首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150Hz, 30min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.  相似文献   

2.
3.
Changes in afferent input can alter the excitability of intracortical inhibitory systems. For example, using paired transcranial magnetic stimulation (TMS), both electrical digital stimulation and muscle vibration have been shown to reduce short-interval intracortical inhibition (SICI). The effects following muscle vibration are confined to the corticospinal projection to the vibrated muscles. The results following digital stimulation are less clear and the relative timing of the cutaneous stimulation and TMS is critical. Here we investigated further whether changes in SICI following digit stimulation exhibit topographic specificity. Eleven normal subjects were investigated (age 28.2±7.5 years, mean±SD). Electromyographic recordings were made from the right first dorsal interosseous (FDI), abductor digiti minimi (ADM) and abductor pollicis brevis (APB) muscles. SICI was measured, with and without preceding electrical digit II or digit V cutaneous stimulation. The interval between the digital nerve stimulus and test magnetic stimulus was independently set for each subject and established by subtracting the onset latency of the motor evoked potential (MEP) from the latency of the E2 component of the cutaneomuscular reflex. Therefore, measures of intracortical excitability were made at a time at which it is known that cutaneous input is capable of modulating cortical excitability. Single digital nerve stimuli applied to digit II significantly reduced SICI in FDI but not in ADM. Single digital nerve stimuli applied to digit V significantly reduced SICI in ADM but not in FDI or APB. There was a more generalised effect on intracortical facilitation (ICF) with both digit II and digit V stimulation significantly increasing ICF in FDI and ADM. Digital stimulation (either DII or DV) did not significantly affect SICI/ICF in APB. These findings show that appropriately timed cutaneous stimuli are capable of modulating SICI in a topographically specific manner. We suggest that the selective decrease in SICI seen with cutaneous stimulation may be important for focusing of muscle activation during motor tasks.  相似文献   

4.
Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES) of the motor cortex were recorded in separate sessions to assess changes in motor cortex excitability after a fatiguing isometric maximal voluntary contraction (MVC) of the right ankle dorsal flexor muscles. Five healthy male subjects, aged 37.4±4.2 years (mean±SE), were seated in a chair equipped with a load cell to measure dorsiflexion force. TMS or TES was delivered over the scalp vertex before and after a fatiguing MVC, which was maintained until force decreased by 50%. MEPs were recorded by surface electrodes placed over quadriceps, hamstrings, tibialis anterior (TA), and soleus muscles bilaterally. M-waves were elicited from the exercised TA by supramaximal electrical stimulation of the peroneal nerve. H-reflex and MVC recovery after fatiguing, sustained MVC were also studied independently in additional sessions. TMS-induced MEPs were significantly reduced for 20 min following MVC, but only in the exercised TA muscle. Comparing TMS and TES mean MEP amplitudes, we found that, over the first 5 min following the fatiguing MVC, they were decreased by about 55% for each. M-wave responses were unchanged. H-reflex amplitude and MVC force recovered within the 1st min following the fatiguing MVC. When neuromuscular fatigue was induced by tetanic motor point stimulation of the TA, TMS-induced MEP amplitudes remained unchanged. These findings suggest that the observed decrease in MEP amplitude represents a focal reduction of cortical excitability following a fatiguing motor task and may be caused by intracortical and/or subcortical inhibitory mechanisms.  相似文献   

5.
Evidence by functional imaging studies suggests the role of left DLPFC in the inhibitory control of nociceptive transmission system. Pain exerts an inhibitory modulation on motor cortex, reducing MEP amplitude, while the effect of pain on motor intracortical excitability has not been studied so far. In the present study, we explored in healthy subjects the effect of capsaicin-induced pain and the modulatory influences of left DLPFC stimulation on motor corticospinal and intracortical excitability. Capsaicin was applied on the dorsal surface of the right hand, and measures of motor corticospinal excitability (test-MEP) and short intracortical inhibition (SICI) and facilitation (ICF) were obtained by paired-pulse TMS on left motor cortex. Evaluations were made before and at different times after capsaicin application in two separate sessions: without and with high-frequency rTMS of left DLPF cortex, delivered 10 min. after capsaicin application. We performed also two control experiments to explore: 1: the effects of Left DLPFC rTMS on capsaicin-induced pain; 2: the modulatory influence of left DLPFC rTMS on motor cortex without capsaicin application. Capsaicin-induced pain significantly reduced test MEP amplitude and decreased SICI leaving ICF unchanged. Left DLPFC rTMS, together with the analgesic effect, was able to revert the effects of capsaicin-induced pain on motor cortex restoring normal MEP and SICI levels. These data support the notion that that tonic pain exerts modulatory influence on motor intracortical excitability; the activation of left DLPFC by hf rTMS could have analgesic effects, reverting also the motor cortex excitability changes induced by pain stimulation.  相似文献   

