首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee PG  Cai F  Helke CJ 《Brain research》2002,941(1-2):127-136
Diabetes-induced alterations in nerve function include reductions in the retrograde axonal transport of neurotrophins. A decreased axonal accumulation of endogenous nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the vagus nerve of streptozotocin (STZ)-induced diabetic rats was previously shown. In the current study, no changes in the NGF and NT-3 protein or mRNA levels in the stomach or atrium, two vagally innervated organs, were noted after 16 or 24 weeks of diabetes. Moreover, the amounts of neurotrophin receptor (p75, TrkA, TrkC) mRNAs in the vagus nerve and vagal afferent nodose ganglion were not reduced in diabetic rats. These data suggest that neither diminished access to target-derived neurotrophins nor the loss of relevant neurotrophin receptors accounts for the diabetes-induced alteration in the retrograde axonal transport of neurotrophins. To assess whether diabetes causes a defect in axonal transport that may not be specific to neurotrophin transport, we studied the ability of a neuronal tracer (FluoroGold, FG) to be retrogradely transported by vagal neurons of control and diabetic rats. After vagal target tissue (stomach) injections of FG, the numbers of FG-labeled afferent and efferent vagal neurons were counted in the nodose ganglion and in the dorsal motor nucleus of the vagus, respectively. After 24 weeks of diabetes, FG was retrogradely transported to more than 50% fewer afferent and efferent vagal neurons in the STZ-diabetic compared to control rats. The diabetes-induced deficit in retrograde axonal transport of FG is likely to reflect alterations in basic axonal transport mechanisms in both the afferent and efferent vagus nerve that contribute to the previously observed reductions in neurotrophin transport.  相似文献   

2.
The receptor-mediated axonal transport of [125I]-labeled neurotrophins by afferent and efferent neurons of the vagus nerve was determined to predict the responsiveness of these neurons to neurotrophins in vivo. [125I]-labeled neurotrophins were administered to the proximal stump of the transected cervical vagus nerve of adult rats. Vagal afferent neurons retrogradely transported [125I]neurotrophin-3 (NT-3), [125I]nerve growth factor (NGF), and [125I]neurotrophin-4 (NT-4) to perikarya in the ipsilateral nodose ganglion, and transganglionically transported [125I]NT-3, [125I]NGF, and [125I]NT-4 to the central terminal field, the nucleus tractus solitarius (NTS). Vagal afferent neurons showed minimal accumulation of [125I]brain-derived neurotrophic factor (BDNF). In contrast, efferent (parasympathetic and motor) neurons located in the dorsal motor nucleus of the vagus and nucleus ambiguus retrogradely transported [125I]BDNF, [125I]NT-3, and [125I]NT-4, but not [125I]NGF. The receptor specificity of neurotrophin transport was examined by applying [125I]-labeled neurotrophins with an excess of unlabeled neurotrophins. The retrograde transport of [125I]NT-3 to the nodose ganglion was reduced by NT-3 and by NGF, and the transport of [125I]NGF was reduced only by NGF, whereas the transport of [125I]NT-4 was significantly reduced by each of the neurotrophins. The competition profiles for the transport of NT-3 and NGF are consistent with the presence of TrkA and TrkC and the absence of TrkB in the nodose ganglion, whereas the profile for NT-4 suggests a p75 receptor-mediated transport mechanism. The transport profiles of neurotrophins by efferent vagal neurons in the dorsal motor nucleus of the vagus and nucleus ambiguus are consistent with the presence of TrkB and TrkC, but not TrkA, in these nuclei. These observations describe the unique receptor-mediated axonal transport of neurotrophins in adult vagal afferent and efferent neurons and thus serve as a template to discern the role of specific neurotrophins in the functions of these visceral sensory and motor neurons in vivo. J. Comp. Neurol. 393:102–117, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    3.
    Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10–100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

    4.
    Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10-100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

