共查询到20条相似文献,搜索用时 15 毫秒
2.
The molecular events responsible for impairments in cognition following mild traumatic brain injury are poorly understood. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), have been identified as having a role in learning and memory. We have previously demonstrated that following experimental brain trauma of moderate severity (2.0-2.1 atm), mRNA levels of BDNF and its high-affinity receptor, trkB, are increased bilaterally in the hippocampus for several hours, whereas NT-3 mRNA expression is decreased. In the present study, we used in situ hybridization to compare BDNF, trkB, NT-3, and trkC mRNA expression in rat hippocampus at 3 or 6 h after a lateral fluid percussion brain injury (FPI) of mild severity (1.0 atm) to sham-injured controls at equivalent time points. Mild FPI induced significant increases in hybridization levels for BDNF and trkB mRNAs, and a decrease in NT-3 mRNA in the hippocampus. However, in contrast to the bilateral effects of moderate experimental brain injury, the present changes with mild injury were restricted to the injured side. These findings demonstrate that even a mild traumatic brain injury differentially alters neurotrophin and neurotrophin receptor levels in the hippocampus. Such alterations may have important implications for neural plasticity and recovery of function in people who sustain a mild head injury. 相似文献
3.
The distribution within the brain stem of the afferent projections of the cervical vagus and the nodose ganglion was studied with horseradish peroxidase (HRP) and HRP-wheat germ agglutinin conjugate. Two to eight days after application of tracer into the cervical vagosympathetic trunk or the nodose ganglion the brain stems and ganglia were perfused and processed by the tetramethyl benzidine method. Vagal afferent fibers entered the lateral medulla as a distinct bundle spatially separate from the vagal efferent rootlets which were caudal and ventral to the afferents. Labeled axons in the solitary tract began to enter the nucleus tractus solitarii (nTS) 4.5 mm anterior to obex and were seen throughout the ipsilateral nTS as far as 3.5 mm caudal to obex. Label density varied within the nTS, with heaviest labeling in the dorsal and dorsolateral portions. Label was also seen in the ipsilateral area postrema (ap) and dorsal motor nucleus of the vagus. Labeled fibers crossed in the commissural portions of ap and nTS to enter the contralateral ap and nTS. 相似文献
4.
The afferent vagus nerve has been suggested to be an important component for transmitting peripheral immune signals to the brain. However, there is inconsistent evidence showing that subdiaphragmatic vagotomy did not inhibit the brain mediated behavioral and neural effects induced by the peripheral application of lipopolysaccharide (LPS). LPS triggers innate immune cells through Toll-like receptor 4 (TLR4). In the present study, we found that TLR4 mRNA and protein was expressed in the rat nodose ganglion. Thus, it is suggested that LPS could activate afferent vagus nerve at the level of nodose ganglion, which exists centrally from the subdiaphragmatic level of vagus nerve. The results could provide evidence for the novel pathway of LPS-induced afferent vagus nerve activation. 相似文献
5.
Acute peripheral axotomy of the visceral sensory neurons of the vagus and glossopharyngeal nerves removes peripheral depolarizing and trophic influences to their sensory ganglia. To study axotomy-induced changes in the putative neurotransmitters of visceral sensory neurons, rats were sacrificed 1, 3, 7 or 14 days after transection of either the cervical vagus and superior laryngeal nerves (to affect peripheral axotomy of the nodose ganglion) or the glossopharyngeal and carotid sinus nerves (to affect peripheral axotomy of the petrosal ganglion). The numbers of tyrosine hydroxylase (TH)-immunoreactive (ir), vasoactive intestinal peptide (VIP)-ir, calcitonin-gene-related peptide (CGRP)-ir, and substance P (SP)-ir neurons in the respective ganglia were analyzed in axotomized and control ganglia. In the nodose ganglion, axotomy of the cervical vagus resulted in a rapid (by 1 day) reduction in the number of TH-ir cells, whereas VIP-ir neurons were dramatically increased in number by 3 days. CGRP- and SP-ir cells in the nodose ganglion were relatively unaffected by axotomy. In the petrosal ganglion, axotomy of the glossopharyngeal and carotid sinus nerves greatly reduced the number of TH-ir cells but did not alter the number VIP-ir neurons. CGRP- and SP-ir neurons in the petrosal ganglion were reduced in number by axotomy. Thus, axotomy of visceral sensory neurons differentially changed the content and perhaps the expression of putative transmitters. Differential changes were seen among transmitters in a single ganglia and between ganglia. These data demonstrate the plasticity of putative neurotransmitter systems in visceral afferent systems of adult rats. 相似文献
6.
