首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The essential work of fracture (EWF) and Izod/Charpy impact tests have been used to investigate the fracture toughness in the plane stress of brittle polymers. In this paper, we had three goals: first, we aimed to employ how to estimate PLA toughness in different geometries; then, we proposed to compare Izod and Charpy Impact toughness in the same geometry; finally, we intended to determine the difference between EWF toughness and dynamic toughness. The results showed that the EWF method could be applied to evaluate PLA fracture behavior with small ligaments (2–4 mm), while the dynamic test could be employed with larger ligaments (5–7 mm). A comparison of the two impact test results obtained the following conclusions: Charpy impact toughness was higher than Izod impact toughness in the same geometry, and the impact toughness under a notch angle of 90° was larger than that of an angle of 45°. Both EWF and dynamic tests can be used to explore PLA toughness with small ligaments. The fracture energy decreases with ligament size in the EWF test, but it increases in the dynamic test.  相似文献   

2.
This paper presents an analytical model that quantifies the stress ratio between two test specimens for the same probability of failure based on the Weibull weakest link theory. The model takes into account the test specimen geometry, i.e., its shape and volume, and the related non-constant stress state along the specimen. The proposed model is a valuable tool for quantifying the effect of a change of specimen geometry on the probability of failure. This is essential to distinguish size scaling from the actual improvement in measured strength when specimen geometry is optimized, aiming for failure in the gauge section. For unidirectional carbon fibre composites with Weibull modulus m in the range 10–40, it can be calculated by the model that strength measured with a straight-sided specimen will be 1–2% lower than the strength measured with a specific waisted butterfly-shaped specimen solely due to the difference in test specimen shape and volume.  相似文献   

3.
UR50 ultra-early-strength cement-based self-compacting high-strength material is a special cement-based material. Compared with traditional high-strength concrete, its ultra-high strength, ultra-high toughness, ultra-impact resistance, and ultra-high durability have received great attention in the field of protection engineering, but the dynamic mechanical properties of impact compression at high strain rates are not well known, and the dynamic compressive properties of materials are the basis for related numerical simulation studies. In order to study its dynamic compressive mechanical properties, three sets of specimens with a size of Φ100 × 50 mm were designed and produced, and a large-diameter split Hopkinson pressure bar (SHPB) with a diameter of 100 mm was used to carry out impact tests at different speeds. The specimens were mainly brittle failures. With the increase in impact speed, the failure mode of the specimens gradually transits from larger fragments to small fragments and a large amount of powder. The experimental results show that the ultra-early-strength cement-based material has a greater impact compression brittleness, and overall rupture occurs at low strain rates. Its dynamic compressive strength increases with the increase of strain rates and has an obvious strain rate strengthening effect. According to the test results, the relationship curve between the dynamic enhancement factor and the strain rate is fitted. As the impact speed increases, the peak stress rises, the energy absorption density increases, and its growth rate accelerates. Afterward, based on the stress–strain curve, the damage variables under different strain rates were fitted, and the results show that the increase of strain rate has a hindering effect on the increase of damage variables and the increase rate.  相似文献   

4.
In the last few years, there has been increasing interest in the use of Ultrahigh-Performance Fibre-Reinforced Concrete (UHPFRC) layers or jackets, which have been proved to be quite effective in strengthening applications. However, to facilitate the extensive use of UHPFRC in strengthening applications, reliable numerical models need to be developed. In the case of UHPFRC, it is common practice to perform either direct tensile or flexural tests to determine the UHPFRC tensile stress–strain models. However, the geometry of the specimens used for the material characterization is, in most cases, significantly different to the geometry of the layers used in strengthening applications which are normally of quite small thickness. Therefore, and since the material properties of UHPFRC are highly dependent on the dimensions of the examined specimens, the so called “size effect” needs to be considered for the development of an improved modelling approach. In this study, direct tensile tests have been used and a constitutive model for the tensile behaviour of UHPFRC is proposed, taking into consideration the size of the finite elements. The efficiency and reliability of the proposed approach has been validated using experimental data on prisms with different geometries, tested in flexure and in direct tension.  相似文献   

