首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rationale and objectivesDuring the COVID-19 pandemic, medical educators and students are facing unprecedented challenges while navigating the new virtual landscape that social-distancing policies mandate. In response to these challenges, a new virtual introduction to radiology elective was established with unique online resources and curriculum.Materials and methodsA previously in-person 2-week introductory radiology elective was converted into a completely virtual experience using an internally developed, open-source, peer-reviewed, web-based teaching modules combined with virtual lectures, interdisciplinary conferences, and readout sessions of de-identified cases loaded to a DICOM viewer. Students from the first four months of course enrollment completed a multiple choice pre- and post-course knowledge assessments and a 5-point Likert Scale survey as part of their educational experience.ResultsIn total, 26 4th-year medical students participated over 4 separate 2-week sessions from July to October of 2020. This included 12 students from the home intuition and 14 visiting students. On average, students scored 62.2% on the 55-question pre-test and 89.0% on the same test upon completion of the course, a statistically significant increase (p < 0.001). All 26 students felt engaged throughout the course. All 26 agreed (23 “strongly agreed”) that they were more comfortable looking at imaging studies following the course. All 26 also agreed (21 “strongly agreed”) that the course helped them prepare for their future clinical rotations and careers.ConclusionInitial pilot program using unique web-based resources and student encounters during a two-week virtual introductory radiology elective proved to be a positive educational experience for the first 26 students enrolled.  相似文献   

2.
PurposeThis study describes the state of preclinical radiology curricula in North American allopathic, osteopathic, and podiatric medical schools.MethodsAn online survey of teaching methods, radiology topics, and future plans was developed. The Associations of American Medical Colleges, Colleges of Osteopathic Medicine, and Colleges of Podiatric Medicine listing for all US, Canadian, and Puerto Rican schools was used for contact information for directors of anatomy and/or radiology courses. Letters were sent via e-mail to 198 schools, with a link to the anonymous survey.ResultsOf 198 schools, 98 completed the survey (48%). Radiology curricula were integrated with other topics (91%), and taught by anatomists (42%) and radiologists (43%). The majority of time was spent on the topic of anatomy correlation (35%). Time spent teaching general radiology topics in the curriculum, such as physics (3%), modality differences (6%), radiation safety (2%), and contrast use (2%) was limited. Most schools had plans to implement an innovative teaching method in the near future (62%). The major challenges included limits on: time in the curriculum (73%); resources (32%); and radiology faculty participation (30%). A total of 82% reported that their curriculum did not model the suggestions made by the Alliance of Medical Student Educators in Radiology.ConclusionsThis survey describes the current state of preclinical radiology teaching: curricula were nonstandard, integrated into other courses, and predominantly used for anatomy correlation. Other important contextual principles of the practice of radiology were seldom taught.  相似文献   

3.
PurposeThe purpose was to create and analyze a competency-based model of educating medical students in a radiology clerkship that can be used to guide curricular reform.MethodsDuring the 2019 to 2020 academic year, 326 fourth-year medical students were enrolled in a 2-week required clerkship. An online testing platform, ExamSoft (Dallas, Texas), was used to test pre- and postinstruction knowledge on “must see” diagnoses, as outlined in the National Medical Student Curriculum in Radiology. Assessment analysis was used to compare the frequency with which the correct diagnosis was identified on the pretest to that on the posttest. At the end of the academic year, in addition to statistical analysis, categorical analysis was used to classify the degree of this change to uncover topics that students found most challenging.ResultsFor 23 of the 27 topics (85%), there was a significant improvement in diagnostic accuracy after instruction in the test curriculum. Categorical analysis further demonstrated that the clerkship had a high impact in teaching 13 of the 27 topics (48%), had a lower impact for 6 topics (22%), and identified the remaining 8 topics (30%) as gaps in teaching and learning.ConclusionsFor medical students, our instructional program significantly increased competency for most critical radiologic diagnoses. Categorical analysis adds value beyond statistical analysis and allows dynamic tailoring of teaching to address gaps in student learning.  相似文献   

