首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The University of Wisconsin (UW) solution is used widely in heart preservation but has been demonstrated to be detrimental to the endothelial function. The present study compares the effect of histidine-tryptophan-ketoglutarate (HTK) and UW solutions on endothelium-derived hyperpolarizing factor (EDHF)-mediated function in porcine small coronary arteries. METHODS: An isometric force study was performed in a myograph and the membrane potential of a single smooth muscle cell was measured electrophysiologically. Small coronary arteries (diameter 457 +/- 15 microm) were incubated with UW (n = 8), HTK (n = 7) or Krebs solution (n = 15) at 4 degrees C for 4 hours. After washout, in the presence of indomethacin (Indo; 7 micromol/liter), N(G)-nitro-l-arginine (l-NNA; 300 micromol/liter) and oxyhemoglobin (HbO; 20 micromol/liter), bradykinin (BK; -10 to -6.5 log M)-induced relaxation was compared in U46619 (-8 log M) pre-contraction. EDHF-mediated hyperpolarization was elicited by BK (-6.5 log M) in the presence of Indo, l-NNA and HbO. RESULTS: BK-induced, EDHF-mediated relaxation was reduced from 93.6 +/- 2.8% to 79.7 +/- 4.6% after UW preservation (p = 0.01 by unpaired t-test and p = 0.005 by 2-way analysis of variance [ANOVA]), whereas HTK incubation did not decrease EDHF-mediated relaxation (87.0 +/- 6.5%, p = 0.3 by unpaired t-test and p = 0.6 by 2-way ANOVA, compared with control, and p = 0.001 by 2-way ANOVA, compared with UW). EDHF-mediated hyperpolarization (10.3 +/- 1.6 mV) was attenuated by UW exposure (3.4 +/- 0.6 mV, [p = 0.002] vs control), but not by HTK exposure (8.3 +/- 1.1 mV, [p = 0.3] vs control). CONCLUSIONS: HTK is superior to UW solution in protecting EDHF-mediated endothelial function in porcine small coronary arteries. The present findings supports the use of HTK solution in heart preservation.  相似文献   

2.
Wu M  Dong YY  Yang Q  Yim AP  He GW 《Transplantation》2005,80(12):1765-1772
BACKGROUND: We investigated a relatively new organ preservation (Celsior) solution regarding its effect on the endothelium-derived hyperpolarizing factor (EDHF)-mediated function with comparison to St. Thomas Hospital (ST) solution. METHODS: The EDHF-mediated relaxation was induced by bradykinin (BK, -10 to -6.5 logM) in the presence of inhibitors of nitric oxide and prostacyclin in porcine small resistance coronary arteries, before and after incubation in ST (Group Ia, n=11), Celsior (Group Ib, n=13), or Krebs (Group Ic, control, n=12) at 4 degrees C for 4 hr. The EDHF-mediated hyperpolarization of the membrane potential of smooth muscle cells was measured by microelectrode with simultaneous relaxation after cold storage in ST (IIa, n=7), Celsior (IIb, n=6), or Krebs (IIc, control, n=6), or followed by washout with Krebs (ST: IIIa, n=6, Celsior: IIIb, n=6). RESULTS: The EDHF-mediated relaxation was significantly decreased in Group Ia (56.4+/-7.2% vs. 71.2+/-5.3%, P<0.05) and Ib (44.8+/-4.9% vs. 74.7+/-3.3%, P<0.05) but not in Ic. The sensitivity to BK was also significantly decreased (Ia: -7.51+/-0.14 vs. -7.76+/-0.12 log M, P<0.05; Ib: -7.36+/-0.09 vs. -7.60+/-0.09 logM, P<0.05). The resting membrane potential was depolarized in IIa (-44.3+/-1.9 mV, n=7, P<0.05) and IIb (-33.0+/-2.2 mV, n=6, P<0.05) compared with IIc (-57.1+/-1.5 mV, n=6). The EDHF-mediated hyperpolarization decreased significantly in IIa and IIb (3.4+/-0.3 and 3.0+/-0.2 vs. 6.3+/-0.5 mV, P<0.05) and partially restored in IIIa (5.0+/-0.2 vs. 3.4+/-0.3 mV, P<0.05) and IIIb (4.1+/-0.3 vs. 3.0+/-0.2 mV, P<0.05). CONCLUSIONS: Storage with Celsior and ST solutions reduces the EDHF-mediated endothelial function (hyperpolarization and associated relaxation) in porcine small resistance coronary arteries.  相似文献   

