共查询到20条相似文献,搜索用时 15 毫秒
1.
Dense Ti3SiC2/ZnO composites were sintered at different temperatures by spark plasma sintering (SPS). The effects of sintering temperature on composition and mechanical properties of Ti3SiC2/ZnO composites were studied. The tribological behaviors of Ti3SiC2/ZnO composites/Inconel 718 alloy tribo-pairs at elevated temperature from 25 °C to 800 °C were discussed. The experimental results showed that the initial decomposition temperature of the Ti3SiC2/ZnO composite was 1150 °C, and Ti3SiC2 decomposed into TiC. When the decomposition temperature was higher than 1150 °C, the compositions of the Ti3SiC2/ZnO composites were Ti3SiC2, ZnO, and TiC. It was found that Ti3SiC2/ZnO composites had better self-lubricating performance than Ti3SiC2 at elevated temperature from 600 °C to 800 °C, which was owing to material transfers of tribo-pairs and sheared oxides generated by tribo-oxidation reactions. 相似文献
2.
Ti3SiC2-PbO-Ag composites (TSC-PA) were successfully prepared using the spark plasma sintering (SPS) technique. The ingredient and morphology of the as-synthesized composites were elaborately investigated. The tribological properties of the TSC-PA pin sliding against Inconel 718 alloys disk at room temperature (RT) to 800 °C were examined in air. The wear mechanisms were argued elaborately. The results showed that the TSC-PA was mainly composed of Ti3SiC2, Pb, and Ag. The average friction coefficient of TSC-PA gradually decreased from 0.72 (RT) to 0.3 (800 °C), with the temperature increasing from RT to 800 °C. The wear rate of TSC-PA showed a decreasing trend, with the temperature rising from RT to 800 °C. The wear rate of Inconel 718 exhibited positive wear at RT and negative wear at elevated temperatures. The tribological property of TSC-PA was related to the tribo-chemistry, and the abrasive and adhesive wear. 相似文献
3.
Microarc oxidation (MAO) layers were prepared using 8g/L Na2SiO3 + 6g/L (NaPO3)6 + 4g/L Na2WO4 electrolyte with the addition of 2g/L Ti3SiC2/Ti3AlC2 particles under constant-current mode. The roughness, porosity, composition, surface/cross-sectional morphology, and frictional behavior of the prepared MAO layers were characterized by 3D real-color electron microscopy, scanning electron microscopy, X-ray energy spectrometry, X-ray diffractometry, and with a tribo-tester. The results showed that the addition of Ti3SiC2 and Ti3AlC2 to the electrolyte reduced the porosity of the prepared layers by 9% compared with that of the MAO layer without added particles. The addition of Ti3SiC2/Ti3AlC2 also reduced the friction coefficient and wear rate of the prepared layers by 35% compared with that of the MAO layer without added particles. It was found that the addition of Ti3AlC2 particles to the electrolyte resulted in the lowest porosity and the lowest wear volume. 相似文献
4.
Method of soft metal (Cu) strengthening of Ti3SiC2 was conducted to increase the hardness and improve the wear resistance of Ti3SiC2. Ti3SiC2/Cu composites containing 15 vol.% Cu were fabricated by Spark Plasma Sintering (SPS) in a vacuum. The effect of the sintering temperature on the phase composition, microstructure and mechanical properties of the composites was investigated in detail. The as-synthesized composites were thoroughly characterized by scanning electron micrography (SEM), optical micrography (OM) and X-ray diffractometry (XRD), respectively. The results indicated that the constituent of the Ti3SiC2/Cu composites sintered at different temperatures included Ti3SiC2, Cu3Si and TiC. The formation of Cu3Si and TiC originated from the reaction between Ti3SiC2 and Cu, which was induced by the presence of Cu and the de-intercalation of Si atoms Ti3SiC2. OM analysis showed that with the increase in the sintering temperature, the reaction between Ti3SiC2 and Cu was severe, leading to the Ti3SiC2 getting smaller and smaller. SEM measurements illustrated that the uniformity of the microstructure distribution of the composites was restricted by the agglomeration of Cu, controlling the mechanical behaviors of the composites. At 1000 °C, the distribution of Cu in the composites was relatively even; thus, the composites exhibited the highest density, relatively high hardness and compressive strength. The relationships of the temperature, the current and the axial dimension with the time during the sintering process were further discussed. Additionally, a schematic illustration was proposed to explain the related sintering characteristic of the composites sintered by SPS. The as-synthesized Ti3SiC2/Cu composites were expected to improve the wear resistance of polycrystalline Ti3SiC2. 相似文献
5.
