首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
Inhibitors of apoptosis proteins (IAPs) define a protein family with the ability to counteract cell death by the inhibition of different caspases activated during apoptosis. These proteins are present in different cells, however, the function and roles of IAPs in brain tissue are not fully understood. We report here that RIAP-2, the rat homologue of human cIAP-1/HIAP-2, is expressed in different areas of rat brain as shown by in situ hybridization and immunohistochemistry. Brain regions with relatively high expression of RIAP-2 mRNA included cortex, cerebellum and different subregions of rat hippocampus. Double labelling using a specific anti-RIAP antibody and markers for neurons and glial cells, showed that RIAP-2 is predominantly expressed by nerve cells. Kainic acid treatment, which induces seizures, transiently up-regulated RIAP-2 mRNA levels in cerebral cortex, in the CA1 and dentate gyrus regions of hippocampus, which returned to normal levels at 24 h. However in the CA3 region, RIAP-2 mRNA was decreased at 6 h following an early up-regulation. This region contains neurons particularly vulnerable to kainic acid induced cell degeneration. The decrease in RIAP-2 following kainic acid was also observed using immunohistochemistry. RIAP-2 protein did not colocalize with TUNEL labelling present in cells undergoing cell death. The results show that in the adult rat brain RIAP-2 is expressed mainly by neurons, and that the levels are regulated by kainic acid, which activates glutamate receptors. The decrease in RIAP-2 in specific neuronal populations may contribute to cell degeneration in vulnerable brain regions observed after kainic acid treatment.  相似文献   

3.
Using in situ hybridization histochemistry neuropeptide Y (NPY) mRNA expression was investigated after intraperitoneal injection of kainic acid (KA) and after local application of KA or quinolinic acid into the dentate gyrus of the rat. Enhanced concentrations of NPY mRNA were observed in interneurons of the hilus, including presumptive fusiform neurons and pyramidal-shaped basket cells already 4 hours after initiation of limbic seizures by KA (10 mg/kg, i.p.). IncreaseD NPY expression persisted in neurons resistant to seizure-induced cell death (6–48 h after i.p. KA). Exceptionally high hybridization signals were found in interneurons of the hilus and the CA1 and CA3 sectors 8 months after KA-induced limbic seizures. In the granule cell layer only a transient but pronounced increase in NPY mRNA was observed 12–24 h after injection. Only moderate changes were observed in this cell layer at later intervals. Anticonvulsant treatment with thiopental, after a brief period of generalized seizures, prevented the increase in NPY mRNA in granule cells but not in interneurons. No change in NPY message was found also in granule cells of rats which responded with mild “wet dog shake” behvior but not with motor seizures to KA injection. Local injections of low doses of KA (0.05–0.2 nmol) or quinolinic acid (6.5–100 nmol) into the dentate gyrus of the hippocampus under deep thiopental anesthesia, after 24 h, resulted in increased concentrations of NPY message in interneurons of the ipsilateral, but not of the contralateral hilus and not in granule cells. Higher doses of the excitatory amino acid analogs caused partial neurodegeneration at the injection site, but enhanced NPY expression in interneurons of the contralateral dentate. Only the highest dose of quinolinic acid (100 nmol), resulting in general neuronal cell loss at the injection area, induced enhanced NPY mRNA expression also in granule cells of the contralateral dentate gyrus. The experiments suggest different mechanisms for NPY mRNA expression in interneurons and in granule cells of the dentate gyrus. Whereas in the stratum granulosum NPY mRNA expression was only observed after generalized limbic seizures, in hilar interneurons it was augmented by only moderate neuronal stimulation or directly by KA. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Kainic acid-induced seizures in rats represent an established animal model for human temporal lobe epilepsy. However, it is well-known that behavioral responses to the systemic administration of kainic acid are inconsistent between animals. In this study, we examined the relationship between expression of genes, neuropathological damage, and behavioral changes (seizure intensity and body temperature) in rats after systemic administration of kainic acid. The considerable differences in the response to kainic acid-induced seizures were observed in rats after a single administration of kainic acid (12 mg/kg i.p.). There was no detection of the expression of heat shock protein hsp-70 mRNA and HSP-70 protein in brain of vehicle-treated controls and in animals exhibiting weak behavioral changes (stage 1–2). A moderate expression of hsp-70 mRNA was detected throughout all regions (the pyramidal cell layers of CA1–3 and dentate gyrus) of the hippocampus, the basolateral, lateral, central and medial amygdala, the piriform cortex, and the central medial thalamic nucleus of rats that developed moderate seizures (stage 3–4). Marked expression of hsp-70 mRNA was detected in the all regions (cingulate, parietal, somatosensory, insular, entorhinal, piriform cortices) of cerebral cortex and all regions of hippocampus, and the central medial thalamic nucleus of the rats that developed severe seizures (stage 4–5). In addition, marked HSP-70 immunoreactivity was detected in the pyramidal cell layers of CA1 and CA3 regions of hippocampus, all regions (cingulate, parietal, somatosensory, insular, piriform cortices) of cerebral cortex, and the striatum of rats that developed severe seizures (stage 4–5). Furthermore, a marked expression of cyclooxygenase-2 (COX-2) mRNA and brain-derived neurotrophic factor (BDNF) mRNA levels by kainic acid-induced behavioral seizures (stage 3–4 or stage 4–5) was detected in all hippocampal pyramidal cell layers, granule layers of dentate gyrus, piriform cortex, neocortex, and amygdala. The present study suggest that the behavioral changes (seizure intensity and body temperature) and neuropathological damage after systemic administration of kainic acid are inconsistent between animals, and that these behavioral changes (severity of kainic acid-induced limbic seizures) might be correlated with gene expression of hsp-70 mRNA, COX-2 mRNA, and BDNF mRNA in rat brain.  相似文献   