Neurons in the geniculate ganglion, like those in other sensory ganglia, are dependent on neurotrophins for survival. Most geniculate ganglion neurons innervate taste buds in two regions of the tongue and two regions of the palate; the rest are cutaneous nerves to the skin of the ear. We investigated the expression of four neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and NT-4, and five neurotrophin receptors, trkA, trkB, trkC, p75, and truncated trkB (Trn-B) in single sensory neurons of the adult rat geniculate ganglion associated with the five innervation fields. For fungiform papillae, a glass pipette containing biotinylated dextran was placed over the target papilla and the tracer was iontophoresed into the target papilla. For the other target fields, Fluoro-Gold was microinjected. After 3 days, geniculate ganglia were harvested, sectioned, and treated histochemically (for biotinylated dextran) or immunohistochemically (for Fluoro-Gold) to reveal the neurons containing the tracer. Single labeled neurons were harvested from the slides and subjected to RNA amplification and RT-PCR to reveal the neurotrophin or neurotrophin receptor genes that were expressed. Neurons projecting from the geniculate ganglion to each of the five target fields had a unique expression profile of neurotrophin and neurotrophic receptor genes. Several individual neurons expressed more than one neurotrophin receptor or more than one neurotrophin gene. Although BDNF is significantly expressed in taste buds, its primary high affinity receptor, trkB, was not prominently expressed in the neurons. The results are consistent with the interpretation that at least some, perhaps most, of the trophic influence on the sensory neurons is derived from the neuronal somata, and the trophic effect is paracrine or autocrine, rather than target derived. The BDNF in the taste bud may also act in a paracrine or autocrine manner on the trkB expressed in taste buds, as shown by others. 相似文献
7.
Opiate receptors measured in vivo with [3H]lofentanil in the rat vagus nerve were found to accumulate on both sides of a ligature. The time-course of accumulation was completely different in the proximal and the distal segments; the labelling was maximal 4 h after injection of [3H]lofentanil above the ligature but 16-24 h below the ligature. In unligated rats, a peak of radioactivity appeared in the nodose ganglion 16 h after injection; vagotomy, vinblastine or chronic treatment with capsaicin prevented the appearance of this delayed accumulation in the ganglion. These foregoing experiments suggest that opiate may act in the cell body of sensory neurones after being internalized at the nerve terminals and then transported retrogradely through fast axoplasmic mechanisms. 相似文献
8.