    5.
    Cloning and expression of a novel neurotrophin,NT-7, from carp   总被引:8,自引:0,他引:8  
    Neurotrophins have been demonstrated to play important roles in the development and functioning of the nervous system. This family of proteins consists of four homologous members in mammals: NGF, BDNF, NT-3, and NT-4/5. A new member, called NT-6, was recently cloned from the platyfish Xiphophorus maculatus. This protein shares closer structural relationship to NGF than the other neurotrophins, but contains a characteristic insertion of 22 amino acids that constituted the heparin-binding domain. Here we report the cloning of a novel neurotrophin from the fish Cyprinus carpio (carp), which shared about 66% amino acid identity to Xiphophorus NGF and NT-6. The neurotrophin, designated NT-7, possesses structural characteristics common to all known neurotrophins, such as the presence of six conserved cysteine residues and the flanking conserved sequences. In addition, there is an insertion of 15 amino acids at the position corresponding to that observed for NT-6. The neurotrophic activity of NT-7 was demonstrated by its ability to promote neurite outgrowth and neuronal survival of chick dorsal root ganglia. Phosphorylation assay of various Trk receptors overexpressed in fibroblasts suggested that NT-7 could activate TrkA but not TrkB or TrkC. Northern blot analysis revealed that NT-7 was predominantly expressed in peripheral tissues, though weak expression was also detected in the brain. Like NT-6, this novel neurotrophin might represent yet another NGF-like neurotrophin in lower vertebrates.  相似文献   

    6.
    Recent studies have shown an anti-tumour activity of cannabinoid receptors CB1 and CB2 in gliomas. This effect was mediated by neurotrophins in breast and prostate carcinoma, while in gliomas this relationship has not yet been considered. The aim of this study was to investigate the expression of cannabinoid receptors CB1 and CB2, neurotrophin NGF and NT-3 and their receptors TrkA and TrkC in glioma and endothelial cells. The analysis was performed in 14 gliomas and 2 non-tumour brain specimens by immunohistochemistry and real-time quantitative-polymerase chain reaction (RTQ-PCR). Gliomas showed a weak immunoreactivity for CB1 and CB2 in tumour and in endothelial cells, and for NGF/TrkA mainly in tumour cells, while a moderate/diffuse immunoreactivity was found for NT-3/TrkC. CB2 was expressed on 3 out of 6 low-grade gliomas and in all high-grade gliomas. Non-tumour brain tissues were weakly positive in astrocytes and endothelium for CB1, CB2, NT-3 and TrkC and negative for NGF and TrkA. By RTQ-PCR, gliomas showed low mRNA levels of NGF/TrkA and moderate levels of CB1, NT-3 and TrkC. CB2 mRNA expression was low or absent. A potential role of cannabinoids, particularly of CB2 agonists devoid of psychotropic side effects, in glioma therapy could have a basis in glioblastomas, because they were all positive, though weakly, to CB2. The presence of neurotrophins and their receptors, mainly NT-3 and TrkC, suggests a possible role of these pathways in glioma growth/invasion, but further investigations are required to verify this hypothesis and a potential relationship between cannabinoids and neurotrophins.  相似文献   

    7.
    Neurotrophins play very important roles in the development and maintenance of the vertebrate nervous system. In mammals, there are four members of the family: NGF, BDNF, NT-3, and NT-4/5. Members of the neurotrophin family activate different receptors that belong to a class of receptor tyrosine kinases known as “Trks.” For example, NGF is the specific ligand of TrkA, while BDNF activates TrkB. To elucidate which regions of the two neurotrophins determine the receptor specificities, chimeric neurotrophins were constructed using BDNF as the backbone, with various regions being substituted by the corresponding regions of NGF. The activity of the chimeras on the Trk receptors was assayed in transfected fibroblasts ectopically expressing the Trk receptors. Our findings revealed that, although BDNF is absolutely conserved in mammals, substitution of several small variable regions from NGF into the BDNF backbone did not lead to significant loss in TrkB activity or gain in TrkA activity. Moreover, important determinants of TrkB activation might be located in the carboxy-terminal half of BDNF. On the other hand, critical elements for TrkA activation might be located within the amino-terminal half of the mature NGF molecule. © 1996 Wiley-Liss, Inc.  相似文献   