5.
H Baran  R Heldt  G Hertting 《Brain research》1987,404(1-2):107-112
The arachidonic acid (AA) metabolites prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) and thromboxane B2 (TXB2) were measured in the dorsal hippocampus, amygdala/pyriform cortex and parietal cortex of the rat brain following the application of kainic acid (KA, s.c. 10 mg/kg). The first significant increases in the prostanoids were seen 10 min following the KA injection, at this time the first behavioral change 'staring' was observed. In the hippocampus the highest concentrations of the PGs were reached 30 min after the injection of the neurotoxin. At this time frequent wet dog shakes (WDS) and rare focal convulsions effecting head and extremities occurred. In the amygdala/pyriform cortex and parietal cortex the maximal prostanoid formation was seen after 120 min. At this time tonic clonic seizures were registered. In contrast to other seizure models, where PGD2 was the predominant prostanoid formed, PGF2 alpha was the major AA-metabolite found in KA-treated animals. From the time-course of the seizure-related behavior and the increased prostanoid synthesis we conclude that the initiation of the prostanoid synthesis was triggered by the increased neuronal activity rather than by cell damage.  相似文献   

6.
Kainic acid, an analogue of glutamate, injected systemically to rats evokes seizures that are accompanied by nerve cell damage primarily in the limbic system. In the present study, we have analyzed the temporal profile of the expression of the cytokines interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra), and the related IL-1beta-converting enzyme (ICE/caspase-1), in different regions of the rat brain in response to peripheral kainic acid administration (10 mg/kg, i.p.). In situ hybridization histochemistry experiments revealed that IL-1beta mRNA-expressing cells, morphologically identified as microglial cells, were mainly localized to regions showing pronounced neuronal degeneration; hippocampus, thalamus, amygdala, and certain cortical regions. The strongest expression of IL-1beta mRNA was observed after 12 hr in these regions. A weak induction of the IL-1beta mRNA expression was observed already at 2 hr. Similar results were obtained by RT-PCR analysis, showing a significantly increased expression of IL-1beta mRNA in the hippocampus and amygdala after 12 hr. In addition, RT-PCR analysis revealed that IL-1ra mRNA, and specifically mRNA encoding the secreted isoform of IL-1ra (sIL-1ra), was strongly induced in the hippocampus and amygdala at 12 and 24 hr post-injection. RT-PCR analysis of mRNA encoding caspase-1 showed a significantly increased expression in the amygdala after 12 hr. In conclusion, in response to systemic kainic acid injection IL-1beta mRNA is rapidly induced and followed by induction of IL-1ra mRNA and caspase-1 mRNA, supporting a role of the IL-1 system in the inflammatory response during excitotoxic damage.  相似文献   