Ohmic contacts on p-doped 4H-SiC are essential for the fabrication of a wide range of power electron devices. Despite the fact that Ti/Al based ohmic contacts are routinely used for ohmic contacts on p-doped 4H-SiC, the underlying contact formation mechanisms are still not fully understood. TLM structures were fabricated, measured and analyzed to get a better understanding of the formation mechanism. SIMS analyses at the Ti3SiC2-SiC interface have shown a significant increase of the surface near Al concentration. By using numerical simulation it is shown that this additional surface near Al concentration is essential for the ohmic contact formation. 相似文献
6.
Ceramic-particle-reinforced iron matrix composites (CPR-IMCs) have been used in many fields due to their excellent performance. In this study, using the fast resistance-sintering technology developed by our team, iron matrix composites (IMCs) reinforced by both SiC and TiCx particles were fabricated via the addition of SiC and Ti3AlC2 particles, and the resulting relative densities of the sintering products were up to 98%. The XRD and EDS analyses confirmed the in situ formation of the TiCx from the decomposition of Ti3AlC2 during sintering. A significant hybrid reinforcing effect was discovered in the (SiC + TiCx)p/Fe composites, where the experimental strength and hardness of the (SiC + TiCx)p/Fe composites were higher than the composites of monolithic SiCp/Fe and (TiCx)p/Fe. While, under the condition of constant particle content, the elongation of the samples reinforced using TiCx was the best, those reinforced by SiC was the lowest, and those reinforced by (SiC + TiCx) fell in between, which means the plastic response of (SiC + TiCx)p/Fe composites obeyed the rule of mixture. The successful preparation of IMCs based on the hybrid reinforcement mechanism provides an idea for the optimization of IMCs. 相似文献
7.
Tomasz Cygan Jaroslaw Wozniak Mateusz Petrus Artur Lachowski Wojciech Pawlak Bogusawa Adamczyk-Cielak Agnieszka Jastrzbska Anita Rozmysowska-Wojciechowska Tomasz Wojciechowski Wanda Ziemkowska Andrzej Olszyna 《Materials》2021,14(4)
This study presents new findings related to the incorporation of MXene phases into ceramic. Aluminium oxide and synthesised Ti3C2 were utilised as starting materials. Knowing the tendency of MXenes to oxidation and degradation, particularly at higher temperatures, structural modifications were proposed. They consisted of creating the metallic layer on the Ti3C2, by sputtering the titanium or molybdenum. To prepare the composites, powder metallurgy and spark plasma sintering (SPS) techniques were adopted. In order to evaluate the effectiveness of the applied modifications, the emphasis of the research was placed on microstructural analysis. In addition, the mechanical properties of the obtained sinters were examined. Observations revealed significant changes in the MXenes degradation process, from porous areas with TiC particles (for unmodified Ti3C2), to in situ creation of graphitic carbon (in the case of Ti3C2-Ti/Mo). Moreover, the fracture changed from purely intergranular to cracking with high participation of transgranular mode, analogously. In addition, the results obtained showed an improvement in the mechanical properties for composites with Ti/Mo modifications (an increase of 10% and 15% in hardness and fracture toughness respectively, for specimens with 0.5 wt.% Ti3C2-Mo). For unmodified Ti3C2, enormously cracked areas with spatters emerged during tests, making the measurements impossible to perform. 相似文献
8.
