首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial theory of aging predicts that functional alterations in mitochondria contribute to the aging process. Whereas this hypothesis implicates increased production of reactive oxygen species (ROS) as a driving force of the aging process, little is known about molecular mechanisms by which mitochondrial impairment might contribute to aging. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between mitochondrial impairment and the appearance of a senescence-like phenotype in young cells. We found that treatment by antimycin A delays proliferation and induces premature senescence in a subset of the cells, associated with increased reactive oxygen species (ROS) production. Quenching of ROS by antioxidants did however not restore proliferation capacity nor prevent premature senescence. Premature senescence is also induced upon chronic exposure to oligomycin, irrespective of ROS production, and oligomycin treatment induced the up-regulation of the cdk inhibitors p16, p21 and p27, which are also up-regulated in replicative senescence. Thus, besides the well-established influence of ROS on proliferation and senescence, a reduction in the level of oxidative phosphorylation is causally related to reduced cell proliferation and the induction of premature senescence.  相似文献   

2.
Aging is associated with increased vulnerability to chronic, degenerative diseases and death. Strategies for promoting healthspan without necessarily affecting lifespan or aging rate have gained much interest. The mitochondrial free radical theory of aging suggests that mitochondria and, in particular, age-dependent mitochondrial decline play a central role in aging, making compounds that affect mitochondrial function a possible strategy for the modulation of healthspan and possibly the aging rate. Here we tested such a “metabolic tuning” approach in nematodes using the mitochondrial modulator dichloroacetate (DCA). We explored DCA as a proof-of-principle compound to alter mitochondrial parameters in wild-type animals and tested whether this approach is suitable for reducing reactive oxygen species (ROS) production and for improving organismal health- and lifespan. In parallel, we addressed the potential problem of operator bias by running both unblinded and blinded lifespan studies. We found that DCA treatment (1) increased ATP levels without elevating oxidative protein damage and (2) reduced ROS production in adult C. elegans. DCA treatment also significantly prolonged nematode health- and lifespan, but did not strongly impact mortality doubling time. Operator blinding resulted in considerably smaller lifespan-extending effects of DCA. Our data illustrate the promise of a “metabolic tuning” intervention strategy, emphasize the importance of mitochondria in nematode aging and highlight operator bias as a potential confounder in lifespan studies.  相似文献   

3.
OBJECTIVE: Acetylcholine (ACh) mimics ischemic preconditioning (PC) and therefore protects the heart against lethal ischemia. Steps common to both ischemic and drug-induced PC are opening of mitochondrial K(ATP) channels (mito K(ATP)) and generation of reactive oxygen species (ROS). The aim of this study was to test whether ACh-induced ROS production could be seen in a vascular smooth muscle cell line, and, if so, to investigate the underlying signaling pathway. METHODS: Mitochondrial ROS generation was quantified by measuring changes in fluorescence of ROS-sensitive intracellular markers in vascular smooth muscle cells (A7r5). RESULTS: Fluorescence, and, therefore, ROS production, was increased to 197.5+/-8.5% of baseline after 45 min of exposure of cells to 2 mM ACh (P<0.001 vs. untreated controls). This effect was blocked by co-treatment with a muscarinic receptor antagonist (atropine 102.8+/-2.9%, 4-DAMP 92.6+/-7.4%) or by inhibition of G(i) with pertussis toxin (PTX) (90.5+/-4.4%), implicating a receptor-mediated rather than non-specific effect of ACh. The increased fluorescence induced by ACh was also abrogated by the free radical scavenger N-(2-mercaptopropionyl) glycine (104.2+/-10.1%), documenting that ROS were indeed the cause of the enhanced fluorescence. Both diazoxide, a K(ATP) channel opener, and valinomycin, a potassium ionophore, also significantly increased ROS production, and these effects were not blocked by PTX, while the K(ATP) channel closer 5-hydroxydecanoate blocked ACh-induced ROS production (92.3+/-3.8%). These results suggest ROS production is directly influenced by K(ATP) activity and K(+) movements in the cell. The tyrosine kinase inhibitor genistein (102.8+/-6.6%) and the phosphatidylinositol 3 (PI3)-kinase inhibitor wortmannin (90.7+/-4.1%) also inhibited the ability of ACh to increase ROS production. CONCLUSION: The signaling pathway by which ACh leads to ROS generation in A7r5 cells involves a muscarinic surface receptor, a pertussis toxin-sensitive G protein, PI3-kinase, at least one tyrosine kinase, and a 5-hydroxydecanoate (5-HD)-dependent K(ATP) (presumably that in mitochondria).  相似文献   

