首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long time biokinetics of the radiolabeled somatostatin analogues 111In-DTPA-D-Phe(1)-octreotide was studied in nude mice transplanted with the human carcinoid tumor, GOT1. The results were compared with those from the patient with the original tumor. This patient has been diagnosed and later treated with 111In-DTPA-D-Phe(1)-octreotide. The animals received about 2 MBq 111In-DTPA-D-Phe(1)-octreotide (0.1 microg) by injection into a tail vein. The animals were killed 0.5 h-14 d after injection of the radiopharmaceutical. Tumor tissue and normal tissues were collected and weighed and measured for 111In activity. The 111In uptake in the tumor was higher than in all normal tissues except the kidneys. The tumor-to-normal-tissue activity concentration, TNC, increased with time for all normal tissues studied. These data were similar to those observed for the original tumor in the patient. The similar biokinetics for 111In-DTPA-D-Phe(1)-octreotide in the tumor-bearing mice and the patient makes this animal model suitable as a model for evaluation of therapy of somatostatin receptor (sstr) expressing tumors with radiolabeled somatostatin analogues. Furthermore, the increase with time of TNC both in mice and the patient indicates that long-lived radionuclides are preferred for therapy with radiolabeled somatostatin analogues.  相似文献   

2.
The somatostatin analog diethylenetriaminepentaacetic acid (DTPA)-D-Phe1-octreotide labeled with 111In has been applied extensively for diagnosis of neuroendocrine tumors using SPECT or planar scintigraphy. However, the spatial resolution of planar scintigraphy and SPECT prohibits imaging of small tumors, and the quantification accuracy of both methods is limited. METHODS: We developed a method to prepare the positron-emitting radiopharmaceutical 110mIn-DTPA-D-Phe1-octreotide based on a commercially available kit. Phantom studies were done to investigate and compare the performance of 110mIn PET and 111In SPECT. A clinical imaging study using 110mIn-DTPA-D-Phe1-octreotide and PET was done to investigate the application of this radiopharmaceutical. RESULTS: An almost 3-fold better resolution and much better quantitative capabilities were found for 110mIn PET than for 111In SPECT. The clinical imaging study demonstrated the potential use of 110mIn-octreotide in PET to image tumors and quantify radioactivity uptake in humans using (110m)In-DTPA-D-Phe1-octreotide. CONCLUSION: PET with 110mIn-DTPA-D-Phe1-octreotide greatly improved detection of small tumors and offers a possibility of more accurate quantification of tumor uptake than can be obtained with 111In-DTPA-D-Phe1-octreotide and SPECT.  相似文献   

3.
OBJECTIVE: We estimated the absorbed doses for (111)In-DTPA-D-Phe(1)-octreotide and (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide in the same patients in order to compare the potential effectiveness (tumour dose) and safety (kidney and red marrow dose) of these drugs for peptide-targeted radiotherapy of somatostatin receptor positive tumours. METHODS: Six patients with neuroendocrine tumours underwent quantitative (111)In-DTPA-D-Phe(1)-octreotide SPECT and (86)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide PET scan at intervals of 1 week. All studies were performed with a co-infusion of amino acids for renal protection. PET and SPECT were reconstructed using iterative algorithms, incorporating attenuation and scatter corrections. Tissue uptakes (IA%) were measured and used to calculate residence times. Absorbed doses to tissues were estimated and the maximal allowed activity, defined as either the activity delivering 23 Gy to the kidneys (MAA(K)) or 2 Gy to the red marrow (MAA(RM)), was calculated and the resulting tumour absorbed doses were computed. RESULTS: For the MAA(K) the mean absorbed dose to the red marrow was lower for (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide than for (111)In-DTPA-D-Phe(1)-octreotide (1.8+/-0.9 Gy vs. 6.4+/-1.6 Gy; P<0.001). The median absorbed dose to tumours for the MAA(K) was two-fold higher for (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide as compared to (111)In-DTPA-D-Phe(1)-octreotide (30.1 vs. 12.6 Gy; P<0.05). The median absorbed dose to tumours estimated for the MAA(RM) was 10-fold higher for (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide than for (111)In-DTPA-D-Phe(1)-octreotide (35.1 Gy vs. 3.9 Gy; P<0.05). CONCLUSIONS: This direct intra-patient comparison confirms that the use of (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide is more appropriate for therapy of somatostatin receptor bearing tumours. When using (111)In-DTPA-D-Phe(1)-octreotide, the red marrow represents the major critical organ; this can result in significant toxicity if high activities have to be administered to obtain efficient tumour irradiation.  相似文献   