4.
PurposeProper selection of imaging examinations and basic image interpretation skills are essential for all physicians, yet only approximately 25% of US medical schools require clerkships in radiology. Although there is limited time in most medical school curricula to allow the addition of a required radiology clerkship, the authors developed one that is vertically integrated over a two-year period. This clerkship includes one week of contact with radiologists distributed over the M2 and M3 years, podcasts, online modules, required readings, and presentations. A standard national examination is administered at the end of the clerkship period. This clerkship was designed to address the educational needs of students while occupying minimal time in the curriculum. The purpose of this study was to determine if students completing this clerkship perform as well on a national radiology examination as students from other medical schools, regardless of their curricula.MethodsAt the end of the M3 year, these students take a computer-based radiology examination developed by the Alliance of Medical Student Educators in Radiology and used by students at multiple medical schools nationally. The mean and median scores of these students were compared with those of students at these other institutions.ResultsThe mean and median scores of the students were 74% and 74% (standard deviation, 7.5%) compared with 74% and 50% (standard deviation, 8.4%) at other institutions.ConclusionsStudents completing this vertically integrated radiology clerkship had test scores comparable with those of students at other medical schools.  相似文献   

5.
RATIONALE AND OBJECTIVES: The authors performed this study to develop, implement, and evaluate a new radiology clerkship for the required clinical clerkship year of medical school. MATERIALS AND METHODS: A mandatory radiology clerkship experience was added to the required clinical clerkships as a series of 10 independent half-day teaching sessions. These sessions were distributed as one session per existing clerkship throughout the year. To provide continuity and organization, Web-based curriculum materials were designed and implemented as a component of the radiology clerkship. The new clerkship was evaluated with observations, pretest and posttest measures with a control group, structured and unstructured student and faculty surveys, and individual and small group interviews. RESULTS: The clerkship was successfully developed and implemented. Ninety-five students have completed the clerkship. Their mean posttest score (84.8) was significantly higher than their mean pretest score (58.8, P < .001) and the mean control group score (59.7, P < .001). Students rarely used the Web site. Disadvantages of the distributed clerkship were identified. CONCLUSION: A radiology clerkship distributed among existing clerkships is feasible but has many disadvantages. Students greatly prefer live instruction, and Web-based educational materials are more valuable to faculty and administrators than to students.  相似文献   

6.
Rationale and objectivesTo promote opportunities for medical students to gain early exposure to radiology and research, our institution has initiated programs which fund summer radiology research projects for rising second-year medical students. This study assesses the impact of these faculty-mentored summer research experiences on medical student perceptions of radiology and research, in terms of both knowledge and interest.Materials and methodsA voluntary, anonymous survey was administered to students both before and after the summer research period. Both the pre-program survey and post-program survey included 7-point Likert-scale questions (1 = strongly disagree; 7 = strongly agree) to evaluate students’ perceptions about research and students’ perceptions about radiology as a specialty. Faculty mentors were sent an analogous post-program survey that included an evaluation of their student's research skills.ResultsThe surveys were completed by 9 of 11 students and 10 of 11 mentors. Students’ perceived knowledge of radiology as a specialty improved (P = 0.02) between the pre-program survey and post-program survey. Similarly, there was an increase in students’ perceived knowledge of research skills (P = 0.02) between the pre-program survey and post-program survey, with student ratings of research skills consistent with those of mentors. High student interest in both radiology and research was maintained over the course of the program.ConclusionOur pilot study suggests that summer research experiences can improve knowledge of radiology and research among medical students. Continued evaluation of this annual program will allow us to enhance the benefit to medical students and thereby bolster interest in academic radiology.  相似文献   

7.
PurposeThis study aimed to assess the efficacy of a virtual information session hosted by a diagnostic radiology residency program at addressing applicant concerns about the 2020-2021 interview cycle and highlighting key aspects of the residency program.MethodsParticipants were recruited to attend the virtual information session over a 2-week period via social media and communication with medical school radiology interest groups. Attendees were able to submit questions or topics of interest prior to the session. The virtual information session was hosted by trainees and faculty from a radiology residency. Data regarding the demographics of the attendees and the efficacy of the session were obtained through interactive live polling during the virtual session and a voluntary anonymous postsession survey.ResultsA total of 171 attendees participated in the virtual information session. Of the attendees, 42% learned about the session from Twitter and 72% were fourth-year medical students applying for residency. Among topics addressed during the session, attendees indicated that they were most interested in learning about “Application strategies during COVID-19” during an in-session poll. On the post-session survey, 96% of attendees reported being more knowledgeable about the residency program culture and the breadth of research and educational opportunities.ConclusionGiven the virtual nature of the 2020-2021 residency application cycle, utilization of web-based platforms for recruitment will be essential. Virtual information sessions can be effective at providing insight into aspects of a residency program that are typically gained during the in-person interview experience.  相似文献   

