首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Toll-like receptor 4 (TLR4) recognizes LPS and triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter, inducing interferon-β (TRIF)-dependent major downstream signaling pathways. Previously, we presented biochemical evidence that 1-[4-Fluoro-2-(2-nitrovinyl)phenyl]pyrrolidine (FPP), which was synthesized in our laboratory, inhibits NF-κB activation induced by LPS. Here, we investigated whether FPP modulates the TLR4 downstream signaling pathways and what anti-inflammatory target in TLR4 signaling is regulated by FPP. FPP inhibited LPS-induced NF-κB activation by targeting TLR4 dimerization. These results suggest that FPP can modulate the TLR4 signaling pathway at the receptor level to decrease inflammatory gene expression.  相似文献   

4.
Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (guanine-nucleotide exchange factor-H1)-RhoA signaling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signaling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.  相似文献   

5.
Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses through signaling pathways mediated by Toll-interleukin 1 receptor (TIR) domain-containing adaptors such as MyD88, TIRAP and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4. Here we have identified a fourth TIR domain-containing adaptor, TRIF-related adaptor molecule (TRAM), and analyzed its physiological function by gene targeting. TRAM-deficient mice showed defects in cytokine production in response to the TLR4 ligand, but not to other TLR ligands. TLR4- but not TLR3-mediated MyD88-independent interferon-beta production and activation of signaling cascades were abolished in TRAM-deficient cells. Thus, TRAM provides specificity for the MyD88-independent component of TLR4 signaling.  相似文献   

6.
Myeloid differentiation protein 2 (MD-2) is required in the recognition of lipopolysaccharide (LPS) by toll-like receptor 4 (TLR4), and participates in LPS-induced alveolar macrophage (AM) inflammation during acute lung injury (ALI). Activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome aggravates inflammation in LPS-induced ALI. However, there is currently little known about the relationship between MD-2 signaling and the NLRP3 inflammasome. This study showed that NLRP3 expression, IL-1beta (IL-1β) secretion, and pyroptosis were up-regulated after LPS stimulation in the NR8383 AM cell-line. MD-2 gene knock-down reduced LPS-induced mRNA and protein expression of NLRP3 and IL-1β secretion in NR8383 cells, and inhibited the MyD88/NF-κB signaling pathway. Conversely, over-expression of MD-2 not only heightened NLRP3, MyD88, and NF-κB p65 protein expression, it also aggravated the LPS-induced inflammatory response. Furthermore, the NF-κB inhibitor SN50 had a beneficial role in decreasing NLRP3 and caspase-1 mRNA and protein expression. The observations suggest that MD-2 helps to regulate LPS-induced NLRP3 inflammasome activation and the inflammatory response in NR8383 cells, and likely does so by affecting MyD88/NF-κB signaling.  相似文献   

7.
Chlorogenic acid (CGA), a polyphenolic compound, exists widely in medicinal herbs, which has been shown a strong antioxidant and anti-inflammatory effect. This study investigated the protective effects and mechanism of CGA on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Treatment of CGA successfully ameliorates LPS-induced renal function and pathological damage. Moreover, CGA dose-dependently suppressed LPS-induced blood urea nitrogen (BUN), creatinine levels, and inflammatory cytokines TNF-α, IL-6, and IL-1β in serum and tissue. The relative proteins’ expression of TLR4/NF-κB signal pathway was assessed by western blot analysis. Our results showed that CGA dose-dependently attenuated LPS-induced kidney histopathologic changes, serum BUN, and creatinine levels. CGA also suppressed LPS-induced TNF-α, IL-6, and IL-1β production both in serum and kidney tissues. Furthermore, our results showed that CGA significantly inhibited the LPS-induced expression of phosphorylated NF-κB p65 and IκB as well as the expression of TLR4 signal. In conclusion, our results provide a mechanistic explanation for the anti-inflammatory effects of CGA in LPS-induced AKI mice through inhibiting TLR4/NF-κB signaling pathway.  相似文献   

8.
9.
Previous studies have demonstrated paralemmin-3 (PALM3) participates in Toll-like receptor (TLR) signaling. This study investigated the effect of PALM3 knockdown on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its underlying mechanisms. We constructed a recombinant adenoviral vector containing short hairpin RNA for PALM3 to knockdown PALM3 expression. A transgene-free adenoviral vector was used as a negative control. The ALI rat model was established by LPS peritoneal injection at 48-h post-transfection. Results showed that downregulation of PALM3 improved the survival rate, attenuated lung pathological changes, alleviated pulmonary edema, lung vascular leakage and neutrophil infiltration, inhibited the production of proinflammatory cytokines and activation of nuclear factor κB and interferon β regulatory factor 3, and promoted the secretion of anti-inflammatory cytokine interleukin-10 and expression of suppressor of cytokine signaling-3 in the ALI rat model. However, PALM3 knockdown had no effect on TLR4, myeloid differentiation factor 88 (MyD88), and Toll-interleukin-1 receptor domain-containing adaptor inducing interferon β (TRIF) expression. Moreover, PALM3 knockdown reduced the interaction of TLR4 with MyD88 or TRIF induced by LPS in rat lungs. Therefore, the downregulation of PALM3 protected rats from LPS-induced ALI and its mechanisms were partially associated with the modulation of inflammatory responses and inhibition of TLR4/MyD88 and TLR4/TRIF complex formation.  相似文献   

10.

