文献   

18.
Measurement of abdominal fat with T1-weighted MR images.   总被引:2,自引:0,他引:2  
The cross-sectional area of visceral and subcutaneous fat in the abdomen was measured with T1-weighted spin-echo images acquired with a 1.5-T magnetic resonance (MR) imager. Four axial images centered on L-4 were acquired in each patient. Outline regions of interest (ROIs) were drawn manually for subcutaneous and visceral fat. The subcutaneous fat cross-sectional area was calculated from the ROIs drawn around the outer and inner margins of subcutaneous fat. Several adaptive processing methods were evaluated for measuring fat in the complex structure of the viscera. These methods were compared with an existing MR imaging measurement method for abdominal fat in 18 patients. The adaptive method that uses the valley between the fat and nonfat distributions in the average histogram curve was judged best for research evaluations because it reduces the effects of volume averaging while using a more natural division between fat and nonfat data. Another adaptive method that yielded comparable measurements was thought to be more suitable for clinical applications. Cross-sectional area measurements of abdominal fat were compared in 18 nonobese and 17 obese women to illustrate the utility of these measurements.  相似文献   

19.

Introduction  

Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号