4.
111In-pentetreotide (Octreoscan) and other radiolabeled somatostatin analogs are useful in the management of well differentiated neuroendocrine malignancies such as carcinoid or islet cell neoplasms. These radiopeptides bind to membrane bound somatostatin receptors (sst 1-5) which are over-expressed in a wide variety of neoplasms, especially those arising from the neuroectoderm. Imaging advances allow for the noninvasive determination of the presence of sst receptors by combining radioactivity [111Indium with a somatostatin analog, DTPA-D-phe1-octreotide (pentetreotide)]. Radiolabeled somatostatin analogs bind to membrane receptors and internalization of the complex occurs. Auger emitting somatostatin analogs offer a novel and significantly less toxic approach to controlling neoplastic diseases by delivering targeted radiation specifically to receptor bearing cells while sparing receptor negative cells. Responses of 62-69% in 85 patients with metastatic neuroendocrine tumors treated with high dose (6-19.6 GBq) 111In-pentetreotide, specifically targeting tumor somatostatin receptors, have been reported. Objective responses observed included biochemical and radiographic responses with prolonged survival. This article will discuss and review the multi-center data available to date, the mechanisms of action of radiolabeled somatostatin analogs, dosimetry, clinical response parameters, and toxicity.  相似文献   

5.
Scintigraphy with 123I-Tyr-3-octreotide has several major drawbacks as regards its metabolic behavior, its cumbersome preparation and the short physical half-life of the radionuclide. The use of another radiolabeled analog of somatostatin, 111In-DTPA-D-Phe-1-octreotide, has consequently been proposed. DTPA-D-Phe-1-octreotide can be radiolabeled with 111In in an easy single-step procedure. DTPA-D-Phe-1-octreotide is cleared predominantly via the kidneys. Fecal excretion of radioactivity amounts to only a few percent of the administered radioactivity. For the radiation dose to normal tissues, the most important organs are the kidneys, the spleen, the urinary bladder, the liver and the remainder of the body. The calculated effective dose equivalent is 0.08 mSv/MBq. Optimal 111In-DTPA-D-Phe-1-octreotide scintigraphic imaging of various somatostatin receptor-positive tumors was obtained 24 hr after injection. In the six patients studied, tumor localization with 123I-Tyr-3-octreotide and with 111In-DTPA-D-Phe-1-octreotide were found to be similar. However, the normal pituitary is more frequently visualized with the latter radiopharmaceutical. In conclusion, 111In-DTPA-D-Phe-1-octreotide appears to be a sensitive somatostatin receptor-positive tissue-seeking radiopharmaceutical with some remarkable advantages: easy preparation, general availability, appropriate half-life and absence of major interference in the upper abdominal region, because of its renal clearance. Therefore, 111In-DTPA-D-Phe-1-octreotide may be suitable for use in SPECT of the abdomen, which is important in the localization of small endocrine gastroenteropancreatic tumors.  相似文献   

6.
Intraoperative tumour detection has been used in many applications. The examined tumour forms have varied and different detector systems and radiopharmaceuticals have also been used. The aim of this study was to evaluate and compare the ability of an NaI(T1) scintillation detector to detect primary tumours and metastases in patients with different endocrine tumour types (e.g. carcinoid tumours, endocrine pancreatic tumours and thyroid tumours) and in patients with breast carcinoma or benign thyroid lesions, on the basis of their somatostatin receptor expression after i.v. injection of 111In-DTPA-D-Phe1-octreotide. Thirty patients were injected with 111In-DTPA-D-Phe1-octreotide intravenously. Scintigraphic images were taken 1 day after injection of the radiopharmaceutical, and surgery was performed 1-7 days post injection. An NaI(T1) scintillation detector was used for intraoperative tumour detection. Tissue samples were collected during surgery for determination of 111In activity concentration and histopathological examination. The scintigraphic images were positive in 29 out of 30 patients. Intraoperative tumour detection was successful in 43 of 66 collected biopsies: 10 out of 11 for carcinoid tumours, 7 out of 10 for medullary thyroid carcinoma (MTC) and 14 out of 22 for breast cancer. On the basis of our findings we conclude that intraoperative tumour detection with 111In-DTPA-D-Phe1-octreotide using this NaI(T1) detector can be successful especially for carcinoid tumours and endocrine pancreatic tumours, due to the relatively high activity concentrations in these tumour types, but is less successful in other forms of thyroid cancer, including MTC, and breast cancer. For successful intraoperative detection, the detector characteristics are also very important, and further improvement of the detector systems is required to increase the sensitivity and specificity.  相似文献   