The synthesis and transport of substance P, the widely distributed undecapeptide, was studied in the vagus nerve of the guinea pig. In preliminary in vivo studies, the cervical vagus nerve was ligated 2 cm distal to the nodose ganglion. Twenty-four hours later, the content of immunoreactive substance P (IR-SP) in the 3-mm nerve segment proximal to ligature was 2147 ± 207pg(mean±S.E.M.)vs133 ± 31pg in an equal segment of unligated nerver or 243 ± 55pg in the nodose ganglion. When the vagus nerve was crushed above the ganglion and simultaneously ligated 2 cm distally, the IR-SP content proximal to the ligature was reduced 50% to 1131 ± 99pg ( P < 0.01), while nodose ganglion content increased to 420 ± 140pg(n.s.). To confirm that residual transport following supranodose crush was derived from nodose ganglion-synthesized SP, SP synthesis and transport were studied in explants of nodose ganglion and attached distal vagus nerve removed from perfused animals and maintained in vitro for up to 24 h. At the time of resection, nerves were ligated 1.5 cm distal to the ganglion. Twenty-four hours following explantation, IR-SP content in proximal segments was1022 ± 142pg vs155 ± 22pg in unligated segments and560 ± 72pg in the nodose ganglion. Accumulation in the proximal segment was time dependent. In separate experiments, [35S]methionine was added to explant medium and the explants maintained for varying time intervals. nerve tissue was extracted and subjected to either serial reverse phase high performance liquid chromatography (HPLC), or immunoprecipitation with SP antiserum followed by a single HPLC separation. By 4 h, radiolabeled SP was present in nodose ganglia and lesser amounts in the proximal segments. By 12 h, [35S]SP was present equally in ganglia and proximal segments whereas by 18 h, two-thirds or more of the newly synthesized peptide was present in proximal segments. At 18 h, the quantity of radiolabeled SP covaried with IR-SP content in the individual nerve segments. The addition of cycloheximide to explant medium reduced [35S]SP synthesis by 90%. These studies demonstrate that: (1) approximately 50% of immunoreactive SP transported efferently within the vagus nerve of the guinea pig is derived from the nodose ganglion, (2) de novo SP synthesis within and export from the nodose ganglion occurs within 4 h, (3) the changes in IR-SP content demonstrated in in vivo and in vitro ligation studies accurately reflect ongoing SP synthesis within the nodose ganglion. This transport model may provide one useful tool for studying the regulation of synthesis of SP, or other neuropeptides, within the sensory vagus nerve. 相似文献
9.
为研究迷走神经感受和传递免疫信息的机制,用免疫组织化学方法研究了IL-1Ⅰ型受体在正常和免疫激活的大鼠结状神经节和迷走旁节中的表达.结果表明,正常大鼠结状神经节和迷走旁节中均存在IL-1Ⅰ型受体样免疫反应阳性的神经元,结状神经节中阳性神经元以中、小细胞为主;迷走旁节中几乎所有的细胞均呈IL-1Ⅰ型受体样免疫阳性.细菌内毒素脂多糖(lipopolysaccharide,LPS)刺激后结状神经节和迷走旁节中阳性细胞数量未见明显变化.本文结果为迷走神经的初级内脏感觉神经元和迷走旁节可直接感受IL-1刺激的学说提供了形态学基础. 相似文献
10.
为研究迷走神经感受和传递免疫信息的机制,用免疫组织化学方法研究了IL-1Ⅰ型受体在正常和免疫激活的大鼠结状神经节和迷走旁节中的表达。本文结果为迷走神经的初级内脏感觉神经元和迷走旁节可直接感受IL-1Ⅰ刺激的学说提供了形态学基础。 相似文献
11.
To understand the dependence of primary sensory neurons on neurotrophic factors, we examined the distribution and colocalization of mRNAs for receptors of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) family ligands in dorsal root ganglion (DRG) and nodose ganglion (NG) neurons of adult rats by in situ hybridization (ISH) histochemistry using serial sections. About 35, 10, and 20% of the lumbar DRG neurons expressed trkA, trkB and trkC mRNAs, respectively. Messenger RNA signals for c-ret, a common signaling receptor of GDNF family ligands, were seen in about 60% of DRG neurons, and some of these neurons expressed trkA, trkB, or trkC mRNAs. Most (97%) of the DRG neurons observed were positive to at least one of these four mRNAs. About 50, 20, and 20% of DRG neurons expressed GDNF family receptor alpha1 (GFR alpha1), GFR alpha2, and GFR alpha3 mRNAs, respectively, and most of these neurons were positive to c-ret mRNA. Interestingly, GFR alpha2 and GFR alpha3 mRNA signals were frequently seen in the same neurons, which lack GFR alpha1 mRNA signals. On the other hand, 98% of NG neurons expressed trkB mRNA and 30-40% of NG neurons co-expressed c-ret and GFR alpha1 mRNAs. However, mRNA signals for other receptors (TrkA, TrkC, GFR alpha2, GFR alpha3) were seen in only a few NG neurons. These findings suggest that all the DRG neurons in adult rats depend on at least one of the NGF and GDNF family ligands, and that some DRG neurons depend on two ligands or more. In contrast, NG neurons were suggested to be divided into two major groups; one group depends on brain-derived neurotrophic factor (BDNF)/neurotrophin-4/5 (NT-4/5), and the other depends on both BDNF/NT-4/5 and GDNF. 相似文献
12.
