首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal stability of composite bimetallic wires from five novel microalloyed aluminum alloys with different contents of alloying elements (Zr, Sc, and Hf) is investigated. The alloy workpieces were obtained by induction-casting in a vacuum, preliminary severe plastic deformation, and annealing providing the formation of a uniform microstructure and the nucleation of stabilizing intermetallide Al3(Zr,Sc,Hf) nanoparticles. The wires of 0.26 mm in diameter were obtained by simultaneous deformation of the Al alloy with Cu shell. The bimetallic wires demonstrated high strength and improved thermal stability. After annealing at 450–500 °C, a uniform fine-grained microstructure formed in the wire (the mean grain sizes in the annealed Al wires are 3–5 μm). An increased hardness and strength due to nucleation of the Al3(Sc,Hf) particles was observed. A diffusion of Cu from the shell into the surface layers of the Al wire was observed when heating up to 400–450 °C. The Cu diffusion depth into the annealed Al wire surfaces reached 30–40 μm. The maximum elongation to failure of the wires (20–30%) was achieved after annealing at 350 °C. The maximum values of microhardness (Hv = 500–520 MPa) and of ultimate strength (σb = 195–235 MPa) after annealing at 500 °C were observed for the wires made from the Al alloys alloyed with 0.05–0.1% Sc.  相似文献   

2.
In this study, the effects of hot-rolled processes at different temperatures (420 °C, 450 °C, and 480 °C) and subsequent solid solution and aging treatments on the microstructure, mechanical properties, and corrosion properties of Al-Mg-Li alloys with trace Sc and Zr addition were investigated. The aging treatment of rolled sheets after solid solution treatment could obtain Al3Li particles and Al3(Sc, Zr)/Al3Li core–shell particles to improve the mechanical properties of Al-Mg-Li alloy products effectively. The results showed that, as the rolling temperatures increased from 420 °C to 480 °C, the alloy’s ultimate tensile strengths and yield strengths increased, while the corrosion resistance decreased. The increase in rolling temperature increased the precipitation-free zone (PFZ) width of the alloy, which undermined the corrosion resistance of the alloy. Moreover, elevating the hot rolling temperature changes the texture strength of the alloy. Particularly in the 480 °C hot-rolled sample, the decrease in the Brass texture strength and the increase in the S texture and Copper texture strength led to an increase in the Taylor factor (M). The increase in rolling temperature also raised the number density of the Al3(Sc, Zr)/Al3Li core–shell particles. The presence of such particles not only inhibits grain growth but also changes the strength mechanism from dislocation cutting to Orowan bypassing. Due to the combination effect of grain morphology, texture evolution, and precipitation behavior, the 480 °C hot-rolled sample had the highest properties.  相似文献   

3.
Boron and its alloys have long been explored as potential fuel and increasingly replace pure aluminum powder in high-energy formulations. The ignition and burning properties of boron can be improved by making boron alloys. In this study, an Mg–Al–B alloy was synthesized from magnesium, aluminum and boron powders in a 1:1:4 molar ratio by preheating to 600 °C for 30 min, followed by high-temperature sintering in a tube furnace. The effects of sintering temperature (700–1000 °C) and holding time (0.5–10 h) on the phase composition of mixed powders were studied. After the samples were cooled to room temperature, they were ground into powder. The phase composition, micromorphology and the bonding forms of elements of the synthesized samples were studied using XRD, SEM and XPS. The results show that each element exists in the form of simple substance in the alloy. The influence of the sintering temperature on the synthesis reaction of Mg0.5Al0.5B2 is very important, but holding time has little effect on it. With the increase of sintering temperature, the content of the Mg0.5Al0.5B2 phase gradually increases, and the phase content of residual metal gradually decreases. The phase and morphology analyses show that the optimum sintering temperature is 1000 °C with a minimum holding time of 0.5 h. It is expected to be used in gunpowder, propellant, explosives and pyrotechnics with improved characteristics.  相似文献   