7.
8.
Recent studies have implicated chronic elevated exposures to environmental agents, such as metals (e.g. manganese, Mn) and pesticides, as contributors to neurological disease. Eighteen-month-old rats received intraperitoneal injections of manganese chloride (6 mg Mn/kg/day) or equal volume of saline for 30 days in order to study the effect of manganese on the dopamine- and GABA-neurons. The structures studied were substantia nigra, striatum, ventral tegmental area, nucleus accumbens and globus pallidus. First, we studied the enzymatic activity of mitochondrial complex II succinate dehydrogenase (SDH). We found an overall decrease of SDH in the different brain areas analyzed. We then studied the mRNA levels for tyrosine hydroxylase (TH) and the dopamine transporter (DAT) by in situ hybridization. TH mRNA but not DAT mRNA was significantly induced in substantia nigra and ventral tegmental area following Mn treatment. Correspondingly, TH immunoreactivity was increased in substantia nigra and ventral tegmental area. Manganese treatment significantly decreased GAD mRNA levels in individual GABAergic neurons in globus pallidus but not in striatum. We also quantified the density of glial fibrillary acidic protein (GFAP)-labeled astrocytes and OX-42 positive cells. Reactive gliosis in response to Mn treatment occurred only in striatum and substantia nigra and the morphology of the astrocytes was different than in control animals. These results suggest that the nigrostriatal system could be specifically damaged by manganese toxicity. Thus, changes produced by manganese treatment on 18-month-old rats could play a role in the etiology of Parkinson's disease.  相似文献   

9.
The regulation of corticotropin-releasing factor (CRF) mRNA expression in the rat brain by glucocorticoids and stress was examined by Northern blot analysis and in situ hybridization histochemistry. Rats either were exposed to a single electrical footshock session and killed 2, 4, 12, or 24 hr later (acute stress), or were subjected to the same regimen twice daily for 3 or 7 d and killed on the day following the last session (chronic stress). Rats placed in the experimental chamber but not administered shock comprised a "sham-handling" group. Chronic (7 d) intermittent footshock stress resulted in an 84 +/- 26% (P less than 0.05) increase in CRF mRNA levels in the whole hypothalamus as detected by Northern blot analysis and a 97 +/- 29% (P less than 0.05) increase in the paraventricular nucleus (PVN) as detected using in situ hybridization. No significant change in CRF mRNA levels was observed in the hypothalamus at any time up to 24 hr after a single exposure to footshock stress. A different pattern of results was obtained in other CRF-expressing cell groups. In Barrington's nucleus (a pontine micturition center), both acute and chronic stress produced significant increases in CRF mRNA, while in the olfactory bulb, both paradigms resulted in decreased levels. By Northern blot analysis, CRF mRNA in the olfactory bulb declined steadily, beginning at 4 hr after acute stress, and reached significance at 24 hr (69.2 +/- 1.9% of control, P less than 0.05). Levels from chronically (7 d) stressed animals declined to 54.1 +/- 5.1% of control value (P less than 0.05). Analysis of hybridization histochemical material revealed that both the number of positively hybridized cells and the number of silver grains per cell in the mitral and external plexiform layers of the bulb decreased following acute and chronic stress. However, CRF mRNA levels in the olfactory bulb were decreased to a comparable extent in the sham-handling group, suggesting that exposure to a novel environment can effect a decrease in CRF mRNA levels in the olfactory bulb. To provide comparisons with the effects of manipulation of glucocorticoid status, comparable analyses were carried out in separate groups of animals following adrenalectomy (ADX) with and without corticosteroid replacement. After ADX, CRF mRNA levels in the whole hypothalamus increased 60 +/- 5% (P less than 0.05) and were normalized following dexamethasone replacement. In contrast to the hypothalamus, no effects of steroid manipulation on CRF mRNA levels in the olfactory bulb, midbrain, cerebral cortex, or brain stem were detected.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Won JS  Song DK  Huh SO  Kim YH  Suh HW 《Hippocampus》2000,10(3):236-243
The in vivo short-term effect of melatonin on kainic acid (KA)-induced proenkephalin (proENK) or prodynorphin (proDYN) mRNA, and on AP-1 protein levels in the rat hippocampus, were studied. Melatonin (5 mg/kg) or saline was administered intraperitoneally (i.p.) to rats 30 min prior to and immediately after i.p. injection of KA (10 mg/kg). Rats were sacrificed 1 and 3 h after KA injection. The proENK and proDYN mRNA levels were significantly increased 3 h after KA administration. The elevations of both proENK and proDYN mRNA levels induced by KA were significantly inhibited by the preadministration with melatonin. The increases of proENK and proDYN mRNA levels induced by KA were well-correlated with the increases of c-Fos, Fra-2, FosB, c-Jun, and JunB protein levels, which were significantly increased 3 h after KA administration and effectively inhibited by administration with melatonin. In an electrophoretic mobility shift assay, both AP-1 and ENKCRE-2 DNA binding activities were increased by KA, which were also attenuated by the administration of melatonin. In addition, cross-competition studies revealed that AP-1 or ENKCRE-2 DNA binding activity was effectively reduced by the 50x unlabeled cross-competitor. Therefore, these data suggest that melatonin has an inhibitory role in KA-induced gene expression, such as proENK and proDYN mRNA expression, and this may be due to a reduction of KA-induced AP-1 or ENKCRE-2 DNA binding activity.  相似文献   