    8.
    Abnormal availability of neurotrophins, such as nerve growth factor (NGF), has been implicated in diabetic somatosensory polyneuropathy. However, the involvement of neurotrophins in diabetic neuropathy of autonomic nerves, particularly the vagus nerve which plays a critical role in visceral afferent and in autonomic motor functions, is unknown. To assess the effects of hyperglycemia on the neurotrophin content and transport in this system, cervical vagus nerves of streptozotocin (STZ)-induced diabetic rats were studied at 8, 16, and 24 weeks after the induction of diabetes. Elevations in vagus nerve hexose (glucose and fructose) and polyol levels (sorbitol), and their normalization with insulin treatment, verified that the STZ treatment resulted in hyperglycemia-induced metabolic abnormalities in the nerve. Neurotrophin (NGF and neurotrophin-3; NT-3) content and axonal transport were assessed in the cervical vagus nerves from nondiabetic control rats, STZ-induced diabetic rats, and diabetic rats treated with insulin. The NGF, but not the NT-3, content of intact vagus nerves from diabetic rats was increased at 8 and 16 weeks (but not at 24 weeks). Using a double-ligation model to assess the transport of endogenous neurotrophins, the retrograde transport of both NGF and NT-3 was found to be significantly reduced in the cervical vagus nerve at later stages of diabetes (16 and 24 weeks). Anterograde transport of NGF or NT-3 was not apparent in the vagus nerve of diabetic or control rats. These data suggest that an increase in vagus nerve NGF is an early, but transient, response to the diabetic hyperglycemia and that a subsequent reduction in neuronal access to NGF and NT-3 secondary to decreased retrograde axonal transport may play a role in diabetes-induced damage to the vagus nerve.  相似文献   

    9.
    10.
    Using the RNase protection assay, we have found that nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are expressed in the avian retina during development. The expression peaks around embryonic days 12–15, with decreasing levels at later stages of development. Abundant levels of NGF and BDNF but low levels of NT-3 mRNA were found in the adult retina. We also found that light/darkness regulated the levels of NGF and BDNF mRNAs but not the levels of NT-3 mRNA in the 5-day-old chicken retina. It was demonstrated that NGF and BDNF mRNA levels were up-regulated by light exposure. The cellular localization of mRNA expression for the neurotrophins and neurotrophin receptors TrkA, TrkB, and TrkC in the retina was studied using in situ hybridization. The patterns of NGF and trkA mRNA expression were very similar and were localized to the external part of the inner nuclear layer on the border with the outer plexiform layer and corresponded to the localization of horizontal cells. NT-3 labeling was also found over the external part of the inner nuclear layer, whereas trkC mRNA was found over all layers in the retina. BDNF labeling was found over all layers in the retina, whereas TrkB labeling was intense over cells in the ganglion cell layer, which is in agreement with the response of ganglion cells to BDNF stimulation. Functional neurotrophin receptors were suggested by the response of retinal explants to neurotrophin stimulation. These data indicate that the neurotrophins play local roles in the retina that involve interactions between specific neuronal populations, which were identified by the localization of the Trk receptor expression. The data also suggest that NGF and BDNF expression is regulated by normal neuron usage in the retina. © 1996 Wiley-Liss, Inc.  相似文献   