7.
Scintigraphy with [111In-diethylenetriamine pentaacetic acid0-D-Phe1]-octreotide (DTPAOC) is used to demonstrate neuroendocrine and other somatostatin-receptor-positive tumors. Despite encouraging results, this 111In-labeled compound is not well suited for peptide-receptor-mediated radiotherapy of somatostatin-receptor-positive tumors. Another somatostatin analog, [1,4,7,10-tetraazacyclododecane-N,N',N",N'-tetraacetic acid0, D-Phe1, Tyr3]-octreotide (DOTATOC), can be labeled with the beta-emitter 90Y in a stable manner. METHODS: We compared the distribution, kinetics and dosimetry of 111In-DTPAOC and 111In-DOTATOC in eight patients to predict the outcomes of these parameters in patients who will be treated with 90Y-DOTATOC. RESULTS: Serum radioactivity levels for the radiopharmaceuticals did not differ significantly 2-24 h after injection (P>0.05). Up to 2 h postinjection they were slightly, but significantly, lower after administration of 111In-DOTATOC (P < 0.01 at most time points). The percentage of peptide-bound radioactivity in serum did not differ after administration of either compound. Urinary excretion was significantly lower after administration of 111In-DOTATOC (P < 0.01). The visualization of known somatostatin-receptor-positive organs and tumors was clearer after administration of 111In-DOTATOC than after administration of 111In-DTPAOC. This was confirmed by significantly higher calculated uptakes in the pituitary gland and spleen. The uptake in the tumor sites did not differ significantly (P > 0.05), although in three of the four patients in whom tumor uptake could be calculated, it was higher after administration of 111In-DOTATOC. CONCLUSION: The distribution and excretion pattern of 111In-DOTATOC resembles that of 111In-DTPAOC, and the uptake in somatostatin-receptor-positive organs and most tumors is higher for 111In-DOTATOC. If 90Y-DOTATOC shows an uptake pattern similar to 111In-DOTATOC, it is a promising radiopharmaceutical for peptide-receptor-mediated radiotherapy in patients with somatostatin-receptor-positive tumors.  相似文献   

8.
The aim of this animal study was to evaluate whether peptide receptor radionuclide therapy with (111)In-diethylenetriaminepentaacetic acid (DTPA)(0)-octreotide was able to reduce tumor growth even under tumor growth-stimulating conditions induced by partial hepatectomy (PHx). METHODS: Rats underwent 70% PHx or sham operation. The development of hepatic metastases was determined 21 d after direct injection of somatostatin receptor (SS-R)-positive or SS-R-negative tumor cells into the portal vein. Groups of 8 or 9 animals that underwent PHx or sham operation were treated with octreotide 50 micro g/kg subcutaneously twice daily or with 370 MBq (111)In-DTPA(0)-octreotide intravenously on days 1 and 8. Both treatments were compared with control treatment. Forty non-tumor-bearing rats were used to determine the influence of (111)In-DTPA(0)-octreotide therapy on liver regeneration after PHx. RESULTS: PHx induced an increase in tumor growth in all experiments (P < 0.01). Octreotide treatment did not influence tumor growth after PHx or sham operation. (111)In-DTPA(0)-octreotide could effectively reduce tumor growth in the liver of SS-R-positive tumors also under conditions of increased tumor growth as generated by PHx (P < 0.01). (111)In-DTPA(0)-octreotide was also effective on SS-R-negative tumors after PHx (P = 0.01) but not after sham operation. Furthermore, (111)In-DTPA(0)-octreotide therapy did not influence liver regeneration or liver function after PHx. CONCLUSION: Peptide receptor radionuclide therapy with (111)In-DTPA(0)-octreotide is effective in SS-R-positive tumors. During liver regeneration, the growth of SS-R-negative tumors is also reduced. This effect is not induced by impairment of liver regeneration or liver function. Radionuclide therapy could therefore be a promising treatment modality for patients with symptomatic liver metastases of neuroendocrine tumors in combination with liver resection.  相似文献   