3.
BACKGROUND: We examined the effect of 11,12-epoxyeicosatrienoic acid (EET(11,12)) added to St. Thomas' Hospital (ST) solution or University of Wisconsin (UW) solution on endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation under clinically relevant temperature and exposure time. METHODS: Porcine coronary microarteries (200 to 450 microm) were incubated with Krebs' solution (control), ST with or without EET(11,12) (300 nmol/L) at 22 degrees C for 1 hour as well as at 4 degrees C for 1 or 4 hours, and UW with or without EET(11,12) at 4 degrees C for 4 hours. The EDHF-mediated relaxation was induced by bradykinin (-10 to approximately -6.5 log M) in the precontraction evoked by U(46619) (10 nmol/L) or U(46619) (1 nmol/L) plus endothelin-1 (6 nmol/L). RESULTS: The EDHF-mediated relaxation was reduced after exposure to UW (79.7% +/- 4.6% versus 93.6% +/- 2.8%, p = 0.01) at 4 degrees C for 4 hours. One-hour exposure to ST under 22 degrees C or 4 degrees C decreased the relaxation (75.2% +/- 7.6% versus 96.7% +/- 1.6%, p < 0.05) or the sensitivity to bradykinin (-8.04 +/- 0.15 versus -8.50 +/- 0.20 log M, p < 0.05). The relaxation increased to 86.8% +/- 5.3% by addition of EET(11,12) to ST (1 hour at 22 degrees C, p < 0.05) but was unchanged when added to either ST or UW at 4 degrees C for 1 or 4 hours. CONCLUSIONS: As an additive to ST solution, EET(11,12) may partially restore EDHF-mediated endothelial function under moderate hypothermia but had no significant effect under profound hypothermia when added to either ST or UW solution. Further investigation is necessary to improve the effect.  相似文献   

4.
OBJECTIVES: Hyperkalemia in cardioplegia impairs the endothelium-derived hyperpolarizing factor (EDHF)-mediated function. This study examined the effect of procaine in cardioplegia on the EDHF-mediated response in porcine coronary arteries. METHODS: An isometric force study was performed in a myograph. Two rings taken from the same artery (diameter 200-450 microm) were incubated with Krebs solution (group I) or 20 mM K+ (group II) with/without procaine (1 mM) at 37 degrees C for 1 hour. The EDHF-mediated relaxation was induced by bradykinin (BK, -10 approximately -6.5 log M) after U46619 (-8 log M, in group I) or K+-precontraction (in group II) in the presence of indomethacin (7 microM), NG-nitro-L-arginine (300 microM), and hemoglobin (20 microM). The membrane potential of a single smooth muscle cell was measured by a microelectrode after superfusion with Krebs solution with/without procaine for 1 hour. RESULTS: The EDHF-mediated relaxation was increased by the treatment with procaine with the EC50 shifted leftward (97.3 +/- 0.6% vs. 83.0 +/- 5.1% at -7 log M and 99.4 +/- 0.6% vs. 96.7 +/- 1.6% at -6.5 log M, p < 0.05; EC50: -8.57 +/- 0.24 vs. -7.92 +/- 0.23 log M, p < 0.05). Procaine decreased the BK-induced hyperpolarization from -72.3 +/- 0.7 mV to -68.8 +/- 0.8 mV (-6.5 log M, p < 0.01). The EDHF-mediated relaxation in arteries exposed to 20 mM K+ was not altered by procaine (49.9 +/- 7.4% vs. 55.8 +/- 7.6%, p > 0.05). CONCLUSIONS: In the coronary arteries, procaine has a depolarizing effect but it enhances EDHF-mediated relaxation. Addition of procaine in cardioplegia did not change the EDHF-mediated endothelial function.  相似文献   