    11.
    目的应用双重标记技术观察咬肌神经切断对支配咬肌的三叉神经运动神经元所含高亲和性神经营养物质受体———Trk受体,即TrkA、TrkB和TrkC表达的影响。方法切断大鼠咬肌神经7和14 d后,对脑切片进行免疫组织化学染色并观察荧光金(FG)标记的三叉神经运动核(Mo5)神经元表达的三种Trk受体。结果(1)荧光金标记神经元中TrkA免疫反应阳性神经元比例无显著性变化(P>0.05);(2)神经切断后7和14 d均观察到TrkB表达上调(P<0.05);(3)神经切断后14 d观察到TrkC表达下调(P<0.05)。结论咬肌神经切断后,三叉神经运动核神经元所含不同Trk受体的表达存在差异性调节。  相似文献   

    12.
    Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), members of the neurotrophin family, bind to and activate TrkA, TrkB and TrkC, respectively, members of the Trk receptor tyrosine kinase family, to exert various effects including promotion of differentiation and survival, and regulation of synaptic plasticity in neuronal cells. Many reports have suggested that different neurotrophins show distinct biological functions, although molecular mechanisms by which neurotrophins exert their different functions remain unclear. In the present study, we found distinct usages of phospholipase Cgamma (PLCgamma) and Shc in intracellular signaling stimulated by neurotrophins. BDNF stimulated much stronger interactions of PLCgamma with Trk than NGF and NT-3 in PC12 cells stably expressing TrkB and cultured cerebral cortical neurons, respectively, although BDNF, NGF and NT-3 induced similar levels of tyrosine phosphorylation of Trk. Furthermore, the cultured cortical neurons showed large PLCgamma-dependent increases in intracellular Ca(2+) levels in response to BDNF compared with NT-3. In Shc signaling, NGF, but not BDNF, displayed interactions between Trk and Shc in a phenylarsine oxide (PAO; an inhibitor of tyrosine phosphatase)-dependent manner in TrkB-expressing PC12 cells. These results indicated that neurotrophins stimulate distinct kinds of interactions between Trk and PLCgamma and between Trk and Shc. These differences may lead to the distinct biological functions of neurotrophins.  相似文献   

    13.
    Medulloblastomas are highly malignant and poorly understood childhood neoplasms. To determine if neurotrophins might influence the phenotypic properties of medulloblastoma in a paracrine or autocrine manner, 51 pediatric brain tumors including 20 biopsy specimens of these primitive neuroectodermal tumors (PNETs) and 31 other pediatric brain tumors were studied. Immunohistochemistry was used with antibodies to nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and NT-3, their cognate high affinity receptors as well as to neuronal and glial markers. TrkA, TrkB, and TrkC were observed in 5 (25%), 8 (40%), and 17 (85%), respectively, of these medulloblastomas while NGF, BDNF, and NT-3 were observed in 6 (30%), 8 (40%), and 3 (15%), respectively, and antibodies to neurofilament (NF) and glial fibrillary acidic proteins (GFAP) stained 16 (80%) and 11 (55%), respectively. TrkA and NGF were not observed in the same biopsy samples, while TrkB and BDNF were co-distributed in 6 of the cases, all of which expressed NF proteins. TrkC and NT-3 were co-distributed in 3 of the medulloblastomas, and these areas overlapped with NF protein-positive tumor cells in all 3 cases. In contrast to medulloblastomas, TrkA and NGF co-distributed in other pediatric brain tumors, and both Trk receptors and their neurotrophins co-distributed with GFAP-positive tumor cells in 13 (42%) of the non-PNET pediatric brain tumors. The absence of medulloblastomas that contain NGF and TrkA is consistent with in vitro data demonstrating that NGF-mediated TrkA signaling induces apoptosis. Finally, this study also suggests that BDNF and NT-3 may act in a paracrine or autocrine manner through TrkB and TrkC receptors, respectively, to induce neuronal differentiation in medulloblastomas. Received: 2 October 1997 / Revised, accepted: 29 December 1997  相似文献   