9.
The effect of molecular charges on renal accumulation of 111In-DTPA-labeled low molecular weight (LMW) peptides was investigated using 111In-DTPA-octreotide derivatives as models to design radiolabeled peptides that are taken up less by renal cells. The N-terminal D-phenylalanine (Phe) of 111In-DTPA-D-Phe(1)-octreotide was replaced with L-aspartic acid (Asp), L-lysine (Lys), L-methionine (Met) or L-Phe. Cellulose acetate electrophoresis indicated that both 111In-DTPA-L-Phe(1)-octreotide and 111In-DTPA-L-Met(1)-octreotide showed similar net charges, whereas 111In-DTPA-L-alphaLys(1)-octreotide and 111In-DTPA-L-Asp(1)-octreotide had more positive and negative charges, respectively, at pH values similar to those in blood and glomerular filtrate. When injected into mice, significant differences were observed in the renal radioactivity levels. 111In-DTPA-L-alphaLys(1)-octreotide showed the highest radioactivity levels from 10 min to 6 h postinjection, whereas the lowest radioactivity levels were observed with 111In-DTPA-L-Asp(1)-octreotide at all the postinjection intervals. These findings indicated that the replacement of only one amino acid in 111In-DTPA-D-Phe(1)-octreotide significantly altered net molecular charges of the resulting peptides and that the net charges of the 111In-DTPA-octreotide derivatives significantly affected their renal uptake. Thus, an increase of negative charges in peptide molecules may constitute a strategy for designing 111In-DTPA-conjugated LMW peptides with low renal radioactivity levels.  相似文献   

10.
11.
Radiolabeled somatostatin analogs are important tools for the in vivo localization and targeted radionuclide therapy of somatostatin receptor-positive tumors. The aim of this study was to compare 3 somatostatin analogs designed for the labeling with (99m)Tc (where HYNIC is 6-hydrazinopyridine-3-carboxylic acid): 6-hydrazinopyridine-3-carboxylic acid(0)-octreotide (HYNIC-OC/(99m)Tc-(1)), [HYNIC(0),Tyr(3)]octreotide (HYNIC-TOC/(99m)Tc-(2)), and [HYNIC(0),Tyr(3),Thr(8)]octreotide (HYNIC-TATE/(99m)Tc-(3)), using ethylenediamine-N,N'-diacetic acid (EDDA) as a coligand. In addition, we compared the (99m)Tc-labeled peptides [(111)In-diethylenetriaminepentaacetic acid(0)]octreotide ([(111)In-DTPA]-OC) and [(111)In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(0),Tyr(3),Thr(8)]octreotide ([(111)In-DOTA]-TATE) with regard to the rate of internalization and the biodistribution in AR4-2J (expressing the somatostatin receptor subtype 2) tumor-bearing rats. The main attention was directed toward a potential correlation between the rate of internalization and the tumor or pancreas uptake. METHODS: Synthesis was performed on solid phase using a standard Fmoc strategy. Internalization was studied in cell culture (AR4-2J) and biodistribution was studied using a Lewis rat tumor model (AR4-2J). RESULTS: The 5 radiopeptides showed a specific internalization into AR4-2J cells in culture (as shown by blocking experiments). The rate of internalization of the 5 radiopeptides differed significantly according to the following order: (99m)Tc-(1) approximately = [(111)In-DTPA]-OC < (99m)Tc-(2) < (99m)Tc-(3) approximately = [(111)In-DOTA]-TATE. All radiopeptides displayed a rapid blood clearance and a fast clearance from all somatostatin receptor-negative tissues predominantly via the kidneys. A receptor-specific uptake of radioactivity was observed for all compounds in somatostatin receptor-positive organs such as the pancreas, the adrenals, and the stomach. After 4 h, the uptake in the AR4-2J tumor was comparable for (99m)Tc-(2) (3.85 +/- 1.0 injected dose per gram tissue (%ID/g)), (99m)Tc-(3) (3.99 +/- 0.58%ID/g), and [(111)In-DOTA]-TATE (4.12 +/- 0.74%ID/g) but much lower for [(111)In-DTPA]-OC (0.99 +/- 0.08%ID/g) and (99m)Tc-(1) (0.70 +/- 0.13%ID/g). The specificity was determined by blocking experiments using a large excess of [Tyr(3)]octreotide. (99m)Tc-(3) displayed the highest tumor-to-kidney ratio (2.5:1), followed by (99m)Tc(2) (1.9:1) and [(111)In-DOTA]-TATE (1.7:1). CONCLUSION: These data show that the 5 radiopeptides are specific radioligands for the somatostatin receptor subtype 2. The rate of internalization correlates with the uptake in the tumor (R(2) = 0.75; P = 0.026) and pancreas (R(2) = 0.98; P = 7.4.10(-5)). [Tyr(3),Thr(8)]octreotide derivatives show superiority over the corresponding octreotide and [Tyr(3)]octreotide derivatives, indicating that [(111)In-DOTA]-TATE and [(99m)Tc/EDDA/HYNIC]-TATE are suitable candidates for clinical studies.  相似文献   