8.
ObjectivesOur institution has developed an educational program in which first-year radiology residents teach first-year medical students during gross anatomy laboratory sessions. The purpose of this study is to assess the impact of this program on medical student knowledge and perceptions of radiology, and on resident attitudes toward teaching.Materials and MethodsFirst-year resident pairs taught small groups of medical students during weekly 15-minute interactive sessions, and were evaluated on teaching skills by senior residents. A survey about attitudes toward radiology and a knowledge quiz were sent to the medical students, and a survey about attitudes toward teaching was sent to the first-year radiology residents, both pre-course and post-course.ResultsStudents’ radiology knowledge significantly increased between the pre-course and post-course survey across all categories tested (P < 0.001). Additionally, there were significant improvements in terms of students’ confidence in radiologic anatomy skills, perceived importance of radiology for medical training, familiarity with the field of radiology, and perception that radiologists are friendly (P < 0.001). Radiology residents felt more confident in their teaching proficiency (P < 0.001) by the conclusion of the course.ConclusionsResident-led small-group teaching sessions during anatomy laboratory are mutually beneficial for medical students and radiology residents. The program also allows radiology residents to be exposed early on in residency to teaching and academic medicine.  相似文献   

9.
PurposeThe aim of this study was to demonstrate that the transition from a stand-alone radiology clerkship block to a longitudinally integrated radiology curriculum leverages newer teaching tools favored by today’s learners.MethodsIn 2013 and 2014, medical students attended a dedicated 1-week radiology clerkship course. In 2015, the block clerkship model for radiology transitioned to a vertically integrated curriculum. By 2019, radiology content was integrated into many of the health illness and disease course blocks. Pre- and postcourse multiple-choice question tests as well as anonymous surveys were administered for both clerkship and integrated curriculum blocks. The student survey questions assessed perceptions regarding interpretation skills, imaging modality knowledge, and radiologists’ roles.ResultsAmong 197 total students in the clerkship block, surveys were completed by 170 respondents, yielding a response rate of 86.3%. Among 106 students in the longitudinal course, surveys were completed by 71 respondents, yielding a response rate of 67%. For both clerkship and longitudinally integrated courses, the average number of correct responses after completion of the courses was significantly greater than the average number of correct precourse responses. Compared with students in the clerkship block curriculum, students in the longitudinal curriculum demonstrated a significantly greater frequency of agreement in response to survey questions regarding significant exposure to radiology, feeling comfortable interpreting CT images, and being familiar with how to use the ACR Appropriateness Criteria.ConclusionsTransitioning from a single clerkship block to a more integrated format allows a more effective patient-centered clinical approach to medical imaging.  相似文献   

10.
BackgroundStress on medical education caused by COVID-19 has prompted medical schools to bar their students from onsite education at hospitals and clinics, limiting their educational experiences. Radiology is uniquely positioned to be a virtual rotation during this health crisis and beyond.PurposeTo implement virtual radiology clerkships and evaluate educational outcomes.MethodsWe developed virtual radiology clerkships using best practices from adult education theory; emphasizing self-directed and interactive learning through recommended reading materials, pre-recorded lectures, video conferencing, web-based learning modules from the ACR, as well as multimodality radiology resources to allow students flexibility in their individual approach to the subject matter.ResultsThe mean performance on standardized exams for our cohorts was 75% (range 50–96%), matching the national average of 75%. Surveys of medical students after the clerkship showed positive subjective feedback on the content and structure of the course.ConclusionsUnderstanding of medical imaging is vital for student doctors to have a better understanding of applied anatomy, patient care strategies, appropriate use, and image interpretation. Radiology is uniquely positioned to be taught in a virtual format, or in a combination of online and in-person activities. Standardized examination performance for our institutional virtual radiology clerkships is comparable to performance on traditional courses. Virtual clerkships designed with adult learners in mind can help student doctors prepare for residency and future independent practice as they build knowledge and skills needed to provide high quality patient care.  相似文献   