    14.
    15.
    BACKGROUND: Neurotrophins are involved in neuroimmune interactions. However, the expression and role of neurotrophin receptors on dendritic cells have not been systematically studied. METHODS: The neurotrophin receptors p75NTR, TrkA, TrkB and TrkC were analyzed on immature and mature Human Monocyte-derived Dendritic Cells (HMDCs) using flow cytometry. In addition, we compared the impact of five different maturing protocols on the expression of neurotrophin receptors on HMDCs. Finally, the effect of neurotrophins on surface molecule expression and the survival of HMDCs was investigated. RESULTS: There was a low expression of p75NTR, TrkA and TrkB on immature HMDCs. HMDCs at different maturation stages did not show a significantly different expression of TrkA, as compared to immature HMDCs. By contrast, there was an upregulation of TrkB on suboptimally, but not optimally matured HMDC. In addition, there was a non-significant trend to a parallel increase of p75NTR expression on these cells. Functional experiments with maturing HMDCs revealed that both ligands of the TrkB receptor, Brain-derived neurotrophic factor (BDNF) and Neurotrophin 4 (NT-4), significantly increased the expression of markers of antigen presentation (HLA-DR and CD80) and the survival of maturing HMDCs. CONCLUSION: These data suggest that the TrkB ligands BDNF and NT-4 can directly influence human dendritic cells during their maturation.  相似文献   

    16.
    The low affinity neurotrophin receptor (p75(NTR)) is implicated in promoting oligodendrocytic death after nerve growth factor (NGF) stimulation but NGF and neurotrophin-3 (NT-3) can also potentiate oligodendrocytic survival. We show regional variability in p75(NTR) expression within the central nervous system of the postnatal rat; expression is readily detectable by immunohistochemistry upon a subset of CNPase-positive oligodendroglia in optic nerve but not within the cerebrum. Nevertheless, oligodendroglia isolated from the cerebrum and cultured for 16 hours express p75(NTR) as well as the trkC but not the TrkA gene. Viability was not, however, influenced by exposure to either NGF or NT-3. Cells overexpressing p75(NTR) remained unresponsive to NGF but exhibited potentiated survival with NT-3, correlating with the differential expression profile of their high affinity receptors.  相似文献   

    17.
    Neurotrophins exert their biological functions on neuronal cells through two types of receptors, the trk tyrosine kinases and the low-affinity neurotrophin receptor (p75NTR), which can bind all neurotrophins with similar affinity. The p75NTR is highly expressed in developing motoneurons and in adult motoneurons after axotomy, suggestive of a physiological role in mediating neurotrophin responses under such conditions. In order to characterize this specific function of p75NTR, we have tested the effects of nerve growth factor (NGF) on embryonic motoneurons from control and p75NTR-deficient mice. NGF antagonizes brain-derived neurotrophic factor (BDNF)- and neurotrophin-3 (NT-3)-mediated survival in control but not p75NTR-deficient motoneurons. Survival of cultured motoneurons in the presence of 0.5 ng/mL of either ciliary neurotrophic factor (CNTF) or glial-derived neurotrophic factor (GDNF) was not reduced by 20 ng/mL NGF. Dose-response investigations revealed that five times higher concentrations of BDNF are required for half-maximal survival of p75NTR-deficient motoneurons in comparison to motoneurons from wild-type controls. After facial nerve lesion in newborn wild-type mice, local administration of NGF reduced survival of corresponding motoneurons to less than 2% compared to the unlesioned control side. In p75NTR-deficient mice, the same treatment did not enhance facial motoneuron death on the lesioned side. In the facial nucleus of 1-week-old p75NTR -/- mice, a significant reduction of motoneurons was observed at the unlesioned side in comparison to p75NTR +/+ mice. The observation that motoneuron cell numbers are reduced in the facial nucleus of newborn p75NTR-deficient mice suggests that p75NTR might not function as a physiological cell death receptor in developing motoneurons.  相似文献   