12.
The aim of this study was to compare the imaging abilities of the recently developed somatostatin analog, (99m)Tc-hydrazinonicotinyl-Tyr(3)-octreotide ((99m)Tc-HYNIC-TOC [(99m)Tc-TOC]), with (111)In-diethylenediaminepentaacetic acid-D-Phe(1)-octreotide ((111)In-OCT [Octreoscan]) in patients undergoing routine somatostatin receptor (SSTR) scintigraphy. METHODS: Forty-one patients (20 men, 21 women; age range, 29-75 y; mean age, 56.7 y) with either histologically proven or biologically and clinically suspected endocrine tumors were enrolled in the study. Four groups were distinguished: (a) patients being evaluated for the detection and localization of neuroendocrine tumors (n = 6), (b) tumor staging (n = 19), (c) patients being investigated to determine the SSTR status of tumor lesions (n = 11), and (d) patient follow-up studies (n = 5). Each patient received a mean activity of 150 MBq (111)In-OCT and 350-400 MBq (99m)Tc-TOC. Scintigraphy with (99m)Tc-TOC was performed 4 h after injection and scintigraphy with (111)In-OCT was performed 4 and 24 h after injection. SPECT studies of areas of interest were performed 4 h after injection for both tracers as well as at 24 h after injection for (111)In-OCT. The time interval between the studies using each tracer ranged from 2 to 22 d (mean interval, 9.3 d). RESULTS: (111)In-OCT and (99m)Tc-TOC showed an equivalent scan result in 32 patients (78%), 9 cases showed discrepancies (22%), false-negative results with (111)In-OCT were seen in 6 cases (14.6%), whereas (99m)Tc-TOC was false-positive in 2 cases (4.9%). (111)In-OCT was true-negative in both cases. The false-positive findings of the (99m)Tc-TOC studies were caused by nonspecific uptake in the bowel. In 1 case, (99m)Tc-TOC correctly identified a metastasis in the lumbar spine but both scan results were false-positive because of an inflammatory process. In 21 patients with SSTR-expressing tumors, the semiquantitative region-of-interest analysis showed that (99m)Tc-TOC achieved higher tumor-to-normal tissue ratios than (111)In-OCT. CONCLUSION: This study revealed a higher sensitivity of (99m)Tc-TOC as compared with (111)In-OCT as an imaging agent for the localization of SSTR-expressing tumors. To avoid false-positive findings with (99m)Tc-OCT due to nonspecific tracer accumulation, additional scanning at 1-2 h after injection should be done.  相似文献   

13.
[111In-DTPA-D-Phe1]-octreotide is a new radiopharmaceutical with a great potential for the visualization of somatostatin receptor-positive tumors, granulomas, and diseases in which activated leukocytes play a role. The overall sensitivity of [111In-DTPA-D-Phe1]-octreotide scintigraphy to localize neuroendocrine tumors is high. In several neuroendocrine tumor types, inclusion of somatostatin receptor imaging in the localization or staging procedure may be very rewarding, either in terms of cost-effectiveness, patient management, or quality of life. In our opinion, this holds true for patients with carcinoids, gastrinomas, paragangliomas, small-cell lung carcinoma, and selected cases of patients with insulinomas. The value of [111In-DTPA-D-Phe1]-octreotide scintigraphy in patients with other tumors, such as breast cancer, malignant lymphomas, or in patients with granulomatous diseases, has to be established. Received 19 June 1996; Revision received 28 October 1996; Accepted 6 November 1996  相似文献   