Purpose: Exogenously applied BDNF has been shown to rescue rat retinal ganglion cells (RGCs) from axotomy-induced apoptotic death, presumably via activation of its high affinity receptor TrkB. Since both TrkB and BDNF are endogenously expressed in RGCs, auto- or para-crine neurotrophic loops in the retina may be involved. In the present study, we investigated whether expression levels of BDNF, TrkA, TrkB, TrkC and p75 protein in RGCs are specifically regulated following axonal lesion and during regeneration of optic fibres in the adult rat. Methods: By double labelling retinal cryosections with Fluorogold and respective antibodies we determined the percentage of RGCs expressing the above-mentioned markers. In addition, mRNA levels of BDNF and TrkB were measured using quantitative RT-PCR. Results: Compared to controls the number of BDNF-positive RGCs increased twofold 2 days after axotomy and the percentage of RGCs expressing TrkB was elevated by 50 %. Correspondingly, mRNA levels of BDNF increased about twofold 2 days after axotomy. During regen-eration, the percentage of BDNF-immunoreactive RGCs was further elevated compared to axotomy alone. The number of TrkA-positive RGCs doubled after axotomy, whereas no significant change in TrkC expression was observed. P75 expression was not detected in adult rat RGCs. Conclusion: Our results suggest that intrinsic rescue mechanisms may contribute to short term neuronal survival and axonal regeneration of RGCs after axonal lesions. 相似文献
13.
Purpose: Exogenously applied BDNF has been shown to rescue rat retinal ganglion cells (RGCs) from axotomy-induced apoptotic death, presumably via activation of its high affinity receptor TrkB. Since both TrkB and BDNF are endogenously expressed in RGCs, auto- or para-crine neurotrophic loops in the retina may be involved. In the present study, we investigated whether expression levels of BDNF, TrkA, TrkB, TrkC and p75 protein in RGCs are specifically regulated following axonal lesion and during regeneration of optic fibres in the adult rat. Methods: By double labelling retinal cryosections with Fluorogold and respective antibodies we determined the percentage of RGCs expressing the above-mentioned markers. In addition, mRNA levels of BDNF and TrkB were measured using quantitative RT-PCR. Results: Compared to controls the number of BDNF-positive RGCs increased twofold 2 days after axotomy and the percentage of RGCs expressing TrkB was elevated by 50 %. Correspondingly, mRNA levels of BDNF increased about twofold 2 days after axotomy. During regen-eration, the percentage of BDNF-immunoreactive RGCs was further elevated compared to axotomy alone. The number of TrkA-positive RGCs doubled after axotomy, whereas no significant change in TrkC expression was observed. P75 expression was not detected in adult rat RGCs. Conclusion: Our results suggest that intrinsic rescue mechanisms may contribute to short term neuronal survival and axonal regeneration of RGCs after axonal lesions. 相似文献
14.