4.
The fabricated Al–Zn–Mg–Cu alloy build has low mechanical properties due to the dissolution of strengthening precipitates back into the matrix during friction stir additive manufacturing (FSAM). Post-fabricated aging was considered an effective approach to improve the mechanical performance of the build. In this study, various post-fabricated aging treatments were applied in the underwater FSAM of Al–7.5 Zn–1.85 Mg–1.3 Cu–0.135 Zr alloy. The effect of the post-fabricated aging on the microstructure, microhardness, and local tensile properties of the build was investigated. The results indicated that over-aging occurred in the low hardness zone (LHZ) of the build after artificial aging at 120 °C for 24 h as the high density of grain boundaries, subgrain boundaries, dislocations, and Al3Zr particles facilitated the precipitation. Low-temperature aging treatment can effectively avoid the over-aging problem. After aging at 100 °C for 48 h, the average microhardness value of the build reached 178 HV; the yield strength of the LHZ and high hardness zone (HHZ) was 453 MPa and 463 MPa, respectively; and the ultimate tensile strength of the LHZ and HHZ increased to 504 MPa and 523 MPa, respectively.  相似文献   

5.
A comparative analysis of the effect of high-pressure torsion (HPT) on the microstructure and tensile properties of the Al–10% La, Al–9% Ce, and Al–7% Ni model binary eutectic aluminum alloys is carried out. An HPT of 20-mm diameter specimens in as-cast state was carried out under constrained conditions, at room temperature, pressure P = 6 GPa, and number of turns N = 5. It is shown that the formation of nano- and submicrocrystalline structures and the refinement of eutectic particles in aluminum alloys simultaneously provide a multiple increase in strength while maintaining a high plasticity margin. This combination of properties has been achieved for the first time for severely deformed binary aluminum eutectics. The relationship between the type of eutectic particles, the structure formation process and the mechanical properties of the aluminum alloys has been established. The thermal stability of severely deformed aluminum alloys at heating up to 200 °C has been studied.  相似文献   

6.
The samples of the Al–15Fe (mass%) binary alloy that were additively manufactured by laser powder bed fusion (L-PBF) were exposed to intermediate temperatures (300 and 500 °C), and the thermally induced variations in their microstructural characteristics were investigated. The L-PBF-manufactured sample was found to have a microstructure comprising a stable θ-Al13Fe4 phase localized around melt-pool boundaries and several spherical metastable Al6Fe-phase particles surrounded by a nanoscale α-Al/Al6Fe cellular structure in the melt pools. The morphology of the θ phase remained almost unchanged even after 1000 h of exposure at 300 °C. Moreover, the nanoscale α-Al/Al6Fe cellular structure dissolved in the α-Al matrix; this was followed by the growth (and nucleation) of the spherical Al6Fe-phase particles and the precipitation of the θ phase. Numerous equiaxed grains were formed in the α-Al matrix during the thermal exposure, which led to the formation of a relatively homogenous microstructure. The variations in these microstructural characteristics were more pronounced at the higher investigated temperature of 500 °C.  相似文献   

7.
The paper focused on an experimental study on the microstructural, mechanical, and wear characteristics of 15 wt.% alumina (Al2O3) particulates with an average particle size of 20 µm, reinforced in Al2014 alloy matrix composite as-cast and heat-treated samples. The metal matrix composite (MMC)samples were produced via a novel two-stage stir-casting technique. The fabricated composite samples were subjected to evaluate hardness, tensile strength, fatigue behavior and wear properties for both as cast and T6 heat-treated test samples. The Al2014 alloy and Al2014-15 wt.% Al2O3 MMCs were in solution for 1 h at a temperature of 525 °C, quenched instantly in cold water, and then artificially aged for 10 h at a temperature of 175 °C. SEM and X-ray diffraction analyses were used to investigate the microstructure and dispersion of the reinforced Al2O3 particles in the composite and the base alloy Al2014. The obtained results indicated that the hardness, tensile and fatigue strength and wear resistance increased when an amount of Al2O3 particles was added, compared to the as-cast Al2014 alloy and it was observed that after subjecting the same composite samples to heat treatment, there was further enhancement in the mechanical and wear properties in the Al2014 matrix alloy and Al2014-15 wt.% Al2O3 composite samples.  相似文献   