Objective and design

This study was aimed at investigating the effect of chlorogenic acid (CGA) on lipopolysaccharide (LPS)-induced proinflammatory signaling in hepatic stellate cells (HSCs).

Methods

An immortalized rat HSC line was cultured in vitro and treated with LPS in the absence or presence of CGA. Reactive oxygen species (ROS) production in the HSCs was monitored by flow cytometer using DCFH-DA. The protein expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor-κB (NF-κB), and p-IκB-α were determined by Western blot. The mRNA expression levels of TLR4, MyD88, monocyte chemotactic protein 1(MCP-1), and interleukin 6 (IL-6) were detected by RT-PCR. The levels of MCP-1 and IL-6 in the culture supernatant of HSCs were measured by ELISA.

Results

CGA had no effect on expression of TLR4 and MyD88. However, the treatment of CGA can inhibit LPS-induced production of ROS in HSCs. Meanwhile, CGA can inhibit LPS-induced nuclear translocation of NF-κB and IκB-α phosphorylation in HSCs, as well as NAC (a ROS scavenger). The mRNA expression and the levels of MCP-1 and IL-6 in the culture supernatant of the HSCs in this study were elevated by LPS stimulation and inhibited by CGA treatment, as well as NAC and PDTC (a NF-κB inhibitor).

Conclusion

Our results indicate that CGA can efficiently inhibit LPS-induced proinflammatory responses in HSCs and the anti-inflammatory effect may be due to the inhibition of LPS/ROS/NF-κB signaling pathway.  相似文献   

11.
The polymeric immunoglobulin receptor (pIgR) transports IgA antibodies across intestinal epithelial cells (IECs). Expression of pIgR is upregulated by proinflammatory signaling pathways via activation of nuclear factor-κB (NF-κB). Here, we examined the contributions of the RelA-dependent classical and RelB-dependent alternative pathways of NF-κB to pIgR regulation in the HT-29 human IEC line following stimulation with tumor necrosis factor (TNF), lipopolysaccharide (LPS; Toll-like receptor 4 (TLR4) ligand), and polyinosinic: polycytidylic acid (pIC; TLR3 ligand). Whereas induction of proinflammatory genes such as interleukin-8 (IL-8) required only RelA, pIgR expression was regulated by complex mechanisms that involved both RelA and RelB. Upregulation of pIgR expression by ligation of the lymphotoxin-β receptor suggested a direct role for the alternative NF-κB pathway. Inhibition of mitogen-activated protein kinases reduced the induction of IL-8, but enhanced the induction of pIgR by TNF and TLR signaling. Regulation of pIgR through unique signaling pathways could allow IECs to sustain high levels of IgA transport while limiting the proinflammatory responses.  相似文献   

12.
Toll-like receptors (TLRs) are pattern-recognition receptors of the innate immune system that recognize various pathogen-associated molecules. TLR ligands are potent activators of immune cells and certain TLR ligands have a synergistic ability to induce the production of pro-inflammatory cytokines. In the present study we have analyzed the potential synergy between TLR3, TLR4 and TLR7/8 ligands in type I and type III interferon (IFN) gene expression in human monocyte-derived dendritic cells (moDCs). We show that stimulation of moDCs with TLR7/8 ligand R848 together with TLR3 or TLR4 ligands, polyI:C or LPS, respectively, leads to a synergistic expression of IFN-β and IFN-λ1 mRNAs. Neutralization of type I IFNs as well as IFN priming prior to stimulation suggest that IFN-dependent positive feedback loop is at least partly responsible for the mechanism of synergy. Enhanced expression of TLR3 and especially TLR7, which are both under the regulation of type I IFNs, correlated to synergistic TLR ligand-dependent induction of IFN-β and IFN-λ1 genes. NF-κB, PI3 kinase and MAP kinase pathways were involved in TLR ligand-induced IFN gene expression as evidenced by pharmacological signaling inhibitors. The data indicates that IFNs contribute to TLR-dependent gene activation in human DCs stimulated with multiple TLR ligands.  相似文献   