Satellite glial cell (SGCs) in trigeminal and dorsal root ganglia are altered structurally and functionally under pathological conditions associated with chronic pain. These changes include reactive gliosis, augmented coupling by gap junctions, and increased responses to ATP via purinergic P2 receptors. Similar information for nodose ganglia (NG), which receive sensory inputs from internal organs via the vagus nerves, is missing. Here, we investigated changes in SGCs in mouse NG after the intraperitoneal administration of lipopolysaccharide (LPS), which induces systemic inflammation. Using calcium imaging we found that SGCs in intact, freshly isolated NG are sensitive to ATP, acting largely via purinergic P2 receptors (mixed P2X and P2Y), with threshold at 0.1 μM. A single systemic injection of LPS (2.5 mg/kg) induced a 6‐fold increase in the responses to ATP, largely by augmenting the sensitivity of P2X receptors. Immunohistochemical analysis revealed that at 1–14 days post‐LPS injection the expression of glial fibrillary acidic protein in SGCs was 2–3‐fold greater than controls. The expression of pannexin 1 channels increased 2‐fold at day 7 after LPS injection. Using intracellular labeling we examined dye coupling among SGCs around different neurons, and observed an over 2‐fold higher incidence of dye coupling after the induction of inflammation. Incubating the ganglia with ATP increased dye coupling by acting on neuronal P2X receptors, suggesting a role for ATP in the LPS‐induced changes. We conclude that inflammation induces prominent changes in SGCs of NG, which might have a role in vagal afferent functions, such as the inflammatory reflex. GLIA 2015;63:2121–2132 相似文献
15.
The motor and sensory connections of the cervical vagus nerve and of its inferior ganglion (nodose ganglion) have been traced in the medulla oblongata of 32 adult cats with the neuroanatomical methods of horseradish peroxidase (HRP) histochemistry and amino acid autoradiography (ARG). In 14 of these subjects, an aqueous solution of HRP was applied unilaterally to the central end of the severed cervical vagus nerve. In 13 other cases, HRP was injected directly into the nodose ganglion. Three of these 13 subjects had undergone infranodose vagotomy 6 weeks prior to the HRP injection. A mixture of tritiated amino acid was injected into the nodose ganglion in five additional cats. The retrograde transport of HRP yielded reaction product in nerve fibers and perikarya of parasympathetic and somatic motoneurons in the medulla oblongata. Furthermore, a tetramethyl benzidine (TMB) method for visualizing HRP enabled the demonstration of anterograde and transganglionic transport, so that central sensory connections of the nodose ganglion and of the vagus nerve could also be traced. The central distribution of silver grain following injections of tritiated amino acids in the nodose ganglion corresponded closely with the distribution of sensory projections demonstrated with HRP, thus confirming the validity of HRP histochemistry as a method for tracing these projections. The histochemical and autoradiographic experiments showed that the vagus nerve enters the medulla from its lateral aspect in multiple fascicles and that it contains three major components—axons of preganglionic parasympathetic neurones, axons of skeletal motoneurons, and central processes of the sensory neurons in the nodose ganglion. Retrogradely labeled neurons were seen in the dorsal motor nucleus of X(dmnX), the nucleus ambiguus (nA), the nucleus retroambigualis (nRA), the nucleus dorsomedialis (ndm) and the spinal nucleus of the accessory nerve (nspA). The axons arising from motoneurons in the nA did not traverse the medulla directly laterally; rather, all of these axons were initially directed dorsomedially toward the dmnX, where they formed a hairpin loop and then accompanied the axons of dmnX neurons to their points of exit. Afferent fibers in the vagus nerve reached most of the subnuclei of the nTS bilaterally, with the more intense labeling being found on the ipsilateral side. Labeling of sensory vagal projections was also found in the area postrema of both sides and around neurons of the dmnX. These direct sensory projections terminating within the dmnX may provide an anatomical substrate for vagally mediated monosynpatic reflexes. Following deefferentiation by infranodose vagotomy 6 weeks prior to HRP injections into the nodose ganglion, a number of neurons in the dmnX were still intensely labeled with the HRP reaction product. The axons of these HRP-labeled perikarya may constitute the bulbar component of the accessory nerve. 相似文献
16.