8.
There is a new long-period stacking ordered structure in Mg–RE–Zn magnesium alloys, namely the LPSO phase, which can effectively improve the yield strength, elongation, and corrosion resistance of Mg alloys. According to different types of Mg–RE–Zn alloy systems, two transformation modes are involved in the heat treatment transformation process. The first is the alloy without LPSO phase in the as-cast alloy, and the MgxRE phase changes to 14H-LPSO phase. The second is the alloy containing LPSO phase in the as-cast state, and the 14H-LPSO phase is obtained by the transformations of 6H, 18R, and 24R. The effects of different solution parameters on the second phase of Mg–9Gd–2Y–2Zn–0.5Zr alloy were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The precipitation mechanism of 14H-LPSO phase during solution treatment was further clarified. At a solution time of 13 h, the grain size increased rapidly initially and then decreased slightly with increasing solution temperature. The analysis of the volume fraction of the second phase and lattice constant showed that Gd and Y elements in the alloy precipitated from the matrix and formed 14H-LPSO phase after solution treatment at 490 °C for 13 h. At this time, the hardness of the alloy reached the maximum of 74.6 HV. After solution treatment at 500 °C for 13 h, the solid solution degree of the alloy increases, and the grain size and hardness of the alloy remain basically unchanged.  相似文献   

9.
The current study investigated the microstructure modification in Al–6Mg–5Si–0.15Ti alloy (in mass %) through the minor addition of Ca using Mg + Al2Ca master alloy and heat treatment to see their impact on mechanical properties. The microstructure of unmodified alloy (without Ca) consisted of primary Al, primary Mg2Si, binary eutectic Al–Mg2Si, ternary eutectic Al–Mg2Si–Si, and iron-bearing phases. The addition of 0.05 wt% Ca resulted in significant microstructure refinement. In addition to refinement, lamellar to fibrous-type modification of binary eutectic Al–Mg2Si phases was also achieved in Ca-added (modified) alloy. This modification was related to increasing Ca-based intermetallics/compounds in the modified alloy that acted as nucleation sites for binary eutectic Al–Mg2Si phases. The dendritic refinement with Ca addition was related to the fact that it improves the efficacy of Ti-based particles (TiAl3 and TiB2) in the melt to act as nucleation sites. In contrast, the occupation of oxide bifilms by Ca-based phases is expected to force the iron-bearing phases (as iron-bearing phases nucleate at oxide films) to solidify at lower temperatures, thus reducing their size. The as-cast microstructure of these alloys was further modified by subjecting them to solution treatment at 540 °C for 6 h, which broke the eutectic structure and redistributed Mg2Si and Si phases in Al-matrix. Subsequent aging treatment caused a dramatic increase in the tensile strength of these alloys, and tensile strength of 291 MPa (with El% of 0.45%) and 327 MPa (with El% of 0.76%) was achieved for the unmodified alloy and modified alloy, respectively. Higher tensile strength and elongation of the modified alloy than unmodified alloy was attributed to refined dendritic structure and modified second phases.  相似文献   

10.
A novel Al-Cu-Zr alloy is designed in this paper, which provides a method for further improving the strength of Al-Cu alloys. In this paper, the addition of the micro-alloying element Zr in Al-Cu alloy was studied. The effect of aging treatment on the mechanical properties and precipitation behavior of the alloy was studied. With the addition of Zr, Al3Zr phases were formed in the alloy, which acts as obstacles to dislocation motion. In addition, Al3Zr phases can be used as the nucleation site of θ′ phases to promote precipitation. All this can improve the strength of Al-Cu alloys. After one-step aging, corresponding to the highest hardness, the largest amount of θ′ phases were observed in the alloy matrix. By contrast, after two-step aging, the θ′ phases were finer, and a large amount of Guinier–Preston (GP) zones formed during the pre-aging step, which were transformed into denser and finer θ′ phases in the secondary aging step. After the same solution treatment (540 °C/12 h), undergoing 120 °C/4 h + 175 °C/10 h two-step aging, the ultimate tensile strength, yield strength, and elongation of the Al-Cu-Zr alloy were 398.7 MPa, 313.3 MPa, and 7.9%, respectively.  相似文献   