11.
Vigorous expression of major histocompatibility complex (MHC) class I and class I surface glycoproteins was observed on reactive microglia but not on astrocytes in the rat brain following lesions induced by epidural kainic acid (KA) on the cerebral cortex. The monoclonal antibodies used were OX18 against MHC class I, OX6 against MHC class II, OX1 against leukocyte common antigen (LCA), and W3/13 against pan-T lymphocytes. Astrocytes were marked by antibodies to glial fibrillary acidic protein (GFA) and S100b protein. The lesion differentially affected four zones: the central area of the lesion where most cells died; the peripheral zone surrounding the lesion where selective damage occurred; projection tracts from the lesioned area; and terminal fields of damaged neurons. In nonlesioned animals, class I expression was confined to vascular endothelial cells and some small glial cells. Following KA treatment, class I-positive round cells appeared in the central zone at day 1, peaked about day 5, and then slowly declined. In the peripheral zone, class I-positive microglia were present fron day 2 on. They demonstrated classical morphology for such cells, and in some cases arranged themselves in pyramidal profiles surrounding neurons. Reactive microglia were also class I positive along tracts of damaged neurons and in the terminal areas. The reaction was reduced to control levels 16-20 weeks after lesioning although some vascular endothelial cells and a few round cells still stained positively in the cystic area, which was the remnant of the central zone. Class II antigen expression first appeared in the form of round cells in the central zone of the lesion on day 1. These peaked at 5-7 days and declined thereafter. In the peripheral zone on day 5, some positive round or ameboid cells were found intermingled with typical reactive microglia. This reaction peaked at about 1-2 weeks and decreased thereafter. Class II-positive microglia appeared in fiber tracts and in the terminal areas on day 5, peaked after 2-3 weeks, and declined thereafter. Double immunostaining for class I and II antigens showed that there were significantly fewer class II- than class I-positive cells, but the morphology of the two groups was similar. No astrocytes stained positively for either group I or group II antigen. In both the primary and secondary lesioned areas, LCA staining was observed on the surface of reactive microglia. In the primary lesions there were also LCA-positive round cells in the central zone, but these were rare in the peripheral zone and the secondary lesioned areas.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In in vitro incubations, kainic acid-lesioned neostriatal slices from rat brain showed decreases in oxygen consumption (50%) and in the conversion of both [1-14C]glucose (43%) and [6-14C]glucose (69%) to14CO2 as compared to controls. The elevation in the C1/C614CO2 ratio suggested the pentose phosphate pathway was less affected than the Embden-Meyerhof path in kainic acid-injected gliotic tissue. Increasing the potassium concentration from 6 to 50 mM caused increases in oxygen consumption and glucose utilization in both control and kainic acid-lesioned neostriatal slices; this is consistent with, but not conclusive of, a potassium-stimulating effect on glial as well as neuronal metabolism.  相似文献   