4.
Mitochondrial reactive oxygen species (ROS) production rates are reported to be inversely related to maximum lifespan potential (MLSP) in mammals and also to be higher in short-living mammals compared to short-living birds. The mammal-bird comparison, however, is mainly based on studies of rats and pigeons. To date, there has been no systematic examination of ROS production in birds that differ in MLSP. Here we report a comparison of mitochondrial ROS production in two short-living (quails) and three long-living bird species (parrots) that exhibit, on average, a 5-fold longevity difference. Mitochondrial ROS production was determined both in isolated mitochondria (heart, skeletal muscle and liver) as traditionally done and also in intact erythrocytes. In all four tissues, mitochondrial ROS production was similar in quails and parrots and showed no correspondence with known longevity differences. The lack of a consistent difference between quails and parrots was not due to differences in mitochondrial content as ROS production in relation to oxygen consumption (determined as the free radical leak) showed a similar pattern. These findings cast doubt on the robustness of the oxidative stress theory of aging.  相似文献   

5.
6.
Mitochondrial disease in mouse results in increased oxidative stress   总被引:29,自引:0,他引:29       下载免费PDF全文
It has been hypothesized that a major factor in the progression of mitochondrial disease resulting from defects in oxidative phosphorylation (OXPHOS) is the stimulation of the mitochondrial production of reactive oxygen species (ROS) and the resulting damage to the mtDNA. To test this hypothesis, we examined the mitochondria from mice lacking the heart/muscle isoform of the adenine nucleotide translocator (Ant1), designated Ant1(tm2Mgr) (-/-) mice. The absence of Ant1 blocks the exchange of ADP and ATP across the mitochondrial inner membrane, thus inhibiting OXPHOS. Consistent with Ant1 expression, mitochondria isolated from skeletal muscle, heart, and brain of the Ant1-deficient mice produced markedly increased amounts of the ROS hydrogen peroxide, whereas liver mitochondria, which express a different Ant isoform, produced normally low levels of hydrogen peroxide. The increased production of ROS by the skeletal muscle and heart was associated with a dramatic increase in the ROS detoxification enzyme manganese superoxide dismutase (Sod2, also known as MnSod) in muscle tissue and muscle mitochondria, a modest increase in Sod2 in heart tissue, and no increase in heart mitochondria. The level of glutathione peroxidase-1 (Gpx1), a second ROS detoxifying enzyme, was increased moderately in the mitochondria of both tissues. Consistent with the lower antioxidant defenses in heart, the heart mtDNAs of the Ant1-deficient mice showed a striking increase in the accumulation of mtDNA rearrangements, whereas skeletal muscle, with higher antioxidant defenses, had fewer mtDNA rearrangements. Hence, inhibition of OXPHOS does increase mitochondrial ROS production, eliciting antioxidant defenses. If the antioxidant defenses are insufficient to detoxify the ROS, then an increased mtDNA mutation rate can result.  相似文献   

7.
Melatonin, mitochondria, and cellular bioenergetics   总被引:8,自引:0,他引:8  
Aerobic cells use oxygen for the production of 90-95% of the total amount of ATP that they use. This amounts to about 40 kg ATP/day in an adult human. The synthesis of ATP via the mitochondrial respiratory chain is the result of electron transport across the electron transport chain coupled to oxidative phosphorylation. Although ideally all the oxygen should be reduced to water by a four-electron reduction reaction driven by the cytochrome oxidase, under normal conditions a small percentage of oxygen may be reduced by one, two, or three electrons only, yielding superoxide anion, hydrogen peroxide, and the hydroxyl radical, respectively. The main radical produced by mitochondria is superoxide anion and the intramitochondrial antioxidant systems should scavenge this radical to avoid oxidative damage, which leads to impaired ATP production. During aging and some neurodegenerative diseases, oxidatively damaged mitochondria are unable to maintain the energy demands of the cell leading to an increased production of free radicals. Both processes, i.e., defective ATP production and increased oxygen radicals, may induce mitochondrial-dependent apoptotic cell death. Melatonin has been reported to exert neuroprotective effects in several experimental and clinical situations involving neurotoxicity and/or excitotoxicity. Additionally, in a series of pathologies in which high production of free radicals is the primary cause of the disease, melatonin is also protective. A common feature in these diseases is the existence of mitochondrial damage due to oxidative stress. The discoveries of new actions of melatonin in mitochondria support a novel mechanism, which explains some of the protective effects of the indoleamine on cell survival.  相似文献   