5.
BACKGROUND: We have investigated and compared nitric oxide (NO) release and endothelium-derived hyperpolarizing factor (EDHF)-mediated hyperpolarization in the human internal mammary artery (IMA), radial artery (RA), saphenous vein (SV), and coronary artery. MATERIALS AND METHODS: Vessel segments taken from coronary artery bypass grafting or heart transplantation patients were placed in an organ chamber. NO-sensitive electrode or intracellular glass microelectrode was used to study NO or EDHF in response to acetylcholine (ACh) and bradykinin (BK). RESULTS: The resting membrane potential of the smooth muscle cells of IMA, RA, and SV was -58 +/- 0.84 (n = 61), -61 +/- 1.3 mV (n = 46, p = 0.03), and -62 +/- 0.9 mV (n = 23, p = 0.0001) respectively. BK- (10(-7) M) induced EDHF-mediated hyperpolarization (-10.9 +/- 1.5 mV, n = 7) in the IMA was significantly greater than that in RA (-5.8 +/- 0.9 mV, n = 6, p = 0.04) and SV (-5.1 +/- 0.5 mV, n = 8, p < 0.01). The basal release of NO in IMA (16.8 +/- 1.9 nM) was significantly higher than that in RA (11.1 +/- 1.0 nM, n = 12, p = 0.02) and in SV (9.9 +/- 2.8 nM, n = 13, p < 0.001). The stimulated release of NO to BK in IMA was significantly greater than that in RA (44.3 +/- 4.0 vs 25.8 +/- 3.6 nM, n = 8, p = 0.004). The duration of NO release was longer in IMA than in RA or in SV. CONCLUSIONS: The basal and stimulated release of NO and EDHF-mediated hyperpolarization in the IMA are significantly greater than that in the RA and SV. EDHF exists in all these human vessels. This study reveals the differences among human vessels regarding the endothelial function that have implications in vasospasm, coronary protection, or long-term graft patency.  相似文献   

6.
BACKGROUND: The effect of cold storage of porcine pulmonary microvessels in University of Wisconsin (UW) and Euro-Collins (EC) solutions on the cellular electrophysiologic properties remains unknown. METHODS: The pulmonary microarteries (PA, 381.6 +/- 62.8 microm; n = 60) and microveins (PV, 360.8 +/- 54.5 microm; n = 60) were incubated with Krebs (control), UW, or EC solution at 4 degrees C for 4 hours in a myograph. The resting membrane potential and the endothelium-derived hyperpolarizing factor-mediated hyperpolarization to bradykinin (0.1 micromol/L) in the presence of inhibitors of nitric oxide and prostacyclin, N(omega)-nitro-l-arginine, hemoglobin, and indomethacin, in a single smooth muscle cell were directly measured. RESULTS: The resting membrane potential (-60.8 +/- 1.3 mV in PA and -48.1 +/- 0.7 mV in PV, n = 6) was depolarized after exposure to UW solution (to -18.4 +/- 0.7 mV in PA and -13.6 +/- 0.8 mV in PV; n = 8; p < 0.001). The amplitude of endothelium-derived hyperpolarizing factor-mediated hyperpolarization to bradykinin was also decreased (from 7.4 +/- 0.7 mV to 2.6 +/- 0.7 mV in PA and from 4.6 +/- 0.5 mV to 0.9 +/- 0.4 mV in PV; p < 0.001). In comparison, EC depolarized the membrane potential to a lesser extent (to -28.3 +/- 0.9 mV in PA and to -21.3 +/- 0.8 mV in PV; n = 8; p < 0.001) and almost abolished the hyperpolarization to bradykinin. After washout, hyperpolarization was partially restored (UW, 4.9 +/- 0.7 mV in PA and 2.0 +/- 0.3 mV in PV. p < 0.01; EC, 2.3 +/- 0.5 mV in PA and 1.0 +/- 0.3 mV in PV. p < 0.01). CONCLUSIONS: Cold storage of porcine PA and PV with UW or EC solution impairs the electrophysiologic properties (hyperpolarization) related to endothelium-smooth muscle interaction. The alteration is more profound with EC than UW solution and in veins than in arteries. The findings urge further studies on lung preservation solutions.  相似文献   

7.
Background: Vascular endothelium plays a key role in regulation of vascular tone. Hyperkalemia has been demonstrated to impair the EDHF‐mediated endothelial function in coronary circulation. University of Wisconsin (UW) and Eruo‐collins (EC) solutions are used for organ preservation in transplantation surgery. The potassium concentration in UW or EC solutions is as high as 125 mmol/L or 115 mmol/L, respectively. This study was designed to examine whether hyperkalemia or storage with UW and EC solutions affects the relaxation mediated by EDHF in the porcine pulmonary micro‐arteries. Methods: Porcine pulmonary micro‐artery rings (diameter 200–450 μm) were studied in myograph (n = 8 in each group). After incubation with hyperkalemia (K+ 125 mmol/L, at 37° C), UW or EC solutions (at 4° C for 4 hours), EDHF‐mediated relaxation induced by bradykinin (BK, ?10 to ?6.5 log M) in the presence of inhibitors for cyclooxygenase (Indomethacin, 7 μM), nitric oxide synthase (NG‐nitro‐L‐arginine, 300 μM), and oxyhemoglobin (20 μM) was compared with control (Krebs' solution) in precontraction with U46619 (?7.5 log M). Results: The EDHF‐mediated relaxation to BK was 69.6 ± 6.3% compared with 97.1 ± 1.7% (p= 0.003) in control (no inhibitors). After incubation with hyperkalemia, the relaxation significantly decreased (38.6 ± 3.0% vs. 59.1 ± 7.4%, p= 0.03 ). Storage with UW or EC solutions also significantly decreased the relaxation (49.3 ± 7.3% vs. 65.2 ± 3.5%, p= 0.04 and 51.9 ± 8.4% vs. 60.3 ± 6.1%, p= 0.02 , respectively). Conclusions: In porcine pulmonary micro‐arteries, exposure to hyperkalemia or storage with UW or EC solutions at 4°C for 4 hours impairs the EDHF‐mediated endothelial function. The clinical significance of this effect should be further studied.  相似文献   