Previous studies indicated that axotomy exposes motoneurons to glutamatergic excitotoxic stress and protection from glutamatergic overactivation might be crucial for survival. Depending on the experimental model and the subtype involved, activation of metabotropic glutamate receptors (mGluRs) may either enhance excitotoxicity or exert protective effects. To investigate a possible involvement of mGluRs in neuronal rescue mechanisms after axotomy we have monitored the distribution of mGluR mRNA with in situ hybridization in adult rat motoneurons 1, 2, 3, and 4 weeks after sciatic nerve transection. Motoneurons in sham-operated control animals expressed mGluR 1, 4, and 7 mRNA. The mGluR1 mRNA signal was reduced to 49.6+/-6.9% as compared to the contralateral side 2 weeks after axotomy and 31.2+/-8.3% after 4 weeks. The mGluR4 signal declined to 22.1+/-5.1% after 1 week and 10.2+/-1.6% after 2 weeks, remaining stable thereafter. During the entire observation period the mRNA for mGluR7 was not significantly altered. Axotomy did not change the overall number of motoneurons on the ipsi- or contralateral side. The differential regulation of mGluR subtypes may be part of an adaptive cell program that helps to rescue adult motoneurons from excitotoxic cell death during the stress induced by peripheral denervation. 相似文献
17.
Neuropeptides and neurotrophin receptors are regulated in primary sensory neurons in response to axonal injury, and axonal lesions are characteristic stigmata of aging primary sensory neurons. We have therefore examined the expression of neuropeptides and neurotrophin receptor mRNAs in 30-month-old (median survival age) Sprague-Dawley rats to see if similar adaptive mechanisms operate in senescence. The content of neuropeptides was examined with immunohistochemistry (IHC) and in situ hybridization (ISH), and the cellular mRNA expression of neurotrophin receptors was studied with ISH. All of the aged rats had symptoms of hind limb incapacity (posterior paralysis), but fore limbs did not seem affected. The size-distribution of neuronal profiles in cervical and lumbar dorsal root ganglia (DRGs) was similar in aged and young adult (2–3 months old) rats. In aged rats, the DRG neurons showed an increase in both immunolabelling and mRNA content of neuropeptide tyrosine (NPY), as well as an increased cellular expression of galanin mRNA. In the same animals, there were decreased cellular levels of calcitonin gene-related peptide (CGRP; IHC and ISH) and substance P (SP; IHC and ISH), while the difference in neuronal somatostatin (IHC and ISH) was small. The distribution of neuropeptide immunoreactivities in the dorsal horn of the corresponding spinal cord segments revealed a decreased labelling for CGRP-, SP-, and somatostatin-like immunoreactivities (LI) in the aged rats at both cervical and lumbar levels. NPY- and galanin-LI had a similar distribution in aged and young adult rats. NPY-immunoreactive fibers were also encountered in the dorsal column of aged but not young adult rats. ISH revealed that most of the primary sensory neurons express mRNA for the p75 low-affinity neurotrophin receptor (p75-LANR) and that there was no discernible difference between young adult and aged rats. The labelling intensity for mRNA encoding high-affinity tyrosine kinase receptors (TrkA, TrkB, and TrkC) was decreased in aged rat DRG neurons, while the percentage of neuronal profiles expressing mRNA for TrkA/B/C was similar in young adult and aged rats. The changed pattern of neuropeptide expression in primary sensory neurons of aged rats resembled that seen in young adult rats subjected to axonal injury of peripheral sensory nerves and may, thus, indicate aging-related lesions of sensory fibers. Since NPY is primarily present in large and galanin in small DRG neurons, the stronger effect on NPY as compared to galanin expression may indicate that aging preferentially affects neurons associated with mechanoreception (Aα and Aβ fibers) as compared to nociceptive units (A and C fibers). Furthermore, the observed changes in neuropeptide expression were most pronounced in lumbar DRGs, that harbors the sensory neurons supplying the affected hindlimbs of the rats. © 1996 Wiley-Liss, Inc. 相似文献
18.