5.
The bonding performance between a basalt fiber-reinforced composite material (BFRP) grid and an engineering cementitious composite (ECC) is the basis that affects the synergy between the two. However, the research on the bonding behavior between the FRP grid and ECC is limited; in particular, the theoretical study on the bond–slip intrinsic relationship model and a reliable anchorage length calculation equation is lacking. To study the bond–slip relationship between the BFRP grid and ECC material, we considered the parameters of BFRP grid thickness, anchorage length, ECC substrate protective layer thickness, and grid surface treatment, and conducted center pull-out tests on eight sets of specimens. By analyzing the characteristics of the bond–slip curve of the specimen, a bond–slip constitutive model between the BFRP grid and ECC was established. Combining the principle of equivalent strain energy, the calculation formula of the basic anchorage length of the BFRP grid in the ECC matrix was derived. Research shows that the bonding performance between the BFRP grid and ECC improves with the increase in the grid anchoring length, grid thickness, and ECC layer strength. Sand sticking on the surface of the BFRP grid can enhance the bonding force between the two. The established bond–slip constitutive model curve is in good agreement with the test curve. The bond–slip relationship between the BFRP grid and ECC can be described by the first two stages in the BPE model. The derived formula for calculating the basic anchorage length of the BFRP mesh in the ECC matrix is computationally verified to be reliable in prediction.  相似文献   

6.
Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young’s Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.  相似文献   

7.
Porous glass-ceramic materials are used in the construction engineering and repair of various objects. The article investigates the method for obtaining porous glass ceramics from siliceous rock with a high calcite content. To obtain samples with an even fine porous structure, a small amount (≤0.386%) of chloride (NaCl, KCl, MgCl2·6H2O, CaCl2) was added to the charge mixture. At the first stage, mechanochemical activation of raw materials was carried out. Siliceous rock, Na2CO3 and additives (chlorides) were grinded together in a planetary ball mill. The resulting charge was annealed at a temperature of 850 °C. The influence of the type and amount of chloride on the properties of the charge mixture and glass ceramics has been defined by thermal analysis (TA), X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The chlorides in the charge mixture decreased the calcite’s decarbonization temperature and had an effect on the macro- and microstructure of the material. As a result, samples of glass ceramics with an even finely porous structure in the form of blocks were obtained. The samples consist of quartz, wollastonite, devitrite, anorthoclase and an amorphous phase. On average, 89–90% of the resulting material consists of with small pores. The apparent density of the samples is in the range of 245–267 kg/m3. Bending and compressive strength reaches 1.75 MPa and 3.8 MPa, respectively. The minimum thermal conductivity of the modified samples is 0.065 W/(m∙°C). The limiting operating temperature is 860 °C, and the minimum thermal shock resistance is 170 °C. The material has a high chemical stability. They can be used as thermal insulation for some types of industrial and civil facilities.  相似文献   

8.
This paper presents an experimental method for tensile testing of unidirectional carbon fibre composites. It uses a novel combination of a new specimen geometry, protective layer, and a robust data analysis method. The experiments were designed to test and analyze unprotected (with conventional end-tabs) and protected (with continuous end-tabs) carbon fibre composite specimens with three different specimen geometries (straight-sided, butterfly, and X-butterfly). Initial stiffness and strain to failure were determined from second-order polynomial fitted stress–strain curves. A good agreement between back-calculated and measured stress–strain curves is found, on both composite and fibre level. For unprotected carbon composites, the effect of changing specimen geometry from straight-sided to X-butterfly was an increase in strain to failure from 1.31 to 1.44%. The effect of protection on X-butterfly specimens was an increase in strain to failure from 1.44 to 1.53%. For protected X-butterfly specimens, the combined effect of geometry and protection led to a significant improvement in strain to failure of 17% compared to unprotected straight-sided specimens. The observed increasing trend in the measured strain to failure, by changing specimen geometry and protection, suggests that the actual strain to failure of unidirectional carbon composites is getting closer to be realized.  相似文献   