6.
Following a suprathreshold transcranial magnetic stimulation (TMS) to the primary motor cortex (M1) during voluntary muscle contraction, a motor evoked potential (MEP) occurs in the target muscle followed by a silent period (SP) in the electromyographic (EMG) activities. The present study investigated how short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) change during the SP. The time course of MEP and motor threshold during the SP were examined in the right first dorsal interosseous muscle. Using a triple-pulse protocol, SICI and ICF were tested at different times during the SP. The effects of different intensities of the conditioning stimulation (CS) for SICI and ICF were also investigated during the SP and at rest. During the SP, MEP was inhibited and motor threshold was increased, whereas MEP latency and background EMG level were same as those at rest. SICI decreased during the SP over a wide range of CS intensities. ICF increased at higher CS intensity. We conclude that SICI is suppressed and ICF is facilitated during the SP and the effects are separate from the interruption of voluntary drive.  相似文献   

7.
In normal subjects, focal repetitive transcranial magnetic stimulation (rTMS) of the hand motor area evokes muscle potentials (MEPs) from muscles in the hand (target muscles) and the arm (non-target muscles). In this study we investigated the mechanisms underlying the spread of MEPs induced by focal rTMS in non-target muscles. rTMS was delivered with a Magstim stimulator and a figure-of-eight coil placed over the first dorsal interosseus (FDI) motor area of the left hemisphere. Trains of 10 stimuli were given at a suprathreshold intensity (120% of motor threshold) and at frequencies of 5, 10 and 20 Hz at rest. Electromyographic (EMG) activity was recorded simultaneously from the FDI (target muscle) and the contralateral biceps muscle and from the FDI muscle ipsilateral to the side of stimulation (non-target muscle). rTMS delivered in trains to the FDI motor area of the left hemisphere elicited MEPs in the contralateral FDI (target muscle) that gradually increased in amplitude over the course of the train. Focal rTMS trains also induced MEPs in the contralateral biceps (non-target muscle) but did so only after the second or third stimulus; like target-muscle MEPs, in non-target muscle MEPs progressively increased in amplitude during the train. At no frequency did rTMS elicit MEPs in the FDI muscle ipsilateral to the site of stimulation. rTMS left the latency of EMG responses in the FDI and biceps muscles unchanged during the trains of stimuli. The latency of biceps MEPs was longer after rTMS than after a single TMS pulse. In conditioning-test experiments designed to investigate the cortical origin of the spread, a single TMS pulse delivered over the left hemisphere at an interstimulus interval (ISI) of 50, 100 and 150 ms reduced the amplitude of the test MEP evoked by a single TMS pulse delivered over the right hemisphere; and a conditioning rTMS train delivered over the left hemisphere increased the amplitude of the test MEP evoked by a single TMS pulse over the right hemisphere. A conditioning rTMS train delivered over the left hemisphere and paired magnetic shocks (test stimulus) at 3 and 13 ms ISIs over the right hemisphere reduced MEP inhibition at the 3-ms ISI but left the MEP facilitation at 13 ms unchanged. Using a control MEP size matched with that observed after a conditioning contralateral rTMS, we found that paired-pulse inhibition remained unchanged. Yet a single TMS conditioning pulse sufficiently strong to evoke a MEP in the contralateral FDI and biceps muscles simultaneously (as rTMS did) left paired-pulse inhibition unchanged. We conclude that the spread of EMG activity to non-target muscles depends on cortical mechanisms, mainly including changes in the excitability of the interneurones mediating intracortical inhibition. Electronic Publication  相似文献   

8.
In mild cognitive impairment (MCI), the corpus callosum is known to be affected structurally. We evaluated callosal function by interhemispheric inhibition (IHI) using transcranial magnetic stimulation (TMS) in MCI patients. We investigated 12 amnestic MCI patients and 16 healthy age-matched control subjects. The IHI was studied with a paired-pulse TMS technique. The conditioning TMS was given over the right primary motor cortex (M1) and the test TMS over the left M1. Motor evoked potentials were recorded from the relaxed first dorsal interosseous muscle. We also studied other motor cortical circuit functions; short-latency afferent inhibition (SAI), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Both the amount of IHI and SAI were significantly reduced in MCI patients as compared with control subjects, whereas SICI or ICF did not differ between them. The degree of IHI significantly correlated with neither the mini-mental state examination score nor the degree of SAI. Our results suggest that transcallosal connection between bilateral M1 is primarily involved in MCI, regardless of SAI dysfunction.  相似文献   