11.
The feasibility and efficacy of improving the mechanical response of Al–Mg–Si 6082 structural alloys during high temperature exposure through the incorporation of a high number of α-dispersoids in the aluminum matrix were investigated. The mechanical response of the alloys was characterized based on the instantaneous high-temperature and residual room-temperature strengths during and after isothermal exposure at various temperatures and durations. When exposed to 200 °C, the yield strength (YS) of the alloys was largely governed by β” precipitates. At 300 °C, β” transformed into coarse β’, thereby leading to the degradation of the instantaneous and residual YSs of the alloys. The strength improvement by the fine and dense dispersoids became evident owing to their complementary strengthening effect. At higher exposure temperatures (350–450 °C), the further improvement of the mechanical response became much more pronounced for the alloy containing fine and dense dispersoids. Its instantaneous YS was improved by 150–180% relative to the base alloy free of dispersoids, and the residual YS was raised by 140% after being exposed to 400–450 °C for 2 h. The results demonstrate that introducing thermally stable dispersoids is a cost-effective and promising approach for improving the mechanical response of aluminum structures during high temperature exposure.  相似文献   

12.
The precipitation of intermetallic phases and the associated hardening by artificial aging treatments at elevated temperatures above 400 °C were systematically investigated in the commercially available AC2B alloy with a nominal composition of Al–6Si–3Cu (mass%). The natural age hardening of the artificially aged samples at various temperatures was also examined. A slight increase in hardness (approximately 5 HV) of the AC2B alloy was observed at an elevated temperature of 480 °C. The hardness change is attributed to the precipitation of metastable phases associated with the α-Al15(Fe, Mn)3Si2 phase containing a large amount of impurity elements (Fe and Mn). At a lower temperature of 400 °C, a slight artificial-age hardening appeared. Subsequently, the hardness decreased moderately. This phenomenon was attributed to the precipitation of stable θ-Al2Cu and Q-Al4Cu2Mg8Si6 phases and their coarsening after a long duration. The precipitation sequence was rationalized by thermodynamic calculations for the Al–Si–Cu–Fe–Mn–Mg system. The natural age-hardening behavior significantly varied depending on the prior artificial aging temperatures ranging from 400 °C to 500 °C. The natural age-hardening was found to strongly depend on the solute contents of Cu and Si in the Al matrix. This study provides fundamental insights into controlling the strength level of commercial Al–Si–Cu cast alloys with impurity elements using the cooling process after solution treatment at elevated temperatures above 400 °C.  相似文献   

13.
In the present work, an oxygen hardening of near-β phase Ti–13Nb–13Zr alloy in plasma glow discharge at 700–1000 °C was studied. The influence of the surface treatment on the alloy microstructure, tribological and micromechanical properties, and corrosion resistance is presented. A strong influence of the treatment on the hardened zone thickness, refinement of the α’ laths and grain size of the bulk alloy were found. The outer hardened zone contained mainly an oxygen-rich Ti α’ (O) solid solution. The microhardness and elastic modulus of the hardened zone decreased with increasing hardening temperature. The hardened zone thickness, size of the α’ laths, and grain size of the bulk alloy increased with increasing treatment temperature. The wear resistance of the alloy oxygen-hardened at 1000 °C was about two hundred times, and at 700 °C, even five hundred times greater than that of the base alloy. Oxygen hardening also slightly improved the corrosion resistance. Tribocorrosion tests revealed that the alloy hardened at 700 °C was wear-resistant in a corrosive environment, and when the friction process was completed, the passive film was quickly restored. The results show that glow discharge plasma oxidation is a simple and effective method to enhance the micromechanical and tribological performance of the Ti–13Nb–13Zr alloy.  相似文献   