    18.
    Nodular/desmoplastic medulloblastomas are a well-established histopathological subtype containing reticulin-free nodules or "pale islands' that are comprised of cells with round "neurocytic" nuclei and abundant cytoplasm. Significant neuronal maturation occurs within nodules. We used immunohistochemistry to evaluate neuronal differentiation in the nodules of 6 of these tumors. The neuronal markers NeuN, synaptophysin, and MAP-2 were identified in the "pale islands" of all 6 nodular medulloblastomas examined, and high and medium molecular weight nonphosphorylated neurofilaments were detected in 2 of the 6 cases. We also observed collections of apoptotic cells within nodules. Given the known role of neurotrophin signaling in neuronal maturation and apoptosis, we analyzed immunohistochemically the distribution of neurotrophin receptors TrkA and TrkC and their primary ligands NGF and NT3 in 14 nodular medulloblastomas. TrkA and TrkC were detected in 13 and 10 cases, respectively, and were predominantly localized within nodules. NGF and NT3 were distributed diffusely with some nodular accentuation. The localized expression of Trk receptors within nodules of desmoplastic medulloblastomas suggests neurotrophin signaling is involved in the apoptosis and neuronal differentiation in medulloblastomas. We also examined expression of p53 and BCL-2 in these tumors; both were prominent in internodular regions but only weakly expressed within nodules. Trk receptors, p53, and BCL-2 are all expressed during development of the normal cerebellum. Interestingly, the immunohistochemical expression profile of these proteins in the differentiating nodules of medulloblastomas is in many ways similar to their expression in the developing cerebellum. Thus similar signaling pathways may be operational in cerebellar development and medulloblastoma tumor differentiation.  相似文献   

    19.
    To investigate the involvement of neurotrophins and nerve fibres in the pathogenesis of adenomyosis, we performed a retrospective, clinical study. Hysterectomy specimens from 40 patients with histologically proven adenomyosis and from 20 patients without adenomyosis or endometriosis were used for immunohistochemical analysis. In order to investigate neurotrophic properties in adenomyosis, the antibodies against nerve growth factor (NGF), neurotrophin 3 (NT-3), the high-affinity NGF receptor (TrkA), the low-affinity neurotrophin receptor (p75(NTR)), the neuronal marker S100 (for myelinated nerve fibres) and protein gene product 9.5 (PGP9.5; for intact nerve fibres) were used. There was no significant difference in the NGF, NT-3 and p75(NTR) expression in the myometrium or endometrium between the adenomyosis and the control group. The nerve fibre density (S100, PGP9.5 and p75(NTR)) did not significantly differ between the adenomyosis and control group, the nerve fibre density of the adenomyosis group was tendentially decreased when compared with the nonporous control group. The present study suggests that endometrial and uterine neurotrophin expression and endometrial innervation are not altered in adenomyosis; however, women with adenomyosis or with adenomyosis/endometriosis tendentially had less myometrial nerve fibres than the control group.  相似文献   

    20.
    Schwann cell death is a developmentally regulated phenomenon and is also induced after peripheral nerve axotomy in neonatal rodents. In this study, we explored whether ligand-induced activation of the low-affinity neurotrophin receptor (p75(NTR)) is responsible for inducing Schwann cell death in vivo. Administration of exogenous nerve growth factor (NGF) to the axotomized nerve site in wild-type animals resulted in a 2.6-fold increase in Schwann cell apoptosis in the distal nerve stumps compared to axotomy alone. No increase in apoptosis, above baseline levels, was seen in p75(NTR)-mutant mice either with or without NGF When anti-NGF antibodies were administered to the site of the peripheral nerve lesion in wild-type mice there was a reduction in the percentage of Schwann cell apoptosis to levels seen in both the quiescent state and in the axotomized nerves of the p75(NTR)-mutant mice. These results demonstrate that apoptosis of Schwann cells in axotomized peripheral nerve is mediated predominantly through p75(NTR) signaling and initiated via endogenously produced NGF.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号