9.
To investigate the effect of negative motor imagery on corticospinal excitability, we performed transcranial magnetic stimulation (TMS) studies in seven healthy subjects during imagination of suppressing movements. Subjects were asked to imagine suppression of TMS-induced twitching movement of their nondominant left hands by attempting to increase the amount of relaxation after receiving an auditory NoGo cue (negative motor imagery), but to imagine squeezing hands after a Go cue (positive motor imagery). Single- and paired-pulse TMS were triggered at 2 s after Go or NoGo cues. Motor-evoked potentials (MEPs) were recorded in the first dorsal interosseus (FDI), abductor pollicis brevis (APB), and abductor digiti minimi (ADM) muscles of the left hand. Paired-pulse TMS with subthreshold conditioning stimuli at interstimulus intervals of 2 (short intracortical inhibition) and 15 ms (intracortical facilitation) and that with suprathreshold conditioning stimuli at interstimulus interval of 80 ms (long intracortical inhibition) were performed in both negative motor imagery and control conditions. Compared with the control state (no imagination), MEP amplitudes of FDI (but not APB and ADM) were significantly suppressed in negative motor imagery, but those from all three muscles were unchanged during positive motor imagery. F-wave responses (amplitudes and persistence) were unchanged during both negative and positive motor imagery. During negative motor imagery, resting motor threshold was significantly increased, but short and long intracortical inhibition and intracortical facilitation were unchanged. The present results demonstrate that excitatory corticospinal drive is suppressed during imagination of suppressing movements.  相似文献   

10.
Transcranial magnetic stimulation (TMS) can produce effects not only at the site of stimulation but also at distant sites to which it projects. Here we examined the connection between supplementary motor area (SMA) and the hand area of the primary motor cortex (M1Hand) by testing whether prolonged repetitive TMS (rTMS) over the SMA can produce changes in excitability of the M1Hand after the end of the stimulus train. We evaluated motor-evoked potentials (MEPs) and the cortical silent period (CSP) evoked by a single-pulse TMS, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) produced by a paired-pulse TMS, and forearm flexor H reflexes before and after 750 pulses of 5 Hz rTMS over SMA at an intensity of 110% active motor threshold (AMT) for the first dorsal interosseous (FDI) muscle. The amplitude of MEPs recorded from the right FDI muscle at rest as well as during voluntary contraction increased for at least 10 min after the end of rTMS, although the duration of the CSP, SICI and ICF did not change. There was no effect on H reflexes in the flexor carpi radialis muscle, even though the amplitude of the MEP obtained from the same muscle increased after rTMS. The effects on MEPs depended on the intensity of rTMS and were spatially specific to the SMA proper. We suggest that 5 Hz rTMS over SMA can induce a short-lasting facilitation in excitability of the M1Hand compatible with the anatomical connections between SMA and the M1Hand.  相似文献   

11.
We investigated the effect of electrical digit stimulation on two different intracortical facilitatory phenomena. Paired-pulse transcranial magnetic stimuli (TMS) with different conditioning stimulus (CS) intensities were applied over the primary motor cortex (M1). Electromyographic (EMG) recordings were made from the relaxed right abductor digiti minimi muscle (ADM). The effect of preceding sensory stimulation applied to the ipsilateral digit V on the conditioning magnetic stimulus was examined. Changing the CS intensity affected the influence of peripheral electrical stimulation on motor evoked potential (MEP) amplitudes evoked by paired pulse TMS. Inhibition induced by ipsilateral digit stimulation was strongest with the lowest CS intensity if MEP amplitudes were evoked by a subthreshold CS followed by a suprathreshold test stimulus (TS) at an interstimulus interval (ISI) of 10 ms. In contrast, inhibition induced by digit stimulation in a paired-pulse paradigm with a suprathreshold first and a subthreshold second stimulus at ISI of 1.5 ms was strongest with the highest CS intensity. These findings suggest that appropriately timed peripheral electrical stimuli differentially modulate facilitatory interactions in the primary motor cortex. They further support the hypothesis that intracortical facilitation (ICF) and short-interval intracortical facilitation (SICF) are evoked through different mechanisms. An erratum to this article can be found at  相似文献   