8.
OBJECTIVES: Ischemic preconditioning (PC) reduces myocardial infarction by a mechanism that involves opening of mitochondrial ATP-dependent potassium channels (mK(ATP)), reactive oxygen species (ROS), and possibly activation of p38 mitogen-activated protein kinase (p38 MAPK). The actual order of these steps, however, is a matter of current debate. This study examined whether protection afforded by menadione, which protects by causing mitochondria to produce ROS, requires mK(ATP) opening. In addition, we tested whether protection from anisomycin, a p38 MAPK activator, is dependent on ROS production. METHODS AND RESULTS: Isolated, buffer-perfused rat hearts were pretreated with menadione, and infarction was assessed after 30 min of regional ischemia and 120 min of reperfusion. Menadione reduced infarction in a dose-dependent manner with an EC(50) of 270 nM. Menadione's infarct-limiting effect was insensitive to 200 microM 5-hydroxydecanoate (5HD), an mK(ATP) channel blocker, whereas protection by diazoxide and PC were blocked by 5HD. Anisomycin caused hearts to resist infarction and this protective effect was abrogated by SB203580, a p38 MAPK inhibitor, and 2-mercaptopropionylglycine (MPG), a free radical scavenger. CONCLUSIONS: These results indicate that mK(ATP) opening occurs upstream of mitochondrial ROS generation in the protective pathway. Furthermore, protection afforded by anisomycin was p38 MAPK- and ROS-dependent.  相似文献   

9.
Serum IGF-I levels decline with age. We have recently reported that in aging rats the exogenous administration of IGF-I restores IGF-I circulating levels and age related-changes, improving glucose and lipid metabolisms, increasing testosterone levels and serum total antioxidant capability, and reducing oxidative damage in the brain and liver associated with a normalization of antioxidant enzyme activities. Understanding that mitochondria are one of the most important cellular targets of IGF-I, the aims of this study were to characterize mitochondrial dysfunction and study the effect of IGF-I therapy on mitochondria, leading to cellular protection in the following experimental groups: young controls, untreated old rats, and aging rats treated with IGF-I. Compared with young controls, untreated aging rats showed an increase of oxidative damage in isolated mitochondria with a mitochondrial dysfunction characterized by: depletion of membrane potential with increased proton leak rates and intramitochondrial free radical production, and a significant reduction of ATPase and complex IV activities. In addition, mitochondrial respiration from untreated aging rats was atractyloside insensitive, suggesting that the adenine nucleotide translocator was uncoupled. The adenine nucleotide translocator has been shown to be one of the most sensitive locations for pore opening. Accordingly, untreated aging rats showed a significant overexpression of the active fragment of caspases 3 and 9. IGF-I therapy corrected these parameters of mitochondrial dysfunction and reduced caspase activation. In conclusion, these results show that the cytoprotective effect of IGF-I is closely related to a mitochondrial protection, leading to reduce free radical production, oxidative damage, and apoptosis, and to increased ATP production.  相似文献   

10.
Cumulative mtDNA damage occurs in aging animals, and mtDNA mutations are reported to accelerate aging in mice. We determined whether aging results in increased DNA oxidative damage and reduced mtDNA abundance and mitochondrial function in skeletal muscle of human subjects. Studies performed in 146 healthy men and women aged 18-89 yr demonstrated that mtDNA and mRNA abundance and mitochondrial ATP production all declined with advancing age. Abundance of mtDNA was positively related to mitochondrial ATP production rate, which in turn, was closely associated with aerobic capacity and glucose tolerance. The content of several mitochondrial proteins was reduced in older muscles, whereas the level of the oxidative DNA lesion, 8-oxo-deoxyguanosine, was increased, supporting the oxidative damage theory of aging. These results demonstrate that age-related muscle mitochondrial dysfunction is related to reduced mtDNA and muscle functional changes that are common in the elderly.  相似文献   