14.
Somatostatin receptors are widely expressed on cells and tissues throughout the human body. Apart from their expression in the physiological target organs of the peptide, somatostatin receptors are also expressed in various tumours. The expression of somatostatin receptors on neuroendocrine tumours led to the development of somatostatin receptor scintigraphy using [(111)In-DTPA-D-Phe(1)]-octreotide ((111)In-pentetreotide) in order to visualize somatostatin receptor positive tumours and their metastases in vivo. Previous studies reported the expression of somatostatin receptors in both normal and pathological cells and tissues of the human immune system as well. Somatostatin receptors have been demonstrated in Hodgkin's and non-Hodgkin's lymphomas and sst scintigraphy has shown to be a useful tool in diagnosis and staging of these diseases. Moreover, sst expression has also been detected in granulomateus diseases, like sarcoidosis and auto-immune diseases, like rheumatoid arthritis. In this paper we discuss the (possible) role of somatostatin receptor scintigraphy in diagnosis, staging or follow-up of patients suffering from sarcoidosis and rheumatoid arthritis.  相似文献   

15.
A number of neoplasms are known to express somatostatin receptors, and the use of somatostatin receptor imaging in their localization has recently been described. We compared an 123I-labeled somatostatin analog Tyr-3-octreotide (TOCT) and 123I-labeled metaiodobenzylguanidine (MIBG) scintigraphy in seven patients with histologically proven metastatic carcinoid tumors. The optimum time for identifying tumor uptake on scanning after [123I]MIBG was 24-48 hr, and after 123I-TOCT 10-30 min postinjection. Both radiopharmaceuticals showed a varying spectrum of tracer uptake ([123I]MIBG showed no uptake in one patient; minimal in two; moderate in two; and intense in two; 123I-TOCT showed no uptake in two patients; minimal uptake in one; moderate uptake in two; and intense uptake in two). In two patients, 123I-TOCT identified metastatic lesions not seen by [123I]MIBG scintigraphy. These preliminary results suggest that [123I]MIBG and 123I-TOCT are useful and complementary imaging techniques for detecting metastatic carcinoid tumors.  相似文献   

16.
In vitro data have demonstrated a high amount of receptors for various hormones and peptides on malignant cells of neuroendocrine origin. Among these, binding sites for members of the SST-family (hSSTR1-5) are frequently found, and their expression has led to therapeutic and diagnostic attempts to specifically target these receptors. Receptor scintigraphy using radiolabeled peptide ligands has proven its effectiveness in clinical practice. In addition, initial results have indicated a clinical potential for receptor-targeted radiotherapy. Based on somatostatin (SST) receptor (R) recognition, the novel radiopharmaceuticals 111In/90Y-DOTA-lanreotide developed at the University of Vienna as well as 111In/90Y-DOTA-DPhe1-Tyr3-octreotide (NOVARTIS) both have provided promising data for diagnosis and treatment of hSSTR-positive tumors. SSTR scintigraphy using 111In-DTPA-DPhe1-octreotide has a high positive predictive value for the vast majority of neuroendocrine tumors and has gained its place in the diagnostic work-up as well as follow-up of patients. We have used 111In-DOTA-lanreotide scintigraphy in 166 patients since 1997 and have seen positive results in 93% of patients. In 42 patients with neuroendocrine tumors comparative data were obtained. As opposed to 111In-DTPA-DPhe1-octreotide and 111In-DOTA-DPhe1-Tyr3-octreotide, discrepancies in the scintigraphic results were seen in about one third of patients concerning both the tumor uptake as well as tumor lesion detection. Initial results both with 90Y-DOTA-lanreotide as well as 90Y-DOTA-DPhe1-Tyr3-octreotide has pointed out the clinical potential of radionuclide receptor-targeted radiotherapy. This new therapy could offer palliation and disease control at a reduced cost. The final peptide therapy strategy is most probably cheaper than conventional radiotherapies or prolonged chemotherapies. Overall, receptor-mediated radiotherapy with 90Y-DOTA-lanreotide/90Y-DOTA-DPhe1-Tyr3-octre otide might also be effective in patients refractory to conventional strategies.  相似文献   