Mateusz Petrus Jarosaw Wo
niak Tomasz Cygan Artur Lachowski Dorota Moszczyska Bogusawa Adamczyk-Cielak Anita Rozmysowska-Wojciechowska Tomasz Wojciechowski Wanda Ziemkowska Agnieszka Jastrzbska Andrzej Olszyna 《Materials》2021,14(13)
This article presents new findings related to the problem of the introduction of MXene phases into the silicon carbide matrix. The addition of MXene phases, as shown by the latest research, can significantly improve the mechanical properties of silicon carbide, including fracture toughness. Low fracture toughness is one of the main disadvantages that significantly limit its use. As a part of the experiment, two series of composites were produced with the addition of 2D-Ti3C2Tx MXene and 2D-Ti3C2Tx surface-modified MXene with the use of the sol-gel method with a mixture of Y2O3/Al2O3 oxides. The composites were obtained with the powder metallurgy technique and sintered with the Spark Plasma Sintering method at 1900 °C. The effect adding MXene phases had on the mechanical properties and microstructure of the produced sinters was investigated. Moreover, the influence of the performed surface modification on changes in the properties of the produced composites was determined. The analysis of the obtained results showed that during sintering, the MXene phases oxidize with the formation of carbon flakes playing the role of reinforcement. The influence of the Y2O3/Al2O3 layer on the structure of carbon flakes and the higher quality of the interface was also demonstrated. This was reflected in the higher mechanical properties of composites with the addition of modified Ti3C2Tx. Composites with 1 wt.% addition of Ti3C2Tx M are characterized with a fracture toughness of 5 MPa × m0.5, which is over 50% higher than in the case of the reference sample and over 15% higher than for the composite with 2.5 wt.% addition of Ti3C2Tx, which showed the highest fracture toughness in this series. 相似文献
9.
Titanium diboride (TiB2) is a hard, refractory material, attractive for a number of applications, including wear-resistant machine parts and tools, but it is difficult to densify. The spark plasma sintering (SPS) method allows producing TiB2-based composites of high density with different sintering aids, among them titanium silicides. In this paper, Ti5Si3 is used as a sintering aid for the sintering of TiB2/10 wt % Ti5Si3 and TiB2/20 wt % Ti5Si3 composites at 1600 °C and 1700 °C for 10 min. The phase composition of the initial powders and produced composites was analyzed by the X-ray diffraction method using CuKα radiation. The microstructure was examined using scanning electron microscopy, accompanied by energy-dispersive spectroscopy (EDS). The hardness was determined using a diamond indenter of Vickers geometry loaded at 9.81 N. Friction–wear properties were tested in the dry sliding test in a ball-on-disc configuration, using WC as a counterpart material. The major phases present in the TiB2/Ti5Si3 composites were TiB2 and Ti5Si3. Traces of TiC were also identified. The hardness of the TiB2/Ti5Si3 composites was in the range of 1860–2056 HV1 and decreased with Ti5Si3 content, as well as the specific wear rate Wv. The coefficient of friction for the composites was in the range of 0.5–0.54, almost the same as for TiB2 sinters. The main mechanism of wear was abrasive. 相似文献
10.
TiC-Ti3SiC2 gradient hybrid interphase on the surface of SiC fibers was successfully obtained through the molten salt method. The electromagnetic parameters of the prepared samples can be accurately controlled by adjusting the reaction temperature. A significant bimodal effect is observed in electromagnetic parameters patterns, corresponding to the double interface layer. TiC-Ti3SiC2 gradient hybrid interphase plays a dominant role in impedance matching, as well as in the attenuation layer through multi-interfacial polarization and conduction loss. Through the co-evaluation of the suppression of specular reflection and non-specular scattering properties of the samples, the SiC fiber with the TiC-Ti3SiC2 gradient hybrid interphase is expected to be a high temperature resistant radar absorbing material for future stealth aircraft. 相似文献
11.
Ti3AlC2 presents a hexagonal layered crystal structure and bridges the gap between metallic and ceramic properties, and Gadolinia (Gd2O3) has excellent thermodynamic stability, which make them potentially attractive as dispersive phases for Cu matrix composites. In this paper, Cu@Ti3AlC2-Gd2O3/Cu composites, Ti3AlC2-Gd2O3/Cu composites, and Gd2O3/Cu composites were prepared by electroless Cu plating, internal oxidation, and vacuum hot press sintering. The microstructure and the effect of the Cu plating on the properties of the Cu@Ti3AlC2-Gd2O3/Cu composites were discussed. The results showed that a Cu plating with a thickness of about 0.67 μm was successfully plated onto the surface of Ti3AlC2 particles. The ex situ Ti3AlC2 particles were distributed at the Cu grain boundary, while the in situ Gd2O3 particles with a grain size of 20 nm were dispersed in the Cu grains. The electroless Cu plating onto the surface of the Ti3AlC2 particles effectively reduces their surfactivity and improves the surface contacting state between the Cu@Ti3AlC2 particles and the Cu matrix, and reduces electron scattering, so that the tensile strength reached 378.9 MPa, meanwhile, the electrical conductivity and elongation of the Cu matrix composites was maintained at 93.6 IACS% and 17.6%. 相似文献
12.