11.
IntroductionConcerns about radiologists being replaced by artificial intelligence (AI) from the lay media could have a negative impact on medical students’ perceptions of radiology as a viable specialty. The purpose of this study was to evaluate United States of America medical students’ perceptions about radiology and other medical specialties in relation to AI.MethodsAn anonymous, web-based survey was sent to 32 radiology interest groups at United States medical schools. The survey was comprised of 6 questions assessing medical student perceptions of AI and its potential impact on radiology and other medical specialties. Responses were voluntary and collected over a 6-month period from November 2017 to April 2018.ResultsA total of 156 students responded with representation from each year of medical school. Over 75% agreed that AI would have a significant role in the future of medicine. Most (66%) agreed that diagnostic radiology would be the specialty most greatly affected. Nearly half (44%) reported that AI made them less enthusiastic about radiology. The majority of students (57%) obtained their information about AI from online articles. Thematic analysis of free answer comments revealed mostly neutral comments towards AI, however, the negative responses were the strongest and most detailed.ConclusionsUS medical students believe that AI will play a significant role in medicine, particularly in radiology. However, nearly half are less enthusiastic about the field of radiology due to AI. As the majority receive information about AI from online articles, which may have negative sentiments towards AI's impact on radiology, formal AI education and medical student outreach may help combat misinformation and help prevent the dissuading of medical students who might otherwise consider the specialty.  相似文献   

12.
Rationale and ObjectivesTo highlight radiology's merits and boost appeal to medical students in the digital era, it is increasingly important for radiology departments to be readily accessible to medical students. We report the results of a multivariate analysis of the virtual presence of radiology medical student education of 152 allopathic United States (US) medical schools, the first report of its kind to the authors’ knowledge. We detail eight elements to include when optimizing a radiology medical student education website.MethodsIn August 2020, the Department of Radiology websites at 152 allopathic US medical schools were assessed for the presence of a medical student radiology education website and accessibility of collated information about preclinical and clinical course offerings, radiology interest groups, and outreach initiatives in the form of student radiology mentorship, shadowing, and research opportunities.Results65.1% (99/152) of allopathic US medical schools’ radiology departments have a dedicated medical student radiology education website, one of which was excluded from further review due to password protected content. 58.2% (57/98) of departmental websites include information about preclinical radiology coursework and 90.8% (89/98) of departments provide information about clinical courses. Details about interest groups were found on 26.5% (26/98) of departmental websites. Information about mentorship and shadowing was identified on less than half of departmental websites. 51% (50/98) of Department of Radiology websites provide information about research opportunities for students.ConclusionsThis study demonstrates that the majority of allopathic US medical schools’ radiology departments lack full information of relevance to medical students. To engage today's and tomorrow's medical learners digitally, there is opportunity and need to improve the online availability of information about preclinical and clinical radiology courses, student interest groups, shadowing opportunities, student mentorship, and student research. We detail eight elements to include when optimizing a radiology medical student education website. In most instances, this can be accomplished by revising an existing radiology department website in a manner that engages, educates, and recruits medical students. As a specialty, radiology must expand our digital footprint to reach tomorrow's colleagues and leaders.  相似文献   

13.
RATIONALE AND OBJECTIVES: The purpose of this study was to evaluate the effectiveness of resident-prepared, independent-learning materials for teaching chest radiology to medical students. MATERIALS AND METHODS: Students from three U.S. medical schools enrolled in radiology clerkships between March 1998 and June 1998 were randomly divided into control (n = 27) and experimental (n = 31) groups. The experimental group studied 12 chest radiology independent-learning cases (intervention) used to teach radiology residents in a previous study. Both groups took a 36-item, multiple-choice test (previously used to test radiology residents) on three occasions (before intervention [pretest], 1 day after intervention [posttest], and 2-4 weeks after intervention [final examination]). Student scores were then compared with resident scores. RESULTS: Mean scores were similar across institutions at pretest, but increases at posttest and final examination scores differed across time, school, and group (P < .005). Mean differences in scores between experimental and control groups at pretest, posttest, and 2-4-week final examination were -0.22, 9.79, and 9.14, respectively, demonstrating increased performance at posttesting that remained present (though slightly attenuated) 2-4 weeks later. Comparing performance, residents had mean pretest scores of 19.2 and students of 14.1, a five-point difference attributable to the residents' greater experience. Both residents and students gained approximately nine points at posttest. At final examination, the difference between residents and students was only 1.4 points, suggesting the experimental program (teaching materials) brought students close to the long-term retention shown by residents. CONCLUSION: Independent study of resident-prepared chest radiology teaching cases increased medical student knowledge for at least 2 or 4 weeks after instruction. Although starting at lower knowledge levels, students experienced gains in knowledge comparable to those of residents, suggesting the same materials can be used to teach both students and residents.  相似文献   