17.
The uptake of radiolabeled somatostatin analogs by tumor cells through receptor-mediated internalization is a critical process for the in vivo targeting of tumoral somatostatin receptors. In the present study, the somatostatin receptor internalization induced by a variety of somatostatin analogs was measured with new immunocytochemical methods that allow characterization of trafficking of the somatostatin receptor subtype 2 (sst2), somatostatin receptor subtype 3 (sst3), and somatostatin receptor subtype 5 (sst5) in vitro at the protein level. METHODS: Human embryonic kidney 293 (HEK293) cells expressing the sst2, sst3, or the sst5 were used in a morphologic immunocytochemical internalization assay using specific sst2, sst3 and sst5 antibodies to qualitatively and quantitatively determine the capability of somatostatin agonists or antagonists to induce somatostatin receptor internalization. In addition, the internalization properties of a selection of these agonists have been compared and quantified in sst2-expressing CHO-K1 cells using an ELISA. RESULTS: Agonists with a high sst2-binding affinity were able to induce sst2 internalization in the HEK293 and CHO-K1 cell lines. New sst2 agonists, such as Y-DOTA-TATE, Y-DOTA-NOC, Lu-DOTA-BOC-ATE (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; TATE is [Tyr3, Thr8]-octreotide; NOC is [1-NaI3]-octreotide; and BOC-ATE is [BzThi3, Thr8]-octreotide), iodinated sugar-containing octreotide analogs, or BIM-23244 were considerably more potent in internalizing sst2 than was DTPA-octreotide (where DTPA is diethylenetriaminepentaacetic acid). Similarly, compounds with high sst3 affinity such as KE108 were able to induce sst3 internalization. In sst2- or sst3-expressing cell lines, agonist-induced receptor internalization was efficiently abolished by sst2- or sst3-selective antagonists, respectively. Antagonists alone had no effect on sst2 or sst3 internalization. We also showed that somatostatin-28 and somatostatin-14 can induce sst5 internalization. Unexpectedly, however, potent sst5 agonists such as KE108, BIM-23244, and L-817,818 were not able to induce sst5 internalization under the same conditions. CONCLUSION: Using sensitive and reproducible immunocytochemical methods, the ability of various somatostatin analogs to induce sst2, sst3, and sst5 internalization has been qualitatively and quantitatively determined. Whereas all agonists triggered sst2 and sst3 internalization, sst5 internalization was induced by natural somatostatin peptides but not by synthetic high-affinity sst5 agonists. Such assays will be of considerable help for the future characterization of ligands foreseen for nuclear medicine applications.  相似文献   

18.
The presence of cholecystokinin (CCK)-B (gastrin) receptors has been shown in more than 90% of medullary thyroid cancers (MTCs) and in a high percentage of small cell lung cancers, stromal ovarium cancers and several other tumor types. METHODS: The aim of this study was to evaluate in vitro and in vivo whether 111In-labeled CCK-B receptor-specific CCK8 analog [D-Asp26,Nle28,31]CCK26-33 (D-Asp-Tyr-Nle-Gly-Trp-Nle-Asp-Phe-NH2) is suitable for CCK-B receptor scintigraphy based on the finding that unlabeled nonsulfated diethylenetriamine pentaacidic acid [DTPA0]CCK8 and tetraazacyclododecanetetraacetic acid [DOTA0]CCK8 analogs show high and specific binding for CCK-B receptors in human tumors. Fifty percent inhibitory concentrations were in the low nanomolar range. RESULTS: In vitro, [111In-DOTA0]CCK8 showed specific internalization in CCK-B receptor-positive rat pancreatic tumor cells AR42J. Internalization of the analog appeared to be time and temperature dependent and receptor specific. From the data obtained with [111In-DOTA0]CCK8 and (125I)I-gastrin, the latter being a specific ligand for the CCK-B receptor, the rat pancreatic cell line CA20948 also appeared to be CCK-B receptor positive. This provides an in vitro and in vivo rat tumor model because this cell line can be grown to solid tumors in Lewis rats. In vivo biodistribution experiments in CA20948 tumor-bearing Lewis rats showed rapid clearance of [111In-DOTA0]CCK8, and specific uptake was found in the CCK-B receptor-expressing stomach and tumor. Furthermore, comparing [111In-DOTA0]CCK8 with the radioiodinated nonsulfated CCK10 analog (D-Tyr-Gly-Asp-Tyr-Nle-Gly-Trp-Nle-Asp-Phe-NH2), both ligands having high affinity for the CCK-B receptor, tumor-to-blood ratios were significantly higher for [111In-DOTA0]CCK8 than for 125I-CCK10, analogous to the findings with radioiodinated and 111In-labeled octreotide. The study in humans with [111In-DTPA0]CCK8 showed receptor-specific uptake in the CCK-B receptor-positive stomach and in metastases in the neck region up to 48 h after injection. CONCLUSION: [111In-DOTA0]CCK8 is most promising for scintigraphy and, after coupling to therapeutic radionuclides, for radionuclide therapy of human CCK-B receptor-positive tumors such as MTC and small cell lung cancer.  相似文献   