9.
Poly (lactic acid) (PLA) is the most widely available commercial bioplastic that is used in various medical and packaging applications and three-dimensional filaments. However, because neat PLA is brittle, it conventionally has been blended with ductile polymers and plasticizers. In this study, PLA was blended with the high-ductility biopolymer poly (butylene-sebacate–co–terephthalate) (PBSeT), and hexamethylene diisocyanate (HDI) was applied as a crosslinking compatibilizer to increase the miscibility between the two polymers. PLA (80%) and PBSeT (20%) were combined with various HDI contents in the range 0.1–1.0 parts-per-hundred rubber (phr) to prepare blends, and the resulting physical, thermal, and hydrolysis properties were analyzed. Fourier-transform infrared analysis confirmed that –NH–C=OO bonds had formed between the HDI and the other polymers and that the chemical bonding had influenced the thermal behavior. All the HDI-treated specimens showed tensile strengths and elongations higher than those of the control. In particular, the 0.3-phr-HDI specimen showed the highest elongation (exceeding 150%) and tensile strength. In addition, all the specimens were hydrolyzed under alkaline conditions, and all the HDI-treated specimens degraded faster than the neat PLA one.  相似文献   

10.
Precast beam–column connections act as vital elements of precast concrete frames. To enhance the resistance to the earthquake-induced damage and environment-induced deterioration of precast beam–column connections, an innovative precast concrete beam-to-column connection locally enhanced by prefabricated ultra-high-performance concrete (UHPC) shells was proposed. For studying the seismic behaviors of these novel connections and the influence caused by the prefabricated UHPC shell length, full-scale precast specimens were experimentally investigated using low-cyclic reversed loading tests. The obtained results were analyzed and discussed, including hysteresis curves, skeleton curves, strength and deformability, performance degradation, energy dissipation capacities, and plastic hinge length. The results reveal that the novel precast concrete beam–column connections with UHPC shells behaved satisfactorily under seismic loadings. The damage in the concrete near the lower part of the beam end is reduced by the prefabricated UHPC shells. The longer prefabricated UHPC shells were more useful for decreasing the damage to the precast concrete components and improved the structural performance. The precast specimen with 600-mm long UHPC shells can achieve a ductility of 4.87 and 4.0% higher strength than the monolithic reference specimen.  相似文献   

11.
The acetabular cups used in total hip arthroplasty are mostly made of dense metal materials with an elastic moduli much higher than that of human bone. This leads to stress shielding after implantation, which may cause aseptic loosening of the implant. Selective laser melting (SLM) technology allows us to produce tiny and complex porous structures and to reduce the elastic moduli of dense metals, thereby avoiding stress shielding. In the present study, rhombic dodecahedron porous structures with cell sizes of 1 mm, 1.5 mm, and 2 mm were designed. The strut diameter was changed to ensure that the porosity and pore size would meet the bone ingrowth requirements. Then, porous Ti6Al4V alloy specimens were printed using SLM, and compressive tests were carried out. The results showed that the compressive strength and elastic modulus values of the specimens with a cell size of 1.5 mm were in the range of 78.16–242.94 MPa and 1.74–4.17 GPa, respectively, which are in line with the mechanical properties of human cortical bone. Finite element analysis of a total hip joint model was carried out to simulate gait, and the surface of the trabecular acetabular cup was divided into 10 regions according to the stress distribution, with the stress interval in the range of 37.44–219.24 MPa. According to the compression test results, the gradient structure of Ti6Al4V alloy with different porosity was designed for trabecular coating. The gradient porous structure meets the mechanical requirements and is closer to the natural structure of human bone than the uniformly distributed porous structure.  相似文献   