8.
BACKGROUND: The University of Wisconsin (UW), St. Thomas (ST) and Broussais (B) solutions were compared to the CRMBM solution, that we developed for long term heart preservation. METHODS: Isolated isovolumic rat hearts were arrested with each cardioplegic solution (n = 5) to 8 hearts in each group), submitted to 12 hours of cold storage (4 degrees C) in the same solution and then reperfused for 60 minutes at 37 degrees C. Function was measured during control and reflow. High energy phosphates and intracellular pH were monitored by P-31 magnetic resonance spectroscopy. Analyses were performed by biochemical assays and HPLC in coronary effluents (CK, Pi, lactate, purines) and in freeze-clamped hearts (amino acids, nucleotides, CK, LDH) at the end of reperfusion. RESULTS: Functional recovery was significantly improved with the new cardioplegic solution (50+/-12% recovery for the rate pressure product at the end of reflow vs 8+/-3% with UW, 0% with B and with ST). This result was correlated with the best metabolic and cellular protection as assessed in particular by higher PCr levels during reflow (30+/-3% vs 10+/-3% with UW, 8+/-4% with B, and 7+/-1% with ST) as well as reduced creatine kinase leakage during reflow (110+/-15 IU/60 minute vs 270 +/- 57 IU/60 minute with UW, 323+/-36 IU/60 minute with Broussais solution and 237+/-18 IU/60 minute with ST). CONCLUSION: This new solution is more effective in prolonged myocardial protection than the three most widely used solutions.  相似文献   

9.
BACKGROUND: Endothelium plays an important role in mediating the function of transplanted organs. The widely used University of Wisconsin solution impairs the endothelium-derived hyperpolarizing factor-mediated relaxation in coronary arteries, but little is known about effects of lung preservation on endothelium-derived hyperpolarizing factor-mediated endothelial function. This study examined the effect of organ preservation solutions on the endothelium-derived hyperpolarizing factor-mediated relaxation in the pulmonary microarteries (diameter 200 to 450 microm). METHODS: Two segments (1 as control) from the same microartery were allocated in 2 chambers of a myograph. After incubation with hyperkalemia (potassium 115 mmol/L), University of Wisconsin, or Euro-Collins solution (at 4 degrees C for 4 hours), the endothelium-derived hyperpolarizing factor-mediated relaxation was induced by bradykinin (-10 to -6.5 log M, n = 8) or calcium ionophore (A(23187), -9 to -5.5 log M, n = 7) in U(46619) (-7.5 log M) precontracted rings in the presence of indomethacin (7 micromol/L), N(G)-nitro-L-arginine (300 micromol/L), and oxyhemoglobin (20 micromol/L). RESULTS: Exposure to hyperkalemia and storage with Euro-Collins or University of Wisconsin solution significantly decreased the relaxation to bradykinin (51.9 +/- 8.4% vs 60.3 +/- 6.1%, P =.02 or 49.3 +/- 7.3% vs 65.2 +/- 3.5%, P =.04) or A(23187) (12.5 +/- 0.02% vs 33.8 +/- 0.07%, P =.02 or 13.2 +/- 0.03% vs 31.0 +/- 0.05%, P =.03%). CONCLUSIONS: Endothelium-derived hyperpolarizing factor plays an important role in porcine pulmonary microarteries, and the endothelium-derived hyperpolarizing factor-mediated relaxation is impaired when the lung is preserved with University of Wisconsin or Euro-Collins solution. This impairment may affect the lung function during the reperfusion period after lung transplantation.  相似文献   