14.
PurposeThe aim of this study was to survey fourth-year medical students, both those choosing and those not choosing diagnostic radiology as their specialty, regarding factors influencing their choice of specialty and their perceptions of radiology.MethodsA voluntary anonymous online survey hyperlink was sent to 141 US medical schools for distribution to fourth-year students. Topics included demographics, radiology education, specialty choice and influencing factors, and opinions of radiology.ResultsA representative sampling (7%) of 2015 fourth-year medical students (n = 1,219; 51% men, 49% women) participated: 7% were applying in radiology and 93% were not. For respondents applying in radiology, the most important factor was intellectual challenge. For respondents applying in nonradiology specialties, degree of patient contact was the most important factor in the decision not to choose radiology; job market was not listed as a top-three factor. Women were less likely than men to apply in radiology (P < .001), with radiology selected by 11.8% of men (56 of 476) and only 2.8% of women (13 of 459). Respondents self-identifying as Asian had a significantly higher (P = .015) likelihood of selecting radiology (19 of 156 [12.2%]) than all other races combined (44 of 723 [6.1%]). Respondents at medical schools with required dedicated medical imaging rotations were more likely to choose radiology as a specialty, but most schools still do not require the clerkship (82%).ConclusionsThe reasons fourth-year medical students choose, or do not choose, diagnostic radiology as a specialty are multifactorial, but noncontrollable factors, such as the job market, proved less compelling than controllable factors, such as taking a radiology rotation.  相似文献   

15.
PurposeTo determine if there was a difference in the level of knowledge about interventional radiology (IR) between medical students in preclinical years of training compared with medical students in clinical years of training at two medical schools and to compare awareness of IR based on the curriculum at each school: one with required radiology education and one without such a requirement.Materials and MethodsAn anonymous survey was distributed to students at two medical schools; the survey assessed knowledge of IR, knowledge of training pathways, and preferred methods to increase exposure. Responses of the preclinical and clinical groups were compared, and responses from the clinical groups at each school were compared.Results“Poor” or “fair” knowledge of IR was reported by 84% (n = 217 of 259) of preclinical students compared with 62% of clinical students (n = 110 of 177; P < .001). IR was being considered as a career by 11% of all students (15%, n = 40 of 259 preclinical; 5%, n = 9 of 177 clinical). The main reason respondents were not considering IR was “lack of knowledge” (65%, n = 136 of 210 preclinical; 20%, n = 32 of 162 clinical). Students in the clinical group at the institution with a required radiology rotation reported significantly better knowledge of IR than clinical students from the institution without a required clerkship (P = .017).ConclusionsThere are significant differences in knowledge of IR between preclinical and clinical students. Required radiology education in the clinical years does increase awareness of IR.  相似文献   

16.
PurposeIn 2015, only 1.5% of female Canadian medical students pursued radiology as a specialty, versus 5.6% of men. The aim of this study was to determine what factors attract and deter Canadian medical students from pursuing a career in radiology, and why fewer women than men pursue radiology as a specialty.MethodsAn anonymous online survey was e-mailed to English-speaking Canadian medical schools, and 12 of 14 schools participated. Subgroup analyses for gender and radiology interest were performed using the Fisher exact test (P < .05).ResultsIn total, 917 students (514 women; 403 men) responded. Direct patient contact was valued by significantly more women who were not considering specialization in radiology (87%), compared with women who were (70%; P < .0001). Physics deterred more women (47%) than it did men (21%), despite similar educational backgrounds for the two gender groups in physical sciences (P < .0001). More women who were considering radiology as a specialty rated intellectual stimulation as being important to their career choice (93%), compared with women who were not (80%; P = .002). Fewer women who were not interested in radiology had done preclinical observerships in radiology (20%), compared with men who were not interested in radiology (28%; P = .04).ConclusionsA perceived lack of direct patient contact dissuades medical students from pursuing radiology as a career. Women have less preclinical radiology exposure than do men. Programs that increase preclinical exposure to radiology subspecialties that have greater patient contact should be initiated, and an effort to actively recruit women to such programs should be made.  相似文献   