13.
目的研究脂多糖(LPS)激活的Toll样受体4(TLR4)信号对骨形态发生蛋白9(BMP9)诱导永生化小鼠胚胎成纤维细胞(i MEFs)成骨分化的影响。方法细胞免疫荧光检测TLR4/NF-κB信号通路的激活;LPS,BAY11-7082和BMP9处理iMEFs,ALP染色和活性检测i MEFs早期成骨分化能力;茜素红S染色检测晚期成骨分化能力;半定量PCR和Western blot检测晚期成骨基因OCN和OPN表达;Western blot检测Smad1/5/8磷酸化水平;半定量PCR和Western blot检测成骨关键转录因子Runx2和Dlx5的表达。结果 LPS成功激活TLR4/NF-κB信号通路;LPS抑制BMP9诱导的ALP染色和活性(P0.01)、钙盐沉积、OCN的mRNA和蛋白质表达(P0.05)、OPN的mRNA(P0.01)和蛋白质(P0.05)表达、Smad1/5/8信号通路激活(P0.01)、Runx2的mRNA和蛋白质表达(P0.05)、Dlx5的mRNA(P0.01)和蛋白质(P0.05)表达,BAY11-7082可以部分逆转LPS的抑制作用(P0.05)。结论 LPS激活TLR4可以通过NF-κB信号通路抑制BMP9诱导的iMEFs成骨分化。  相似文献   

14.
15.
Pre-exposure to low doses of LPS induces resistance to a lethal challenge, a phenomenon known as endotoxin tolerance. In this study, tolerance was induced in human PBMC by culturing cells with 1 ng/mL LPS for 48 h. Cells were subsequently challenged with 100 ng/mL LPS for 2, 6 and 24 h, and the expression of 84 genes encoding proteins involved in the TLR signaling pathway was evaluated at each time point by PCR array. LPS pretreatment did not modulate the expression of TLR4 and CD14 on the surface of monocytes. A gene was defined as tolerized when LPS pretreatment reversed the effect of LPS challenge on the expression of the gene or as non-tolerized when LPS pretreatment did not reverse the effects of LPS challenge. We observed impaired signal transduction through the NF-κB, JNK, ERK and TRIF pathways, whereas expression of p38 pathway-related genes was preserved in LPS-tolerant cells. These results show a distinct regulation of the TLR pathway cascades during tolerance; this may account for the differential gene expression of some inflammatory mediators, such as up-regulation of IL-10 and COX2 as well as down-regulation of TNF-α and IL-12. Depending on the effect of LPS-induced gene up-regulation or down-regulation, tolerance, as a reversion of such LPS effects, may result in repression or induction of gene expression.  相似文献   

16.
17.
Toll样受体4信号转导研究进展   总被引:6,自引:1,他引:5  
Toll样受体(Toll-like-receptors,TLRs)是一个主要分布于炎症细胞的识别病源分子的受体超家族,其中TLR4主要识别革兰阴性细菌细胞壁成分脂多糖(lipopolysaccharide,LPS)。LPS与TLR4结合后活化髓样分化因子88 (myeloid differentiation factor 88, MyD88)依赖性和非依赖性两条信号途径;前者活化丝裂原激活的蛋白激酶(mitogen-activated protein kinase,MAPK)和核因子-κB(nuclear factor kappa B,NF-κB)信号通路,后者活化NF-κB和干扰素调节因子-3(IFN-regulated factor-3,IRF3)信号通路。通过这些信号途径TLR4诱导炎症细胞释放炎症因子介导炎症反应;同时TLR4通过活化树突状细胞促进抗原递呈,介导先天性免疫向获得性免疫的转化。此外,TLR4能诱导磷脂酰肌醇-3激酶-蛋白激酶B(PI3K-AKT)的信号转导,LPS介导的细胞存活和增殖与TLR4活化 PI3K-AKT途径有关。  相似文献   

18.
19.
20.
背景:研究表明Toll样受体4参与了动脉粥样硬化的发生和发展,目前Toll样受体4与MyD88依赖性或MyD88非依赖性信号转导通路在动脉粥样硬化发生和发展中的机制尚不明确。 目的:观察阿托伐他汀对脂多糖诱导的人脐静脉内皮细胞Toll样受体4及其下游信号转导通路主要元件MyD88、TRAF-6、TRAM及TRIF表达的影响,分析阿托伐他汀防治动脉粥样硬化的机制。 方法:体外培养人脐静脉内皮细胞,用脂多糖刺激并加入阿托伐他汀干预24 h,收集细胞,用荧光定量PCR方法测定TLR4、MyD88、TRAF-6、TRAM及TRIF mRNA表达;用Western blotting法测定TLR4、MyD88及TRAF-6蛋白表达。 结果与结论:用脂多糖刺激人脐静脉内皮细胞后,引起TLR4、MyD88、TRAF-6、TRAM和TRIF的高表达(P < 0.01),用阿托伐他汀干预后可显著抑制TLR4、MyD88及TRAF-6的表达(P < 0.01)。提示阿托伐他汀可阻断Toll样受体4高表达,同时阻断Toll样受体4胞内信号转导的MyD88依赖性途径,这可能是阿托伐他汀抗动脉粥样硬化的作用机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号