10.
BACKGROUND: The bradykinin (BK)-induced endothelium-dependent relaxation is impaired in the presence of elevated potassium concentration enhancing the vasospastic tendency of large coronary arteries. Inhibition of the angiotensin-converting enzyme responsible for bradykinin degradation was found to enhance the endothelium-dependent relaxation by BK. The aim of the present study was to investigate the effect of phosphoramidon, known to inhibit a BK-metabolizing neutral endopeptidase enzyme, on relaxation of porcine-isolated coronary artery in depolarizing solution. METHODS: Endothelium intact porcine coronary artery rings were studied in organ chambers. The rings were isometrically contracted with potassium chloride (30 mmol/L) and the response to BK (1 to 1,000 nmol/L)-induced relaxation was investigated in the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine (300 micromol/L) alone and in combination with the cyclooxygenase inhibitor indomethacin (10 micromol/L), and that of the inhibitor of calcium-dependent potassium channels tetraethylammonium (7 mmol/L). Under these conditions, phosphoramidon (10 micromol/L), an inhibitor of a neutral endopeptidase enzyme (EC.3.4.24.11.), which is responsible for the degradation of BK, was used to enhance the endothelium-dependent relaxation. RESULTS: Phosphoramidon potentiated the maximum vasorelaxant effect of BK in Nomega-nitro-L-arginine (control 26.6%+/-10.86% versus phosphoramidon 49.05%+/-4.52%; n = 6, p < 0.05) or in Nomega-nitro-L-arginine + indomethacin-pretreated rings (control 20.7%+/-9.92% versus phosphoramidon 42.0%+/-12.26%; n = 5, p < 0.05) and this increased vasodilation was not modified by tetraethylammonium. CONCLUSIONS: In the present study phosphoramidon potentiated the effect of BK in the absence of nitric oxide and prostaglandins in porcine-isolated coronary artery. This effect did not depend on tetraethylammonium-sensitive potassium channels. Phosphoramidon may be a useful pharmacologic tool for preserving the vasorelaxing capacity of coronary arteries after cardioplegia.  相似文献   

11.
BACKGROUND: In addition to nitric oxide (NO) and prostacyclin (PGI2), the vascular endothelium can influence local vascular tone by a mechanism involving the hyperpolarization of vascular smooth muscle cells. This response is attributed to the release of an endothelium-derived hyperpolarizing factor (EDHF). The present study was performed to determine the characteristics of the EDHF that mediates the NO/PGI2-independent hyperpolarization and relaxation of human renal interlobar arteries. METHODS: Acetylcholine-induced, EDHF-mediated hyperpolarization and relaxation were assessed using sharp microelectrodes impaled into interlobar smooth muscle cells and in organ chamber experiments, respectively. All experiments were performed in the combined presence of NO synthase (NOS) and cyclooxygenase inhibitors and the thromboxane analog U46619. RESULTS: Interlobar arteries demonstrated pronounced NO/PGI2-independent relaxations and hyperpolarizations that were sensitive to the blockade of calcium-activated K+-channels (KCa+ channels) by the combination of charybdotoxin and apamin and to the inhibition of the Na-K-ATPase by ouabain. Exogenously applied KCl also exhibited relaxations and hyperpolarizations that were sensitive to ouabain but insensitive to the combined inclusion of charybdotoxin and apamin. Relaxations induced by KCl were also observed in endothelium-denuded interlobar arteries. CONCLUSION: These results indicate that in the human renal interlobar artery, EDHF-mediated responses display the pharmacologic characteristics of K+ ions released through endothelial KCa+ channels. Smooth muscle cell hyperpolarization and relaxation appear to be dependent on the activation of ouabain-sensitive subunits of the Na-K-ATPase.  相似文献   

12.
Hyperkalemic solution is widely used to protect the myocardium during open-heart surgery or to preserve donor hearts during heart or heart/lung transplants. The inhibitory effects of hvperkalemic solution on the release of endothelium-derived hyperpolarizing factor (EDHF) of coronary arteries following deep hypothermic storage (4 degrees C) has been well studied. However, it has not been established whether potassium channel openers have protective effects on the coronary endothelial function after cold storage. This study was designed to examine this. Porcine coronary artery rings were studied in organ baths. Relaxation in response to the EDHF stimulus A23187 (nonreceptor-mediated stimulus calcium ionophore) in thromboxane A2 mimetic U46619 (30 nmol/L)-induced precontraction after incubation with hyperkalemic solution (20 mmol/L) with nicorandil (10 micromol/L) (either at 37 degrees C in the oxygenated organ chamber or at 4 degrees C in a refrigerator for 6 h) was compared with the control. There was significant difference between hyperkalemia group and hyperkalemia with nicorandil group under normothermia (p = .04). The difference was significant in the same solution between normothermia and hypothermia. After incubation in hyperkalemic solution without or with nicorandil, the A23187-induced relaxation was 32.8% +/- 9.1% and 72.6% +/- 16.9%, respectively (N = 8, p < .01). Potassium channel opener can attenuate the inhibitory effect of hyperkalemic solution on the release of EDHF after cold storage.  相似文献   

13.
Background. Endothelial cells derive nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor (EDHF). The cytochrome P-450–monooxygenase metabolites of arachidonic acid (epoxyeicosatrienoic acids [EETs]) have been suggested to be EDHF. This study was designed to examine the effect of EET11,12 with regard to the possibility of restoring EDHF function when added into hyperkalemic cardioplegic solution.