Patients with schizophrenia have reduced neurotrophin levels in their dorsolateral prefrontal cortex (DLPFC) compared to normal unaffected individuals. The tyrosine kinase-containing receptors, trkB and trkC, mediate the growth-promoting effects of neurotrophins and respond to changes in growth factor availability. We hypothesized that trkB and/or trkC expression would be altered in the DLPFC of patients with schizophrenia. We measured mRNA encoding the tyrosine kinase domain (TK+)-containing form of trkB and measured pan trkC mRNA in schizophrenics (N=14) and controls (N=15) using in situ hybridization. TrkB and trkC mRNAs were detected in large and small neurons in multiple cortical layers of the human DLPFC. We found significantly diminished expression of trkB(TK+) mRNA in large neurons in multiple cortical layers of patients as compared to controls, while small neurons also showed reductions in trkB(TK+) mRNA that did not reach statistical significance. In normals, strong positive correlations were found between trkB(TK+) mRNA levels and brain-derived neurotrophic factor (BDNF) mRNA levels among various neurons, while no correlation between BDNF and trkB(TK+) was found in patients with schizophrenia. TrkC mRNA was also reduced in the DLPFC of schizophrenics in large neurons in layers II, III, V and VI and in small neurons in layer IV. Since neurons in the DLPFC integrate and communicate signals to various cortical and subcortical regions, these reductions in growth factor receptors may compromise the function and plasticity of the DLPFC in schizophrenia. 相似文献
19.
This study examined the expression of neurotrophins and neurotrophin receptors in the lesion/transplanted striatum at four different time points after transplantation. The ventral mesencephalic region was dissected from a single rat fetus at embryonic day 14 (E14) and implanted into the denervated striatum of rats with unilateral 6-hydroxydopamine lesions. Transplanted rats were killed at 1, 2, 3, or 4 weeks after transplantation surgery and the brains subsequently prepared for semiquantitative in situ hybridization analysis of neurotrophin and neurotrophin trk receptors. Hybridization of cRNA probes for trkB or trkC showed a time-dependent reduction within the transplant during the first 4 weeks after transplantation; hybridization of brain-derived neurotrophic factor or tyrosine hydroxylase mRNA probes within the transplant did not change significantly during the same posttransplantation period. Hybridization of the trkB mRNA probe in host striatum adjacent to the transplant was significantly higher than probe hybridization in the corresponding region of the intact striatum during the first 2 weeks after transplantation, but by the 3rd and 4th week, probe hybridization in the denervated/transplanted and intact striatum were the same. Lesioned animals without transplants maintained higher trkB mRNA probe hybridization in the denervated striatum than in the intact striatum at the same postlesion time points suggesting that lesioned/transplanted animals show a normalization of trkB mRNA probe hybridization. Hybridization of the trkC mRNA probe in the lesioned/transplanted striatum was significantly lower than that observed in the intact striatum 4 weeks after transplantation; however, at this same time point we observed a similar reduction of trkC probed hybridization in lesioned animals without transplants. The results of the study show dynamic neurotrophic activity occurring within the transplant and host tissue during the first month of transplant development. 相似文献
20.
Afferent fibers mediating pain from myocardial ischemia classically are believed to travel in sympathetic nerves to enter the thoracic spinal cord. After sympathectomies, angina pectoris still may radiate to the neck and inferior jaw. Sensory fibers from those regions are thought to enter the central nervous system through upper spinal cord segments. We postulated that axons from nodose ganglion cells might project to cervical cord segments. The purpose of this study was to determine the density and pathway of vagal afferent innervation to the upper cervical spinal cord. Following an injection of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the upper cervical spinal cord, approximately 5.8% of cells in the nodose ganglion contained reaction product. Cervical vagotomy did not diminish the density of WGA-HRP labeled cells in the nodose ganglion. However, a spinal cord hemisection cranial to the injection site eliminated labeling of nodose cells. These data indicate that a portion of vagal afferent neurons project from the nodose ganglion to the upper cervical spinal cord. In addition, vagal afferent fibers reach the spinal cord via a central route rather than through dorsal root ganglia. 相似文献
|