13.
The cytokines interleukin-1 beta (IL-1 beta) and IL-1 receptor antagonist (IL-1ra) are rapidly induced in response to excitotoxic and ischemic brain damage. The aim of the present study was to investigate the influence of a non-competitive (dizocilpine maleate, MK-801) and a competitive ((R)-CPP) NMDA receptor antagonist on the transient cytokine expression in the rat brain induced by systemic kainic acid administration. Peripheral administration of kainic acid (10 mg/kg, i.p.) results in a transient expression of IL-1 beta and IL-1ra mRNA, mainly in microglia, in regions showing neurodegeneration such as the hippocampus, thalamus, amygdala, and certain cortical regions. In addition, a few neurons expressing IL-1ra mRNA were observed in the piriform cortex and amygdala following kainic acid injection. Administration of MK-801 (i.p.) 1 h prior to kainic acid injection reduced cytokine expression in all of these regions. MK-801 at 3.0 mg/kg decreased the IL-1 beta mRNA expression, blocked or decreased the IL-1ra mRNA expression, depending on the brain region. MK-801 at 5.0 mg/kg abolished IL-1ra mRNA expression in all of the regions, whereas the IL-1 beta mRNA expression was decreased or blocked, depending on the brain region, or the time point investigated. Peripheral administration of (R)-CPP (15 mg/kg, i.p.) 15 min prior to the kainic acid injection abolished the IL-1 beta mRNA expression. The IL-1ra mRNA expression was abolished in all regions except for a few neurons in the piriform cortex. The finding that NMDA receptor antagonists inhibit the IL-1 beta and IL-1ra mRNA synthesis induced by kainic acid suggests that NMDA receptor activation may be involved in triggering cytokine synthesis following excitotoxic brain damage.  相似文献   

14.
Tissue plasminogen activator (tPA) has been used to treat acute thrombotic lesions. Roles other than the activation of fibrinolytic pathways have been suggested for tPA in the mature brain. We used the in situ hybridization technique to investigate the changes in tPA mRNA expression within the brain after cortical ablation. We found that expression of tPA mRNA started to increase diffusely in the cortex ipsilateral to the injury 6 h after ablation. This increase had become prominent 24 h after ablation. On d 5, the expression of tPA mRNA had returned to that of the control animals except for the area near the injury. We also found that administration of MK-801 before injury suppressed the increase of tPA mRNA in the ipsilateral cortex. These results suggest that the increase in tPA mRNA is likely to be mediated via activation of NMDA receptors.  相似文献   

15.
We examined the expression of the I, II and III subtypes of voltage-sensitive Na+ channel mRNA in the rat brain using in situ hybridization histochemistry with oligonucleotide probes. The distribution of cells with strongly positive signals was characteristic for each subtype. Synthesis of each subtype of Na+ channel protein may be regulated by differential mRNA expression.  相似文献   

16.
In aging brain, degeneration or functional impairment of the hippocampus has been connected with stress dysregulation, serving to disinhibit stress responses and allow for glucocorticoid hypersecretion and its attendant pathophysiology. Hippocampal dysfunction appears to be communicated to paraventricular hypothalamic corticotropin-releasing hormone neurons by way of subcortical GABAergic neurons. As such, hippocampal-hypothalamic relays are likely to play an important role in age-related stress dysfunction. To test this hypothesis, regulation of glutamic acid decarboxylase isoform mRNA was studied in young (3 months), middle aged (15 months) and aged (30 months) Fischer 344/Brown Norway F1 hybrid rats. Basal expression of glutamic acid decarboxylase (GAD) 65 mRNA was increased in the medial preoptic area and posteromedial bed nucleus of the stria terminalis (BST) in aged rats relative to both middle-aged and young groups. Unlike young or middle-aged animals, exposure to chronic intermittent stress decreased GAD65 mRNA levels in the medial preoptic area and posteromedial BST of aged rats. Thus, while aged rats show evidence of elevated basal GABA synthesis, chronic stress causes differential loss of GAD in hippocampal-PVN relays, consistent with reduced PVN inhibition.  相似文献   

17.
Regional metabolic alterations induced by systemic administration of kainic acid were investigated in rat brains. The histochemical study revealed that an acidic pH shift preceded an ATP decrease in the limbic structures. In the hippocampal Ammon's horn, it was noted that a selective decrease of ATP occurred in the dendritic subfield, such as the stratum radiatum and/or the stratum oriens. It was suggested that this selective ATP decrease in the dendrite is directly related to kainate neurotoxicity.  相似文献   