Methods. Porcine coronary microartery rings were studied in a myograph. In groups 1 and 2, paired arteries were incubated in either hyperkalemic solution (K+ 20 mmol/L) or Krebs’ solution (control). In group 3, the paired arteries were incubated in hyperkalemia plus EET11,12 (1 × 10−6.5 mol/L) or hyperkalemia alone (control) at 37°C for 1 hour, followed by Krebs’ washout and then precontracted with 1 × 10−8.5 mol/L U46619. The EDHF-mediated relaxation to EET11,12 (group 1) or bradykinin (groups 2 and 3) was studied in the presence of NG-nitro-l-arginine, indomethacin, and oxyhemoglobin.

Results. After exposure to hyperkalemia, the EDHF-mediated maximal relaxation by bradykinin (72.5% ± 7.8% versus 41.6% ± 10.6%; p < 0.05), but not by EET11,12 (18.4% ± 3.3% versus 25.1% ± 4.9%; p > 0.05) was significantly reduced. Incubation with EET11,12 partially restored EDHF function (33.3% ± 9.5% versus 62.0% ± 8.5%; p < 0.05).

Conclusions. In coronary microarteries, hyperkalemia impairs EDHF-mediated relaxation, and EET11,12 may partially mimic the EDHF function. Addition of EET11,12 into cardioplegic solution may partially restore EDHF-mediated function reduced by exposure to hyperkalemia.  相似文献   


14.
OBJECTIVE: Improvement of long-term heart preservation methods would potentially increase the donor pool and improve survival. We compared the efficacies of the University of Wisconsin (UW) and Celsior solutions on ventricular and endothelial functions after 24-h preservation. METHODS: We used an isolated heart preparation perfused with blood. The heart was excised from a rabbit, stored for 24 h in the UW or Celsior solution, and then perfused with blood from a support-rabbit. We evaluated cardiac output and coronary endothelial function. RESULTS: The Frank-Starling curve showed a significant left and upward shift in the UW group compared with that in the Celsior group (p<0.01). There were no significant differences between the groups for the coronary blood flow in response to sodium nitroprusside or acetylcholine. The serum creatine kinase MB level after reperfusion was significantly lower in the UW group than in the Celsior group (10.7+/-1.4 ng/mL vs 30.4+/-5.4 ng/mL, p<0.01), whereas lipid peroxide levels did not differ significantly between the two groups. CONCLUSIONS: The UW group showed better left ventricular function than the Celsior group, indicating that the UW solution has greater potential for long-term preservation than Celsior solution.  相似文献   

15.
To determine if venous endothelium can acquire the ability to elicit endothelium-dependent relaxation responses, five dogs underwent femoral artery bypass with autogenous saphenous vein. The veins were harvested 15 to 17 months later. Endothelium-dependent relaxation was determined by measuring tension of deendothelialized coronary arteries mounted on a tensiometer and superfused with the effluent of the vein grafts. These grafts were perfused with acetylcholine and calcium ionophore A23187, which cause case vascular smooth muscle relaxation by means of endothelium-dependent relaxing factor production. Control arteries and veins were obtained from other dogs for comparison. In response to acetylcholine from 10(-9) to 10(-4) mol/L, the final cumulative relaxation produced in the detector coronary artery (mean +/- SD) was 64.2% +/- 25.7% by the control arteries, 14.2% +/- 5.5% by the vein bypass graft, and 5.3% +/- 5.6% by the control veins. In response to A23187 from 10(-8) to 10(-4) mol/L, the final cumulative relaxation was 66.2% +/- 19.0% by the control arteries, 30.6% +/- 8.9% by the vein bypass grafts, and 5.3% +/- 5.6% by the control veins. The differences were significant between the vein bypass grafts and the control arteries (p less than 0.04 for acetylcholine; p less than 0.04 for A23187) and the control veins (p less than 0.03 for acetylcholine; p less than 0.02 for A23187). Perfusion of saphenous veins used as chronic arterial bypass grafts with either acetylcholine or A23187 produced detector vessel relaxation, consistent with endothelium-dependent relaxing factor production. The magnitude of the relaxation response did not approach that from perfusion of control arteries.  相似文献   