12.
Low amplitude muscle vibration (0.5 ms; 80 Hz; duration 1.5 s) was applied in turn to each of three different intrinsic hand muscles (first dorsal interosseus, FDI; abductor pollicis brevis, APB; and abductor digiti minimi, ADM) in order to test its effect on the EMG responses evoked by transcranial magnetic stimulation (TMS). Recordings were also taken from flexor and extensor carpi radialis (FCR and ECR, respectively). We evaluated the amplitude of motor evoked potentials (MEPs) produced by a single TMS pulse, short interval intracortical inhibition and facilitation (SICI and ICF) and long interval intracortical inhibition (LICI). TMS pulses were applied 1 s after the start of vibration with subjects relaxed throughout. Vibration increased the amplitude of MEPs evoked in the vibrated muscle (162 ± 6 % of MEP with no vibration; mean ± s.e.m .), but suppressed MEPs in the two non-vibrated hand muscles (72 ± 9 %). Compared with no vibration (test response reduced to 51 ± 5 % of control), there was less SICI in the vibrated muscle (test response reduced to 92 ± 28 % of control) and more in the non-vibrated hand muscles (test response reduced to 27 ± 5 % of control). The opposite occurred for LICI: compared with the no vibration condition (test response reduced to 33 ± 6 % control), there was more LICI in the vibrated muscle (test response reduced to 17 ± 3 % control) than in the non-vibrated hand muscles (test response reduced to 80 ± 11 % control) even when the intensity of the test stimulus was adjusted to compensate for the changes in baseline MEP. There was no effect on ICF. Cutaneous stimulation of the index finger (80 Hz, 1.5 s duration, twice sensory threshold) had no consistent differential effect on any of the parameters. We conclude that vibratory input from muscle can differentially modulate excitability in motor cortical circuits.  相似文献   

13.
The present study aimed to further investigate whether the intracortical neural circuits within the primary motor cortex (M1) are modulated during ipsilateral voluntary finger movements. Single- and paired-pulse (interstimulus intervals, ISIs; 3 ms and 12 ms) transcranial magnetic stimulations of the left M1 were applied to elicit motor evoked potential (MEP) in the right first dorsal interosseous (Rt-FDI) muscle during voluntary contractions (10% and 30% maximum voluntary contraction) of the left FDI (Lt-FDI) muscle. F-waves of Rt-FDI muscle were recorded under these left index-finger conditions for ensuring that the excitability changes occur at the supraspinal level. MEPs were also recorded during motor imagery of the left index-finger abduction instead of overt movement. The results showed that, in single-pulse transcranial magnetic stimulation (TMS) paradigm, MEPs in Rt-FDI muscle were markedly enhanced during voluntary contractions of Lt-FDI muscle compared with the complete resting state. In paired-pulse TMS paradigm, the short intracortical inhibition was significantly reduced in proportion to increments of the ipsilateral muscle contraction, whereas the intracortical facilitation had no change. F-wave of Rt-FDI muscle was unchanged under these conditions, while MEP in Rt-FDI muscle was also enhanced during motor imagery of the left index-finger abduction. Based on the present results, it is suggested that the intracortical inhibitory neural circuits may be modulated in the transition from rest to activity of the ipsilateral homonymous muscle. The excitability changes in M1 might be induced by overflows of voluntary drive given to the ipsilateral limb, probably via the transcallosal pathway.  相似文献   

14.
We investigated the influence of self-paced, phasic voluntary hand movement on the excitability of the ipsilateral motor cortex. Single- and paired-pulse transcranial magnetic stimulation (TMS) was applied to the right motor cortex triggered by EMG onset of self-paced movements of individual right hand fingers at intervals ranging from 13 to 2,000 ms. Motor evoked potentials (MEPs) were evaluated in several left arm muscles. Significant suppression of MEP amplitudes was observed when TMS was applied between 35 and 70 ms after EMG onset. This inhibition was diffuse, affecting "adjacent" muscles (those near the homologous muscle in the same extremity) as well as homologous muscles, but more inhibition was observed in adjacent and distal muscles than homologous and proximal muscles. Significant inhibition of ipsilateral motor cortex was produced by index finger movements (both the extensor indicis proprius and the first dorsal interosseus), but not by little finger movement (the abductor digiti minimi). Paired-pulse TMS (at 2- and 10-ms interstimulus intervals) showed a significant increase in intracortical facilitation (ICF) selectively in the homologous muscle when triggered by self-paced movement of the opposite hand, but no change was observed in intracortical inhibition. When stimulation was triggered by self-paced movements, the silent period of the homologous muscle was significantly shortened, but the F-wave and compound muscle action potential were unchanged. Our findings demonstrate that voluntary hand movement exerts an inhibitory influence on a diffuse area of the ipsilateral motor cortex. This inhibitory influence is both time and movement dependent. The inhibitory influence is nonselective, while the facilitatory influence (enhancing ICF) appears to act selectively on the homologous muscles. These effects are most likely mediated by a transcallosal pathway. Electronic Publication  相似文献   