In this study, manganese-containing porous carbon was synthesized from jujube shells by two-step carbonization and activation and was then covered with Ti3C2Tx to obtain double-doped biomass composites. In order to improve the interfacial properties (surface tension and wettability) between Ti3C2Tx and porous carbon, the effects of two media (deionized water and acetone solution) on the electrochemical properties of the composites were compared. The acetone solution changed the surface rheology of Ti3C2Tx and porous carbon, and the decreased surface tension and the increased wettability contributed to the ordered growth of 2D-Ti3C2Tx on the surface of the porous carbon. Raman analysis shows the relatively higher graphitization degree of JSPC&Ti3C2Tx (acetone). Compared with JSPC&Ti3C2Tx, JSPC&Ti3C2Tx (acetone) can maintain better rectangle-like properties even at a higher scanning rate. Under the effect of the acetone solution, the pseudocapacitive ratio of JSPC&Ti3C2Tx (acetone) increased from 10.1% to 30.7%. At the current density of 0.5 A/g, the specific capacitance of JSPC&Ti3C2Tx (acetone) achieved 96.83 F/g, and the specific capacitance of 58.17 F/g was maintained even at the high current density (10 A/g), which shows excellent magnification. Under the condition of the current density of 10 A/g, JSPC&Ti3C2Tx (acetone) can obtain a power density of 52,000 W/kg while maintaining an energy density of 8.74 Wh/kg. After 2000 cycles, the symmetrical button battery assembled with this material can still have a capacitance retention rate of more than 90%. This method realized the deep utilization of green and low-cost raw materials by using biomass as the precursor of composite materials and promoted the further development of carbon-based supercapacitor electrode materials. 相似文献
13.
Yanli Zhuang Tiesong Lin Peng He Panpan Lin Limin Dong Ziwei Liu Leiming Wang Shuo Tian Xinxin Jin 《Materials》2022,15(4)
Porous BN/Si3N4 ceramics carbon-coated by carbon coating were joined with SiCo38 (wt. %) filler. The formation process and strengthening mechanism of silicon carbide nanowires to the joint were analyzed in detail. The outcome manifests that there is no distinct phase change in the porous BN/Si3N4 ceramic without carbon-coated joint. The highest joint strength was obtained at 1320 °C (~38 MPa). However, a larger number of silicon carbide nanowires were generated in the carbon-coated joints. The highest joint strength of the carbon-coated joint was ~89 MPa at 1340 °C. Specifically, silicon carbide nanowires were formed by the reaction of the carbon coated on the porous BN/Si3N4 ceramic with the SiCo38 filler via the Vapor-Liquid-Solid (VLS) method and established a bridge in the joint. It grows on the β-SiC (111) crystal plane and the interplanar spacing is 0.254 nm. It has a bamboo-like shape with a resemblance to alloy balls on the ends, and its surface is coated with SiO2. The improved carbon-coated porous BN/Si3N4 joint strength is possibly ascribed to the bridging of nanowires in the joint. 相似文献
14.