16.
INTRODUCTION: Glutathione (GSH) is added to University of Wisconsin (UW) organ preservation solution to protect against oxidative stress. This study assesses the effect of GSH-supplementation on endothelial function in tissues subjected to cold ischaemia and compares its effects to a mono-ethyl ester equivalent (GSH-MEE) and S-nitrosated GSH (GSNO). METHODS: Rat aortic rings were stored for 1 h or 48 h in cold, hypoxic UW solution with or without GSH (3 mM), GSH-MEE (3 mM) or GSNO (100 mciroM) supplementation. Aortic rings were reoxygenated in warm Krebs solution; smooth muscle function was assessed by responses to phenylephrine (PE), and endothelial function by vasodilatation to the endothelium-dependent dilator, acetylcholine (ACh). The protective effects against oxidant-induced endothelial cell death were assessed in cultured human umbilical vein endothelial cells (HUVEC). RESULTS: Supplementation of UW with either GSH or GSH-MEE had no effect on vascular responses to PE, but smooth muscle contraction was significantly attenuated in rings incubated for 48 h with GSNO. Endothelium-dependent relaxation was significantly impaired in tissues stored under hypoxic conditions in GSH, GSH-MEE and GSNO supplemented UW solution for 1 h. However, impairment at 48 h was significantly more pronounced in GSH-treated vessels. Cultured HUVEC death was exacerbated by GSH and GSH-MEE in unstressed cells and in those stressed with a superoxide anion generator. CONCLUSIONS: GSH supplementation of UW solution exacerbates cold-ischaemia induced endothelial dysfunction. GSNO did not share the detrimental effects of GSH and promoted NO-mediated vasodilatation.  相似文献   

17.
Background: The authors recently demonstrated that acetylcholine-induced pulmonary vasorelaxation had two primary components, nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). The goal was to investigate the effects of etomidate and ketamine on the NO- and EDHF-mediated components of pulmonary vasorelaxation in response to acetylcholine, bradykinin, and the calcium ionophore, A23187.

Methods: Canine pulmonary arterial rings with an intact endothelium were suspended in organ chambers for isometric tension recording. The effects of etomidate and ketamine (10-5 m and 10-4 m) on vasorelaxation responses to acetylcholine, bradykinin, and A23187 were assessed in phenylephrine-contracted rings. The NO- and EDHF-mediated components of relaxation were assessed using a NO synthase inhibitor (N-nitro-l-arginine methylester [l-NAME]: 10-4 m) and a Ca2+-activated potassium channel inhibitor (tetrabutylammonium hydrogen sulfate [TBA]: 10-3 m) in rings pretreated with a cyclooxygenase inhibitor (ibuprofen: 10-5 m). Intracellular calcium concentration ([Ca2+]i) was measured in cultured bovine pulmonary artery endothelial cells loaded with acetoxylmethyl ester of fura-2.

Results: Etomidate and ketamine attenuated pulmonary vasorelaxation in response to acetylcholine and bradykinin, whereas they had no effect on the response to A23187. The relaxant responses to acetylcholine and bradykinin were attenuated by l-NAME or TBA alone and were abolished by combined inhibition in rings pretreated with ibuprofen. Etomidate and ketamine further attenuated both l-NAME-resistant and TBA-resistant relaxation. These anesthetics also inhibited increases in endothelial [Ca2+]i in response to bradykinin, but not A23187.  相似文献   


18.
This study was undertaken to determine whether clinical methods for preservation and storage of hearts explanted for transplantation affect the responsiveness of coronary arteries to vasoactive agents. Porcine hearts were perfused with crystalloid or blood cardioplegic solution. Rings of coronary arteries were suspended in organ chambers for measurement of isometric force (1) immediately after perfusion and (2) after 5 hours' storage of the hearts at 4 degrees C in the same cardioplegic solution (n = 6 in each group). The maximal contraction of the smooth muscle to potassium chloride, 40 mmol/L, was reduced significantly after perfusion with crystalloid cardioplegic solution (10.8 +/- 1.2 gm) compared with blood cardioplegic solution (17.3 +/- 0.8 gm) and nonperfused coronary arteries (control group 16.9 +/- 1.8 gm). The sensitivity of the arteries with endothelium to the contractile effects of prostaglandin F2 alpha increased after perfusion with crystalloid cardioplegic solution (ED50, [-log mol/L] 5.8 +/- 0.04) compared with blood cardioplegic solution (5.3 +/- 0.02) and the control group (5.7 +/- 0.03). In addition, relaxations to the calcium ionophore A23187, bradykinin, and the alpha 2-agonist BHT-920, which depend on the presence of endothelial cells, were significantly reduced after perfusion with crystalloid compared with blood cardioplegic solution or the control group. The responsiveness of the endothelium and smooth muscle after 5 hours' cold storage was unaltered in the blood cardioplegia group, whereas storage resulted in functional recovery in the crystalloid cardioplegia group, with the result that all groups were comparable. These data suggest an immediate and reversible change in vascular function with crystalloid cardioplegia, which was not apparent with blood cardioplegia.  相似文献   