19.
The purpose of the present study was to establish the tissue distribution in abdominal organs and the excretion of radioactivity after intravenous administration of [(111)In-DTPA-D-Phe(1)]-octreotide in healthy dogs. In five Beagle dogs computed tomography and single photon emission computed tomography (SPECT) at 24 h after injection of [(111)In-DTPA-D-Phe(1)]-octreotide revealed accumulation of radioactivity in the kidneys, gall bladder, gastric fundus and cardia, intestinal tract, but not in the spleen. These findings were confirmed by in vitro scintigraphy of single abdominal organs. This also demonstrated accumulation of radioactivity in the pancreas and located the radioactivity in the gastrointestinal tract primarily in the wall itself. In vitro autoradiography with (125)I-[Tyr(3)]-octreotide on tissue samples in two dogs revealed sst receptors in the medullary part of the kidney, the basal two-thirds of the gastric mucosa of the cardia and fundus, Peyer's patches and neural plexus of the gastrointestinal tract. No sst receptors were demonstrated in the liver, spleen, and pancreas. These results differ to findings in man, where there is uptake in the spleen but not in the stomach, most likely caused by interspecies variations in sst receptor subtype expression.  相似文献   

20.
The high level expression of somatostatin receptors (SSTR) on various tumor cells has provided the molecular basis for successful use of radiolabeled octreotide/lanreotide analogs as tumor tracers in nuclear medicine. The vast majority of human tumors seem to overexpress the one or the other of five distinct hSSTR sub-type receptors. Whereas neuroendocrine tumors frequently overexpress hSSTR2, intestinal adenocarcinomas seem to over-express more often hSSTR3 or hSSTR4, or both of these hSSTR. In contrast to 111In-DTPA-DPhe1-octreotide (OCTREOSCAN) which binds to hSSTR2 and 5 with high affinity (Kd 0.1-5 nM), to hSSTR3 with moderate affinity (Kd 10-100 nM) and does not bind to hSSTR1 and hSSTR4, 111In/90Y-DOTA-lanreotide was found to bind to hSSTR2, 3, 4, and 5 with high affinity, and to hSSTR1 with lower affinity (Kd 200 nM). Based on its unique hSSTR binding profile, 111In-DOTA-lanreotide was suggested to be a potential radioligand for tumor diagnosis, and 90Y-DOTA-lanreotide suitable for receptor-mediated radionuclide therapy. As opposed to 111In-DTPA-DPhe1-octreotide and 111In-DOTA-DPhe1-Tyr3-octreotide, discrepancies in the scintigraphic results were seen in about one third of (neuroendocrine) tumor patients concerning both the tumor uptake as well as detection of tumor lesions. On a molecular level, these discrepancies seem to be based on a "higher" high-affinity binding of 111In-DOTA-DPhe1-Tyr3-octreotide to hSSTR2. Other somatostatin analogs with divergent affinity to the five known hSSTR subtype receptors have also found their way into the clinics, including 99mTc-HYNIC-octreotide or 99mTc-depreotide (NEOSPECT; NEOTECT). Most of the imaging results are reported for neuroendocrine tumors (octreotide analogs) or non-small cell lung cancer (99mTc-depreotide), indicating high diagnostic capability of this type of receptor tracers. Consequently to their use as receptor imaging agents, hSSTR recognizing radioligands have also been implemented for experimental receptor-targeted radionuclide therapy. The study "MAURITIUS" (MulticenterAnalysis of a Universal Receptor Imaging and Treatment Initiative, a eUropean Study), a Phase IIa study, showed in patients with a calculated tumor dose >10 Gy/GBq 90Y-DOTA-lanreotide, the proof-of-principle for treating tumor patients with receptor imaging agents. Overall treatment results in >60 patients indicated stable tumor disease in roughly 35% of patients and regressive disease in 15% of tumor patients with different tumor entities. No acute or chronic severe hematological toxicity, change in renal or liver function parameters due to 90Y-DOTA-lanreotide, was reported. 90In-DOTA-DPhe1-Tyr3-octreotide may show a higher tumor uptake in neuroendocrine tumor lesions and may therefore provide even better treatment results in tumor patients, but there is only limited excess to long-term and survival data at present. Besides newer approaches and recent developments of 188Re-labeled radioligands no clinical results on the treatment response is available yet. In conclusion, several radioligands have been implemented on the basis of peptide receptor recognition throughout the last decade. A plentitude of preclinical data and clinical studies confirm "proof-of-principle" for their use in diagnosis as well as therapy of cancer patients. However, an optimal radiopeptide formulation does not yet exist for receptor-targeted radionuclide therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号