Ningbo Zhang Boyu Ju Taiqing Deng Sen Fu Cungao Duan Yiwei Song Yijun Jiang Qin Shen Caogen Yao Mingda Liu Ping Wu Ziyang Xiu Wenshu Yang 《Materials》2022,15(24)
The mechanical properties of (Ti, Nb)B/Ti2AlNb composites were expected to improve further by utilizing spark plasma sintering (SPS) and inducing the novel three-dimensional network architecture. In this study, (Ti, Nb)B/Ti2AlNb composites with the novel architecture were successfully fabricated by ball milling the LaB6 and Ti2AlNb mixed powders and subsequent SPS consolidation. The influence of the (Ti, Nb)B content on the microstructure and mechanical properties of the composites was revealed by using the scanning electron microscope (SEM), transmission electron microscopy (TEM) and electronic universal testing machine. The microstructural characterization demonstrated that the boride crystallized into a B27 structure and the α2-precipitated amount increased with the (Ti, Nb)B increasing. When the (Ti, Nb)B content reached 4.9 vol%, both the α2 and reinforcement exhibited a continuous distribution along the prior particle boundaries (PPBs). The tensile test displayed that the tensile strength of the composites presented an increasing trend with the increasing (Ti, Nb)B content followed by a decreasing trend. The composite with a 3.2 vol% reinforcement had the optimal mechanical properties; the yield strengths of the composite at 25 and 650 °C were 998.3 and 774.9 MPa, showing an 11.8% and 9.2% improvement when compared with the Ti2AlNb-based alloy. Overall, (Ti, Nb)B possessed an excellent strengthening effect and inhibited the strength weakening of the PPBs area at high temperatures; the reinforcement content mainly affected the mechanical properties of the (Ti, Nb)B/Ti2AlNb composites by altering the α2-precipitated amount and the morphology of (Ti, Nb)B in the PPBs area. Both the continuous precipitation of the brittle α2 phase and the agglomeration of the (Ti, Nb)B reinforcement dramatically deteriorated the mechanical properties. 相似文献
15.
Lalta Prasad Niteesh Kumar Anshul Yadav Anil Kumar Virendra Kumar Jerzy Winczek 《Materials》2021,14(9)
In this work, aluminium alloy ADC12 reinforced with various amounts of ZrB2 (0 wt.%, 3 wt.%, 6 wt.%, 9 wt.%) were synthesized by an in-situ reaction of molten aluminium with inorganic salts K2ZrF6 & KBF4. XRD, EDAX, and SEM techniques are used for the characterization of the fabricated composite. XRD analysis revealed the successful in situ formation of ZrB2 in the composite. From the SEM images, it was concluded that the distribution of reinforcement was homogeneous in the composites. A study of mechanical and tribological properties under the dry sliding condition of ZrB2-reinforced ADC12 alloy has also been carried out. It is seen that there is an increase in tensile strength by 18.8%, hardness by 64.2%, and an increase in wear resistance of the material after reinforcement. The ductility of the material decreased considerably with an increase in the amount of reinforcement. The composite’s impact strength decreased by 27.7% because of the addition of hard ZrB2 particulates. 相似文献
16.
The study demonstrates that the introduction of the electrochemically inactive dielectric additive Li2TiO3 to LTO results in a strong decrease in the grain boundary resistance of LTO-Li2TiO3 (LTC) composites at a low concentration of Li2TiO3. With the increase in the concentration of Li2TiO3 in LTC composites, the grain boundary resistance goes through a minimum and increases again due to the growth of the insulation layer of small Li2TiO3 particles around LTO grains. For LTO-TiO2 (LTT) composites, a similar effect was observed, albeit not as strong. It was found that LTC composites at low concentration of Li2TiO3 have unusually high charge–discharge capacity exceeding the theoretical value for pure LTO. This effect is likely to be caused by the occurrence of the electrochemical activity of Li2TiO3 in the vicinity of the interfaces between LTO and Li2TiO3. The increase in the capacity may be qualitatively described in terms of the model of two-phase composite in which there is the interface layer with a high capacity. Contrasting with LTC composites, in LTT composites, no capacity enhancement was observed, which was likely due to a noticeable difference in crystal structures of LTO and TiO2 preventing the formation of coherent interfaces. 相似文献
17.