11.
Various recent investigations relevant to the study of aging mechanisms have recently found that increases in longevity during dietary restriction can occur together with lack of decreases or even increases in O2 consumption. This is frequently interpreted as contradictory with the mitochondrial free radical theory of aging. But this is based on the erroneous assumption that increasing O2 consumption must increase the rate of mitochondrial oxygen radical generation. Here it is shown that the opposite occurs in many important situations. Strong decreases in absolute and relative (per unit of O2 consumed) mitochondrial oxygen radical production occur during aerobic exercise bouts, chronic exercise training, and hyperthyroidism, and notably, during dietary restriction. Mitochondrial oxygen radical generation is also lower in long-lived birds than in short-lived mammals of similar body size and metabolic rate. Total rates of reactive oxygen species generation can also vary between tissues in a way not linked to their differences in oxygen consumption. All this indicates that mitochondrial reactive oxygen species (ROS) production is not a simple byproduct of mitochondrial respiration. Instead, it is regulated independently of O2 consumption in many different physiologic situations, tissues, and animal species. Thus, the apparently paradoxical increases in O2 consumption observed in some models of dietary restriction do not discredit the mitochondrial free radical theory of aging, and they can further strengthen it.  相似文献   

12.
This review deals with the cellular mechanisms underlying decreased energy status documented in different tissues from experimental rat models of primary and secondary hypertension as well as the involvement of these abnormalities in the pathogenesis of the disease. Such analyses allow us to hypothesize that dysfunction of mitochondrial energy conversion, caused by distinct stimuli, including generalized disturbances of intracellular Ca2+ handling and mitochondria calcium overload found in primary hypertension, leads to uncoupling of oxidation and phosphorylation and attenuated ATP synthesis. Examples of arterial hypertension accompanied by mitochondrial uncoupling and cell ATP depletion (hyperthyroidism, cold hypertension, cyclosporine A intake, etc.) may be considered as an additional argument supporting this opinion. It means also that despite of differences in triggering mechanisms of mitochondrial dysfunction in all these models, the final outcome, i.e. decreased mitochondrial ATP production, is similar. Attenuated intracellular ATP content, in turn, results in the long-term maintenance of elevated BP by increased sympathetic outflow, whereas augmented ROS production following mitochondrial dysfunction lowers the capacity of the NO-dependent vascular relaxation. In the light of these data the cause of stationary elevated BP in chronic arterial hypertension should be regarded as a compensatory response to decreased mitochondrial ATP synthesis.  相似文献   

13.
Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.  相似文献   

14.
Acetylcholine (ACh), like ischemic preconditioning (PC), protects against infarction and is dependent on generation of reactive oxygen species (ROS). To investigate the mechanism by which ACh causes ROS production, isolated adult rabbit cardiomyocytes underwent a timed incubation in reduced MitoTracker Red, which is oxidized to a fluorescent form after exposure to ROS. The mitochondrial ATP-sensitive potassium (mK(ATP)) channel opener diazoxide (50 microM) increased fluorescence by 47 +/- 9% (P = 0.007), indicating that opening of mK(ATP) leads to ROS generation, and that increase was blocked by the mK(ATP) blocker 5-hydroxydecanoate (5HD, 1 mM); 250 microM ACh caused a similar increase in ROS generation (+45 +/- 6% for all experiments, P < 0.001). ACh-induced ROS production was prevented by (1) blockade of muscarinic surface receptors with 100 microM atropine (-6 +/- 2%, P = n.s.) or 250 nM 4-DAMP (+5 +/- 13%, P = n.s.), indicating that ACh's effect was receptor mediated; (2) closing K(ATP) channels with either the non-selective channel closer glibenclamide (50 microM) (-1.2 +/- 17%, P = n.s.) or the selective mK(ATP) closer 5HD (-1.8 +/- 9%, P = n.s.), indicating that increased ROS production involved opening of mK(ATP); (3) blockade of mitochondrial electron transport chain with 200 nM myxothiazol (-4 +/- 9%, P = n.s.), indicating ROS came from the mitochondria; (4) addition of 100 nM wortmannin (-13 +/- 12%, P = n.s.), indicating that phosphatidylinositol 3-(PI3)-kinase was involved; and (5) blockade of Src-kinase with 1 microM PP2 (-2 +/- 5%, P = n.s.), indicating the involvement of an Src-kinase. These results support the hypothesis that occupation of muscarinic surface receptors by ACh causes activation of PI3- and Src-kinases that then open mK(ATP) resulting in mitochondrial ROS generation and triggering of the preconditioned state.  相似文献   