14.
In-depth analyses of the anti-oxidation behavior and structure of γ-TiAl alloys are of great significant for their maintenance and repair in engineering applications. In this work, fluorine-treated Ti-45Al-8.5Nb alloys and fluorine-treated oxidized specimens with artificial defects were prepared by isothermal oxidation treatment at 1000 °C. Several characterization methods, including SEM, EDS, XRD and TEM, were used to evaluate the surface microstructure of the fluorine-treated Ti-45Al-8.5Nb alloys and fluorine-treated oxidized specimens with artificial defects. The results indicate that the fluorine promoted the formation of an outer protective film of Al2O3, which significantly improved the oxidation resistance. The microcracks of oxidized specimens with the artificial defects provided a rapid diffusion passage for Ti and O elements during the 1000 °C/2 h isothermal oxidation treatment process, resulting in the quick growth of TiO2 toward the outside. The fine Al2O3 constituted a continuous film after the 1000 °C/100 h isothermal oxidation treatment. In particular, Al2O3 particles grew toward the substrate, which was ascribed to the good oxidation resistance and adhesion. These results may provide an approach for the repair of protective oxide film on the surface of blades and turbine disks based on γ-TiAl alloys.  相似文献   

15.
This paper is devoted to the sintering process of Al2O3–SiO2–ZrO2 ceramics. The studied method was electroconsolidation with directly applied electric current. This method provides substantial improvements to the mechanical properties of the sintered samples compared to the traditional sintering in the air. The research covered elemental and phase analysis of the samples, which revealed phase transition of high-alumina solid solutions into mullite and corundum. Zirconia was represented mainly by tetragonal phase, but monoclinic phase was present, too. Electroconsolidation enabled samples to reach a density of 3.0 g/cm3 at 1300 °C, while the sample prepared by traditional sintering method obtained it only at 1700 °C. For the composite Al2O3—20 wt.% SiO2—10 wt.% ZrO2 fabricated by electroconsolidation, it was demonstrated that fracture toughness was higher by 20–30%, and hardness was higher by 15–20% compared to that of samples sintered traditionally. Similarly, the samples fabricated by electroconsolidation exhibited elastic modulus E higher by 15–20%. The hypothesis was proposed that the difference in mechanical and physical properties could be attributed to the peculiarities of phase formation processes during electroconsolidation.  相似文献   

16.
We performed biological safety evaluation tests of three Ti–Zr alloys under accelerated extraction condition. We also conducted histopathological analysis of long-term implantation of pure V, Al, Ni, Zr, Nb, and Ta metals as well as Ni–Ti and high-V-containing Ti–15V–3Al–3Sn alloys in rats. The effect of the dental implant (screw) shape on morphometrical parameters was investigated using rabbits. Moreover, we examined the maximum pullout properties of grit-blasted Ti–Zr alloys after their implantation in rabbits. The biological safety evaluation tests of three Ti–Zr alloys (Ti–15Zr–4Nb, Ti–15Zr–4Nb–1Ta, and Ti–15Zr–4Nb–4Ta) showed no adverse (negative) effects of either normal or accelerated extraction. No bone was formed around the pure V and Ni implants. The Al, Zr, Nb, and Ni–Ti implants were surrounded by new bone. The new bone formed around Ti–Ni and high-V-containing Ti alloys tended to be thinner than that formed around Ti–Zr and Ti–6Al–4V alloys. The rate of bone formation on the threaded portion in the Ti–15Zr–4Nb–4Ta dental implant was the same as that on a smooth surface. The maximum pullout loads of the grit- and shot-blasted Ti–Zr alloys increased linearly with implantation period in rabbits. The pullout load of grit-blasted Ti–Zr alloy rods was higher than that of shot-blasted ones. The surface roughness (Ra) and area ratio of residual Al2O3 particles of the Ti–15Zr–4Nb alloy surface grit-blasted with Al2O3 particles were the same as those of the grit-blasted Alloclassic stem surface. It was clarified that the grit-blasted Ti–15Zr–4Nb alloy could be used for artificial hip joint stems.  相似文献   