18.
Indirect evidence from in vitro studies implicates a functional role for matrix metalloproteinases (MMPs) in the central nervous system (CNS), including induction of neuronal migration during development and enhancement of neurite extension. Few reports have documented the expression of these enzymes in the brain, especially after injury in vivo. The objective of this study was to determine whether MMPs are expressed in various regional areas of rat brain after administration of the neurotoxin, kainic acid. Limbic motor seizures and neuronal degeneration were induced in Sprague–Dawley rats by systemic administration of kainate (10 mg/kg). Rats were subsequently divided into convulsive and non-convulsive groups, after observing their behaviour in response to the drug. Animals were killed 6, 12, 24, 72 and 168 h (7 days) after injection of kainate. Gelatinases were extracted from various brain regions and assayed by gelatin-substrate zymography. Levels of glial fibrillary acidic protein (GFAP) in corresponding regions were measured by ELISA. In the absence of treatment, MMP-2 and MMP-9 activities were expressed differentially in various brain regions with the highest levels in the hippocampus and the lowest in the cerebellum. In areas from convulsive rats, MMP-9 activity was markedly elevated at 6 h, and reached a maximum at 12 h after injection of kainate (8.1-fold hippocampus, 7.7-fold diencephalon, 7.2-fold striatum, 5.7-fold frontal cortex, 5.5-fold cerebellum, 2.6-fold midbrain). MMP-2 activity was induced more than two-fold in the hippocampus, diencephalon and striatum, to a lesser extent in the frontal cortex and midbrain, and was unchanged in the cerebellum, 72 h after injection. Neither MMP activity was altered in any brain region derived from non-convulsive rats. Treatment with the GABAA antagonist, bicuculline, resulted in increased levels of MMP-9, 12 h after drug administration, but no change in levels of MMP-2 up to 3 days following treatment. GFAP levels were induced 3 days after kainic acid injection in brain regions where MMP-2 was elevated. Nissl staining displayed the classical, regional neurodegeneration in kainate-treated animals that exhibited seizures. No obvious degeneration was detected in kainate-treated, non-convulsive rats or bicuculline-treated animals. These data demonstrate that MMP-9 and MMP-2 are differentially expressed with respect to time after kainic acid injection, and suggest that they are regulated by convulsion and/or neurodegenerative-associated mechanisms, respectively. Although similar in catalytic activity, MMP-9 and MMP-2 may play different roles in response to kainic acid-induced seizure and neuronal degeneration.  相似文献   

19.
To investigate the pathophysiological role of phospholipase D (PLD)-mediated signaling, changes in the expression of the PLD isozymes PLD1 and PLD2 were investigated in the rat kainic acid (KA) model of human temporal lobe epilepsy. Western blot analysis showed a significant increase in the expression of PLD1 and PLD2 in the postictal hippocampus. PLD1 immunoreactivity increased preferentially in the CA3 and CA1 regions, where pyramidal neurons are susceptible to temporal lobe epilepsy. Experiments employing double immunofluorescence revealed that the cells expressing PLD1 were GFAP-expressing reactive astrocytes. By contrast, PLD2 immunoreactivity increased strikingly in infrapyramidal, but not in suprapyramidal granule cells of the postictal dentate gyrus, fitting well with results of the PLD activity assay. Considering that PLD belongs to a key signaling pathway, this result suggests that changes in granule cell activity in the dentate gyrus after seizures occurs specifically between the supra- and infrapyramidal blades. In addition, enhanced immunoreactivity of PLD2 was observed in the reactive astrocytes of the CA1, CA3, and hilar subregions, but its temporal pattern is different from that of PLD1. Taken together, our results suggest that PLD1 and PLD2 exercise their unique pathophysiological functions in the rat hippocampus after KA-induced seizures.  相似文献   

20.
In situ hybridization and Northern blots were used to study expression of mRNAs for members of the nerve growth factor family in the rat brain following an excitatory stimulus. One hour after a unilateral needle insertion or saline injection into the dorsal hippocampus, the level of brain-derived neurotrophic factor (BDNF) mRNA increased markedly in granular neurons of the dentate gyrus and in the piriform cortex ipsilateral to the injection. The same treatment also increased the level of NGF mRNA in granular neurons of the ipsilateral dentate gyrus. The rapid increase in BDNF and NGF mRNA after a needle insertion or injection of saline was transient and preceded by an increase in c-fos mRNA in the same brain regions. In contrast to a needle insertion per se or a saline injection, 7 h after a unilateral injection of kainic acid into the dorsal hippocampus, the level of BDNF mRNA was dramatically increased in the ipsilateral hippocampus, as well as in the ipsilateral frontoparietal, piriform and perihinal cortex, the amygdaloid complex, claustrum, and ventromedial hypothalamus. A less pronounced increase was also seen in these brain areas on the contralateral side. Northern blots revealed that the level of BDNF mRNA increased 5- and 40-fold in the contra- and ipsilateral hippocampus, respectively, compared to sham-operated control animals. In contrast to BDNF and NGF, the level of hippocampus-derived neurotrophic factor/neurotrohin-3 (HDNF/NT-3) mRNA was not altered by either needle insertion or injection of saline or kainic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号