Yalin Zhang Xuzhao He Miao Cao Xiaojun Shen Yaru Yang Jie Yi Jipeng Guan Jianxiang Shen Man Xi Yuanjie Zhang Bolin Tang 《Materials》2021,14(10)
The micromorphology of fillers plays an important role in tribological and mechanical properties of polymer matrices. In this work, a TiO2-decorated Ti2C3 (TiO2/Ti3C2) composite particle with unique micro-nano morphology was engineered to improve the tribological and thermo-mechanical properties of epoxy resin. The TiO2/Ti3C2 were synthesized by hydrothermal growth of TiO2 nanodots onto the surface of accordion-like Ti3C2 microparticles, and three different decoration degrees (low, medium, high density) of TiO2/Ti3C2 were prepared by regulating the concentration of TiO2 precursor solution. Tribological test results indicated that the incorporation of TiO2/Ti3C2 can effectively improve the wear rate of epoxy resin. Among them, the medium density TiO2/Ti3C2/epoxy nanocomposites gained a minimum wear rate. This may be ascribed by the moderate TiO2 nanodot protuberances on the Ti3C2 surface induced a strong mechanical interlock effect between medium-density TiO2/Ti3C2 and the epoxy matrix, which can bear a higher normal shear stress during sliding friction. The morphologies of worn surfaces and wear debris revealed that the wear form was gradually transformed from fatigue wear in neat epoxy to abrasive wear in TiO2/Ti3C2/epoxy nanocomposites. Moreover, the results of thermo-mechanical property indicated that incorporation of TiO2/Ti3C2 also effectively improved the storage modulus and glass transition temperature of epoxy resin. 相似文献
18.
Marcin Wachowski Justyna Zygmuntowicz Robert Kosturek Katarzyna Konopka Waldemar Kaszuwara 《Materials》2021,14(13)
In this study, ceramic–metal composites in the Al2O3/Ti/Ni system were fabricated using the slip casting method. Two series of composites with 15 vol.% metal content and different solid phase contents were obtained and examined. A proper fabrication process allows obtaining composites enhanced by intermetallic phases. The microstructure of the base powders, slurries, and sintered composites was analyzed by scanning electron microscope. Analysis of the sedimentation tendency of slurries was carried out. The phase composition of the sintered samples was examined by X-ray diffraction analysis. A monotonic compression test was used to investigate the mechanical properties of the composites. A fractography investigation was also carried out. The research conducted revealed that the slip casting method allows the obtaining of composites enhanced by intermetallic phases (TiNi, Ni3Ti). The results show the correlation between solid-phase content, microstructure, and mechanical properties of the composites. 相似文献
19.
Jibin Fan Yimeng Shi Hongxia Liu Shulong Wang Lijun Luan Li Duan Yan Zhang Xing Wei 《Materials》2022,15(5)
Due to the chemically inert surface of MoS2, uniform deposition of ultrathin high-κ dielectric using atomic layer deposition (ALD) is difficult. However, this is crucial for the fabrication of field-effect transistors (FETs). In this work, the atomic layer deposition growth of sub-5 nm La2O3/Al2O3 nanolaminates on MoS2 using different oxidants (H2O and O3) was investigated. To improve the deposition, the effects of ultraviolet ozone treatment on MoS2 surface are also evaluated. It is found that the physical properties and electrical characteristics of La2O3/Al2O3 nanolaminates change greatly for different oxidants and treatment processes. These changes are found to be associated with the residual of metal carbide caused by the insufficient interface reactions. Ultraviolet ozone pretreatment can substantially improve the initial growth of sub-5 nm H2O-based or O3-based La2O3/Al2O3 nanolaminates, resulting in a reduction of residual metal carbide. All results indicate that O3-based La2O3/Al2O3 nanolaminates on MoS2 with ultraviolet ozone treatment yielded good electrical performance with low leakage current and no leakage dot, revealing a straightforward approach for realizing sub-5 nm uniform La2O3/Al2O3 nanolaminates on MoS2. 相似文献
20.
Paola Palmero Giovanni Pulci Francesco Marra Teodoro Valente Laura Montanaro 《Materials》2015,8(2):611-624
An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless sintering at 1500 °C, obtaining fully dense, homogenous samples, with ultra-fine ZrO2 and YAG grains dispersed in a sub-micronic alumina matrix. The high temperature mechanical properties were investigated by four-point bending tests up to 1500 °C, and the grain size stability was assessed by observing the microstructural evolution of the samples heat treated up to 1700 °C. Dynamic indentation measures were performed on as-sintered and heat-treated Al2O3/ZrO2/YAG samples in order to evaluate the micro-hardness and elastic modulus as a function of re-heating temperature. The high temperature bending tests highlighted a transition from brittle to plastic behavior comprised between 1350 and 1400 °C and a considerable flexural strength reduction at temperatures higher than 1400 °C; moreover, the microstructural investigations carried out on the re-heated samples showed a very limited grain growth up to 1650 °C. 相似文献