17.
The cast Fe-Ni-based austenitic heat-resistant alloys with 4.5 wt% Al and varying Ti content were developed for high-temperature application. With increase in Ti content, strength of model alloys increased gradually at 700 °C and 750 °C. At 750 °C, alloys with 35Ni–(2~4)Ti composition showed a significant increase in creep rupture life compared to 30Ni–1Ti alloy, attributed to the increase in γ’-Ni3(Al,Ti) precipitates due to higher Ni and Ti content. Among the 35Ni–(2~4)Ti alloys, increasing Ti content from 2 to 4 wt% gradually increased the creep rupture life in the as-cast condition. The creep rupture life was improved after solution annealing treatment, however, the beneficial effect of higher Ti content was not evident for 35Ni–(2~4)Ti alloys. After solution annealing, interdendritic phases were partially dissolved, but coarse B2-NiAl phases were formed. The size and amount of coarse B2-NiAl phases increased with Ti content. In the creep-tested specimens, creep void nucleation and crack propagation were observed along the coarse B2-NiAl phases, especially for high-Ti alloys. Therefore, the beneficial effect of the increase in γ’-Ni3(Al,Ti) precipitates for high-Ti alloys on creep property was limited due to the detrimental effect of the presence of coarse B2-NiAl phases.  相似文献   

18.
Long seamless tubes of Ti2AlNb-based alloys are difficult to manufacture through conventional forming methods. In this study, a multi-pass power spinning process was first utilized to fabricate thin-walled tube of Ti-22Al-24Nb-0.5Mo alloy using welded thick tube blank, assisted by on-line electro-magnetic induction heating to maintain high spinning temperature during the whole spinning process. After six-pass hot power spinning at 950 ± 30 °C, the microhardness difference of BM (base metal), HAZ (heat affect zone) and FZ (fusion zone) became much smaller, and the microhardness fluctuation ΔHV dropped to 32 from 122 of the as-welded joint due to the phase composition and microstructure homogenization. The grain size of B2 phase was refined to 0.4/0.6 μm from 2.7/10.8 μm of the as-received BM/FZ, respectively. Meanwhile, the B2 phase <111>B2//ND texture of the as-received rolled sheet weakened during multi-pass spinning due to recrystallization, which co-existed with <001>B2//ND texture in final pass. The ultimate tensile strength in axial/tangential direction was increased to 1245/1299 MPa from 1206/1010 MPa of the as-received rolled sheet, respectively, mainly due to the effect of fine grain strengthening. This study provides an effective way to manufacture high-performance tubular workpieces with low cost and high efficiency.  相似文献   

19.
In this work, the effect of double-ageing heat treatments on the microstructural evolution and mechanical behaviour of a metastable β-titanium Ti-3.5Al-5Mo-4V alloy is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The double-ageing treatments are composed of low-temperature pre-ageing and high-temperature ageing, where the low-temperature pre-ageing is conducted at 300 °C or 350 °C for different times, and the high-temperature ageing is conducted at 500 °C for 8 h. The results show that the phase transformation sequence is altered with the time spent during the first ageing stage, the isothermal ω phase is precipitated in the pre-ageing process of the alloy at 300 °C and 350 °C with the change in the ageing time, and the ω phase is finally transformed into the α phase with the extension of pre-ageing time. The existence time of the ω phase is shortened as the pre-ageing temperature increases. The microhardness of the alloy increases with increasing pre-ageing time and temperature. Compared with single-stage ageing, the ω phase formed in the pre-ageing stage changes the response to subsequent high-temperature ageing. After the two-stage ageing treatment, the precipitation size of the α phase is obviously refined after the double-ageing treatment. A microhardness test shows that the microhardness of the two-stage aged alloy increases with extended pre-ageing time.  相似文献   

20.
The effects of 0.1 wt.% Sc and 0.1 wt.% Zr addition in AA5182 on microstructure and mechanical properties were investigated. Results show that Al3(ScxZr1−x) dispersoids formed in AA5182. Observation of ingots microstructures showed that the grain size of 5182-Sc-Zr alloy was 56% lower than that of based AA5182. Isothermal annealing between 230 °C and 500 °C for 2 h was performed to study the recrystallization, tensile properties and dispersoid coarsening. The recrystallization was inhibited by the dispersoids, and the alloy microstructure remained deformed after annealing. Al3(ScxZr1−x) in AA5182 was stable when annealing below 400 °C, while parts of dispersoids coarsened significantly when heating at 500 °C. The addition of Sc and Zr allowed YS of 5182 alloy to achieve 247.8 MPa, which is 100 MPa higher than the corresponding AA5182. The contributions of Orowan strengthening and grain boundary strengthening were obtained by calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号