19.
OBJECTIVE: We have recently shown that adenosine instead of supranormal potassium in cold crystalloid cardioplegia improves cardioprotection. Studies indicate that hyperkalemia has unfavorable effects on vascular endothelial function. Three pathways have been identified as major vasodilatory pathways: the nitric oxide (NO) pathway, the cyclooxygenase (COX) pathway, and the endothelium-derived hyperpolarization (EDHF) pathway, where the EDHF pathway, in particular, seems susceptible to hyperkalemia. We hypothesized that adenosine cardioplegia improves postcardioplegic endothelial function. METHODS: Sixteen pigs were randomized to receive either cold (6 degrees C) hyperkalemic cardioplegia (n=8) or cardioplegia where hyperkalemia was substituted with 1.2 mM adenosine (n=8). After 1h of cold ischemic arrest, coronary blood flow was monitored for the following 2h. The LAD artery was then explanted, and cylindrical rings were mounted for isometric tension recordings in organ chambers. Vessels were preconstricted with U46610 (Thromboxane A(2) analog) and then bradykinin-mediated relaxation was investigated. To differentiate between the vasodilatory pathways the relaxation was assessed in the absence and presence of inhibitors of the COX (indomethacin), NO (L-NAME+carboxy-PTIO), and EDHF (apamin+charybdotoxin) pathways. RESULTS: Invivo: The adenosine group had, as distinct from the hyperkalemic group, a significantly increased coronary blood flow index 1h after cross-clamp release (from (ml/min/100 g, mean+/-SD) 50.9+/-13.9 to 72.8+/-21.9, p=0.010). The difference was, however, not statistically significant between groups. Invitro: Maximal relaxation without blockers was 27.4+/-10.1% of maximal tension in the adenosine group and 22.2+/-7.5% in the hyperkalemic group. To investigate EDHF-dependent vasodilation the vessel rings were simultaneously treated with indomethacin, L-NAME, and carboxy-PTIO. Maximal relaxation in the hyperkalemic group was then reduced to 47.4+/-17.4% of maximal tension, which was a significant reduction compared to the adenosine group with a maximal relaxation of 20.6+/-8.7% (p=0.028). CONCLUSION: Adenosine instead of supranormal potassium in cold crystalloid cardioplegia increases postcardioplegic myocardial blood flow and preserves EDHF-dependent vasodilation.  相似文献   

20.
BACKGROUND: Poor myocardial tolerance to prolonged cold ischemia remains a major concern in heart transplantation. In this study, we estimated superiority of Histidine-Tryptophan-Ketoglutarate (HTK) over University of Wisconsin (UW) as a cardiac preservation solution. METHODS: Isolated rat hearts were mounted on a Langendorff apparatus to estimate the baseline cardiac function. The hearts were arrested and stored at 4 degrees C in UW and HTK solution for 8 hours, and then reperfused. The aortic flow, coronary flow, cardiac output, rate pressure product, and left ventricular dp/dt in the HTK group recovered significantly more than the UW group. The values of myocardial total adenine nucleotides and the adenosine triphosphate to adenosine diphosphate ratio were higher in the HTK than in the UW group. We also examined coronary vascular responsiveness using left coronary arteries dissected from the rat hearts before flushing, before storage, after storage, and after reperfusion. RESULTS: The maximal relaxation response to acetylcholine was significantly higher in the HTK than in the UW group after reperfusion, although there were no significant differences at each stage before reperfusion. In addition, the endothelium-independent relaxation response to sodium nitroprusside in the HTK group was also well preserved after reperfusion. CONCLUSIONS: These results indicate that HTK is superior to UW solution for cardiac preservation. HTK protects coronary vasculature during preservation, which together with reperfusion might lead to improved functional cardiac recovery following preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号