15.
16.
Cellular damage caused by free radical reactions may play a role in the aging process. A bout of exercise can increase free radical concentration with damage to mitochondria in muscle (Davies et al., 1982). This study was undertaken to determine if muscle adapts to exercise training with an enhancement of enzymatic defenses against free radical damage. A program of running that induced two-fold increases in mitochondrial enzymes in leg muscles of rats resulted in no increase in catalase or cytoplasmic superoxide dismutase (SOD) activities. Mitochondrial SOD activity was increased 37% in fast-twitch red and slow-twitch red types of muscle and 14% in white muscle. Thus, despite an increase in mitochondrial SOD, the ratio of SOD to mitochondrial citrate cycle and respiratory chain enzymes was decreased. It seems unlikely that increased capacity for enzymatic scavenging of superoxide radical is a major protective adaptation against free radical damage in exercise-trained muscle.  相似文献   

17.
Although vital to life, mitochondria are also the major source of ROS production, which may have unwanted detrimental effects on DNA, RNA and protein structures Therefore, mitochondria must exhibit well-developed mechanisms to regulate its ROS production. One such mechanism might be mild uncoupling of the mitochondrial respiratory chain, thereby lowering the proton gradient across the inner mitochondrial membrane and directly lowering ROS production. Mitochondrial uncoupling proteins have been shown to possess mild uncoupling activity and may therefore be important regulator of mitochondrial ROS production. The skeletal muscle isoform of the uncoupling protein family, UCP3, seems to be specifically active under conditions of high fatty acid availability. Although the exact function of UCP3 is not yet unravelled, UCP3 is activated by lipid peroxides and suggested to export fatty acid anions and/or peroxides from the mitochondrial matrix, thereby specifically protecting fatty acids from ROS-induced oxidative damage. Protein levels of UCP3 are reduced with aging and in the (pre)-diabetic state, both conditions characterized by increased levels of oxidative damage to lipids and proteins and reduced mitochondrial function. Whether UCP3 is causally related to mitochondrial dysfunction and is essential in the prevention and treatment of lipid-induced mitochondrial dysfunction requires further study.  相似文献   

18.
Oxidative stress, mitochondria and mtDNA-mutator mice   总被引:2,自引:0,他引:2  
The oxidative stress theory of aging, an expansion of the mitochondrial theory of aging, is based around the idea of a vicious cycle, in which somatic mutations of mitochondrial DNA (mtDNA) provoke respiratory chain dysfunction leading to enhanced ROS production and in turn to the accumulation of further mtDNA mutations. Mitochondrial dysfunction and mtDNA mutations are amplified during the course of aging. Recently, results obtained from mtDNA-mutator mice further strengthen the role of mitochondria in the aging process. However, lack of increased oxidative stress in the mtDNA-mutator mice raises doubts in the direct connection of mtDNA mutations with increased ROS production, challenging the oxidative stress theory of aging. The purpose of this short review is to highlight several studies that provide direct evidence that accelerated aging is linked to mtDNA mutations, without an increase in oxidative damage.  相似文献   

19.
AIM: To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor-Ⅰ (IGF-Ⅰ ) therapy (4 wk) is able to induce beneficial effects on damaged mitochondria leading to cellular protection.
METHODS: Wistar rats were divided into three groups: Control group, untreated cirrhotic rats and cirrhotic rats treated with IGF-Ⅰ treatment (2 μg/1O0 g bw/d). Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria, caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three expedmental groups.
RESULTS: Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3); an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity. IGF-Ⅰ therapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production. Activity of the electron transport complexes Ⅰ and Ⅲ was increased in both cirrhotic groups. In addition, untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis. IGF- Ⅰ therapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis.
CONCLUSION: These results show that IGF- Ⅰ exerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.  相似文献   

20.
AIM:To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor- I (IGF-I) therapy (4 wk) is able to in-duce beneficial effects on damaged mitochondria leading to cellular protection.METHODS:Wistar rats were divided into three groups:Control group,untreated cirrhotic rats and cirrhotic rats treated with IGF-I treatment (2 μg/100 g bw/d).Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria,caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups.RESULTS:Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3);an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity.IGF-Ⅰ therapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production.Activity of the electron transport complexes Ⅰ and Ⅲ was increased in both cirrhotic groups.In addition,untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis.IGF- Ⅰ therapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis.CONCLUSION:These results show that IGF- Ⅰ exerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号