15.
We used transcranial magnetic stimulation (TMS) in a paired pulse protocol to investigate interhemispheric interactions between the right dorsal premotor (dPM) and left primary motor cortex (M1) using interstimulus intervals of 4, 6, 8, 10, 12, 16 and 20 ms in ten healthy subjects. A conditioning stimulus over right dPM at an intensity of either 90 or 110% resting motor threshold (RMT) suppressed motor-evoked potentials (MEPs) evoked in the first dorsal interosseous (FDI) muscle by stimulation of left M1. Maximum effects occurred for interstimulus intervals (ISIs) of 8–10 ms. There was no effect if the conditioning stimulus was applied 2.5 cm lateral, anterior or medial to dPM. The effect differed from previously described M1 interhemispheric inhibition in that the threshold for the latter was greater than 90% RMT, whereas stimulation of the dPM at the same intensity led to significant inhibition. In addition, voluntary contraction of the left FDI (i.e. contralateral to the conditioning TMS) enhanced interhemispheric inhibition from right M1 but had no effect on the inhibition from right dPM. Finally, conditioning to right dPM at 90% RMT reduced short-interval intracortical inhibition (SICI; at ISI = 2 ms) in left M1 whilst there was no effect if the conditioning stimulus was applied to right M1. We conclude that conditioning TMS over dPM has effects that differ from the previous pattern of interhemispheric inhibition described between bilateral M1s. This may reflect the existence of commissural fibres between dPM and contralateral M1 that may play a role in bimanual coordination.  相似文献   

16.
Motor-evoked potentials (MEPs) after transcranial magnetic stimulation (TMS) show a trial-to-trial variation in size at rest that is positively correlated for muscles of the same, and opposite, upper limbs. To investigate the mechanisms responsible for this we have examined the effect of voluntary activation on the correlated fluctuations of MEP size. In 8 subjects TMS was concurrently applied to the motor cortex of each hemisphere using 2 figure-8 coils. MEPs (n = 50) were recorded from left and right first dorsal interosseous (FDI), abductor digiti minimi (ADM), and extensor digitorum communis. At rest, MEPs were significantly positively correlated for pairs of muscles of the same (75% of comparisons) and opposite limb (56% of comparisons). The correlation for within-limb muscle pairs was strongest for FDI and ADM. In contrast, between-limb MEP correlations showed no somatotopic organization. Voluntary activation reduced the strength of MEP correlations between limbs, even for muscle pairs that remained at rest while a remote upper limb muscle was active. In contrast, activation of a remote muscle did not affect the strength of MEP correlation for muscle pairs within the same limb that remained at rest. For within-limb comparisons, activation of one or both muscles of a pair reduced the strength of the MEP correlation, but to a lesser extent than for between-limb pairs. It is concluded that the process linking corticospinal excitability in the two hemispheres is suppressed during voluntary activation, and that different processes contribute to common fluctuations in MEP size for muscles within the same limb.  相似文献   

17.
Fatigue-associated changes in the excitability of central motor mechanisms were investigated using transcranial magnetic stimulation (TMS) of the motor cortex. Test stimuli were applied before, during and after a voluntary fatigue test of the first dorsal interosseus muscle (FDI). Subjects were required to maintain 50% of their maximum voluntary force (MVC) for at least 2 min (1/2-MVC test) and electromyographic (EMG) reactions of FDI were measured with surface electrodes. Prior to the test, TMS pulses of 70% maximum output (about 1.4 T) produced muscle-evoked potentials (MEPs) of widely different amplitudes in different subjects, ranging from 13% to 55% of the maximum compound action potential (M-wave) evoked by ulnar nerve stimulation. During the test, MEPs of all subjects showed a potentiation; this effect was markedly greater in subjects with a small initial MEP. After the test, the differential degrees of contraction-evoked potentiation still influenced the MEP amplitudes; small pre-test MEPs showed a post-test net potentiation and larger pre-test MEPs showed a net post-test depression. The results underline that the net outcome of motor activation on motor cortex excitability, as studied with TMS, depends on a complex balance of fatiguing and potentiating effects.  相似文献   