17.
PurposeAn unmet need for radiology education exists even in this era of medical school curricular renewal. The authors examined the radiology clerkship requirements in Canadian and US medical schools to interpret radiology residency applicant trends.MethodsThe curricula of Canadian and US medical schools were reviewed for radiology rotation requirements. The radiology residency applicant trends for 2010 to 2019 were analyzed using linear regression. The number of radiology electives taken by matched radiology applicants was examined. Regression analysis was performed to assess the impact of radiology rotation requirements on residency application.ResultsOnly 1 of 17 Canadian medical schools required a radiology rotation despite major curricular renewal at the majority of medical schools. Approximately 20% of US medical schools required radiology rotations, without a significant change from 2011 to 2018, whereas the duration of required radiology rotations increased significantly. The numbers of total and first-choice radiology applicants showed significant decreases from 2010 to 2019 in Canada but not in the United States. Nearly all matched radiology applicants took electives in radiology, the majority of whom took three or more electives. Both the presence and duration of radiology rotation requirements showed significant, positive relationships with the number of radiology applicants.ConclusionsOnly a minority of medical schools in North America have radiology clerkship requirements, both the presence and duration of which significantly affect students’ choice of radiology as a career. Radiology clerkship requirements can be a solution to meet the expanding demand for diagnostic imaging in modern medicine.  相似文献   

18.
《Radiography》2016,22(4):295-305
BackgroundPractice education is a core component of undergraduate health programs, with the characteristics of the practice educator reported to have an influence on student experience during practical. This study analyses Australian student perceptions from six allied health professional undergraduate programs, to identify the characteristics of the ideal practice educator leading to successful placement experiences.MethodsAn existing survey developed for medical students was modified to incorporate both quantitative and qualitative responses. Participants included all students enrolled in six undergraduate health professions in the School of Health Sciences at the University of Newcastle, Australia (n = 1485). Students were invited to complete the survey via hard copy or online.ResultsThere was a 54% response rate. The most valued characteristics were non-judgemental, clarity and feedback. The three least valued characteristics were scholarly activity, role model and practices evidence base practice. Students identified the importance of their relationship (respectful, inspirational and supportive) with the practice educator as being fundamental to a productive placement.ConclusionThe characteristics identified by respondents were common to all six professions, with little differences between gender, year of program or number of placements completed. This study suggests that the attitude of the practice educator towards the student is one of the key factors that underpin the success of practice experience across allied health professions.  相似文献   

19.
IntroductionThe formation of integrated interventional radiology (IR) residency programs has changed the training paradigm. This change mandates the need to provide adequate exposure to allow students to explore IR as a career option and to allow programs to sufficiently evaluate students. This study aims to highlight the availability of medical student education in IR and proposes a basic framework for clinical rotations.Materials and MethodsThe Liaison Committee on Medical Education (LCME) website was utilized to generate a list of accredited medical schools in the United States. School websites and course listings were searched for availability of IR and diagnostic radiology rotations. The curricula of several well-established IR rotations were examined to identify and categorize course content.ResultsIn all, 140 LCME-accredited medical schools had course information available. Of those schools, 70.5% offered an IR rotation; 84.6% were only available to senior medical students and only 2% were offered for preclinical students; and 8.1% of courses were listed as subinternships. Well-established IR clerkships included a variety of clinical settings, including preprocedure evaluation, experience performing procedures, postprocedure management, and discharge planning.ConclusionMedical student exposure to IR is crucial to the success of integrated IR residency programs. Current research shows few institutions with formal IR subinternship rotations. Although 70.5% of institutions have some form of nonstandardized IR course, 84.6% are available only to fourth-year students, and 2% are offered to preclinical students. This suggests there is a significant opportunity for additional formal exposure to IR through increasing availability of IR rotations and exposure during the clinical and preclinical years.  相似文献   

20.
PurposeTraditionally, the pediatric radiology elective for medical students and pediatric residents constituted a morning teaching session focused mainly on radiography and fluoroscopy. A more structured elective was desired to broaden the exposure to more imaging modalities, create a more uniform educational experience, and include assessment tools.MethodsIn 2012, an introductory e-mail and formal syllabus, including required reading assignments, were sent to participants before the start date. A rotating weekly schedule was expanded to include cross-sectional imaging (ultrasound, CT, MR) and nuclear medicine. The schedule could accommodate specific goals of the pediatric resident or medical student, as requested. Starting in 2013, an online pre-test and post-test were developed, as well as an online end-of-rotation survey specific to the pediatric radiology elective. Taking the Image Gently pledge was required. A scavenger hunt tool, cue cards, and electronic modules were added.ResultsPre-test and post-test scores, averaged over 2 years, showed improvement in radiology knowledge, with scores increasing by 27% for medical students and 21% for pediatric residents. Surveys at the end of the elective were overwhelmingly positive, with constructive criticism and complimentary comments.ConclusionsWe have successfully created an elective experience in radiology that dedicates time to education while preserving the workflow of radiologists. We have developed tools to provide a customized experience with many self-directed learning opportunities. Our tools and techniques are easily translatable to a general or adult radiology elective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号