18.
The central processes occurring during fatiguing exercise are not well understood, however transcranial magnetic stimulation (TMS) studies have reported increases both in corticomotor excitability, as measured by the motor-evoked potential (MEP) amplitude, and in long-interval intracortical inhibition, as measured by the duration of the post-MEP silent period. To determine whether short-interval cortical inhibition (SICI) is modulated by fatiguing exercise, we used single and paired-pulse TMS to measure MEP amplitude and SICI for the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles of the hand during, and for 20 min after, a 10-min intermittent maximal voluntary abduction of the index finger designed to fatigue the FDI muscle. For the FDI, the index of SICI increased at the onset of exercise (from 0.25±0.05 to 0.55±0.11, P < 0.05) and then decreased progressively as force declined. At the beginning of recovery, SICI again increased (0.57±0.11, P < 0.05) and remained elevated for the 20-min recovery period. In contrast, SICI for ADM did not change during or after exercise. MEP amplitude for both the FDI and ADM increased above baseline during exercise and then decreased below baseline during the recovery period. These results demonstrate that there are significant changes in SICI during and after a fatiguing exercise protocol that are isolated to the representation of the fatigued muscle. The inter-relationship between the changes in excitation and inhibition suggests the presence of a measured and adaptive process of modulation in central excitation and inhibition acting to increase corticomotor drive to the exercising muscle as fatigue is developing.  相似文献   

19.
Prior reports have described a transient and focal decline in transcranial magnetic stimulation (TMS)-induced motor evoked potential (MEP) amplitude following fatiguing motor tasks. However, the neurophysiological causes of this change in MEP amplitude are unknown. The aim of this study was to determine whether post-task depression of MEPs is associated with repetitive central motor initiation. We hypothesized that MEP depression is related to repeated central initiation of motor commands in task-related cortex independent of motor fatigue. Twenty healthy adults had MEPs measured from the dominant first dorsal interosseous (FDI) muscle before and after six different tasks: rest (no activity), contralateral fatiguing hand-grip, ipsilateral fatiguing hand-grip, contralateral finger tapping, ipsilateral finger tapping, and imagined hand-grip (motor imagery). Changes in MEPs from baseline were assessed for each task immediately following the task and at 2-min intervals until MEPs returned to a stable baseline. Measures of subjective effort and FDI maximum voluntary contractions (MVC) were also recorded following each task. A statistically significant drop in MEP amplitude was noted only with contralateral finger tapping and imagined grip. Changes in MEP amplitude did not correlate with subjective fatigue or effort. There was no significant change in FDI MVCs following hand-grip or finger-tapping tasks. This study extends our knowledge of the observed decline in MEP amplitude following certain tasks. Our results suggest that central initiation of motor programs may induce a change in MEP amplitude, even in the absence of objective fatigue.  相似文献   

20.
The present study examined whether the excitability of the corticospinal pathway and the GABA-mediated inhibitory circuits of the primary motor cortex that project onto the corticospinal neurons in the tonically contracting hand muscle are changed by tonic contraction of the adjacent hand muscle. The motor evoked potential (MEP) and cortical silent period (CSP) in the tonically contracting hand muscle were obtained while the adjacent hand muscle was either tonically contracting or at rest. The MEP and CSP of the first dorsal interosseous (FDI) muscle elicited across the scalp sites where the MEP is predominantly elicited in the FDI muscle were decreased by tonic contraction of the abductor digiti minimi (ADM) muscle. The centers of the area of the MEP and the duration of the CSP in the FDI muscle elicited across the sites where the MEP is predominantly elicited in the FDI muscle were lateral to those in the FDI muscle elicited across the sites where the MEP is elicited in both the FDI and ADM muscles. They were also lateral to those in the ADM muscle elicited either across the sites where the MEP is predominantly elicited in the ADM muscle, or across the sites where the MEP is elicited in both the FDI and ADM muscles. The decrease in the corticospinal excitability and the excitability of the GABA-mediated inhibitory circuits of the primary motor cortex that project onto the corticospinal neurons in the FDI muscle may be due either to (1) the interaction between the activity of the lateral area of the FDI representation and the descending drive to the ADM muscle, or (2) the decreased susceptibility of the primary motor area that predominantly projects onto the corticospinal neurons in the FDI muscle, which also plays a role in independent finger movement when both the FDI and ADM muscles act together as synergists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号