12.
Charpy impact energy/impact toughness is closely related to external factors such as specimen size. However, when the sample size is small, the linear conversion relationship between the Charpy impact energy of the sub-size and full-size Charpy specimens does not hold; the Charpy impact toughness varies with the size of the specimen and other factors. This indicates that studying the internal influence of external factors on impact energy or impact toughness is the key to accurately understanding and evaluating the toughness and brittleness of materials. In this paper, the effects of strain rate on the flow behavior and the effects of stress triaxiality on the fracture behavior of 30CrMnSiNi2A high-strength steel were investigated using quasi-static smooth bar and notched bar uniaxial tensile tests and Split Hopkinson Tensile Bar (SHTP). Based on the flow behavior and strain rate dependences of the yield behavior, a modified JC model was established to describe the flow behavior and strain rate behavior. Charpy impact tests were simulated using the modified JC model and JC failure model with the determined parameters. Reasonable agreements between the simulation and experimental results have been achieved, and the validity of the model was proved. According to the simulation results, the impact energy was divided into crack initiation energy, crack stability propagation energy and crack instability propagation energy. On this basis, the effects of striker velocity and specimen width on the energy and characteristic load of each part were studied. The results show that each part of the impact energy has a negligible dependence on the hammer velocity, but there is a significantly different positive linear relationship with the width of the sample. The energy increment of each part also showed an inverse correlation with the increase in the sample width. The findings reveal that the internal mechanism of Charpy impact toughness decreases with the increase in sample width; to a certain extent, it also reveals the internal reason why the linear transformation relationship of Charpy impact energy between sub-size specimens and standard specimens is not established when the specimens are small. The analytical method and results presented in this paper can provide a reference for the study of the dynamic behavior of high-strength steel, the relationship between material properties and sample size, and the elastic–plastic impact dynamic design.  相似文献   

13.
It is well-known that cracks are observed around the impression during indentation of brittle materials. The cracks inception depends on load conditions, material and indenter geometry. The paper aims to use experimental micro-indentation data, FE simulations with cohesive zone modelling, and an optimisation procedure to determine the cohesive energy density of silicon single crystals. While previous studies available in the literature, which use cohesive zone finite element techniques for simulation of indentation cracks in brittle solids, tried to improve methods for the evaluation of material toughness from the indentation load, crack size, hardness, elastic constants, and indenter geometry, this study focuses on the evaluation of the cohesive energy density 2Γ from which the material toughness can be easily determined using the well-known Griffith-Irwin formula. There is no need to control the premise of the linear fracture mechanics that the cohesive zone is much shorter than the crack length. Hence, the developed approach is suitable also for short cracks for which the linear fracture mechanics premise is violated.  相似文献   

14.
In this work, 3-3 type porous lead zirconate titanate (PZT) ceramics were fabricated by incorporating particle-stabilized foams using the gel-casting method. Then, Portland cement pastes with different water/cement ratios (w/c) were cast into the porous ceramics to produce cement-based piezoelectric (PZT-PC) composites. The effects of w/c on phase structure, microscopic morphology, and electrical properties were studied. The results showed that the amount of hydrated cement products and the density of the PZT–PC composites increased with the increase of w/c from 0.3 to 0.9 and then decreased till w/c achieved a value of 1.1. Correspondingly, the values of both εr and d33 increased with the density of the PZT–PC composites, resulting in less defects and greater poling efficiency. When w/c was maintained at 0.9, the 3-3 type cement-based piezoelectric composites presented the greatest Kt value of 40.14% and the lowest Z value of 6.98 MRayls, becoming suitable for applications in civil engineering for structural health monitoring.  相似文献   

15.
The regularities of the formation of the resulting raster tool trajectories based on Lissajous figures for the lapping process of planes are established. This makes it possible to maximize the cutting ability of the tool, which contributes to its more uniform wear and increased productivity and processing quality. Optimal parameters of productivity and roughness of the treated surface during lapping of zirconium ceramics are achieved through the use of ASM paste 28/20 µm. Based on Preston’s hypothesis, an exponential dependence of the change in the contact area during the lapping of planes of different initial shape of the macrorelief is obtained. The obtained theoretical and practical results of the study of the process of flat lapping with constant and variable clamping force of the treated surface to the surface of the tool. The influence of the force factor on the formation of the surface in the process of abrasive lapping has been established. Studies have been carried out and the main technological recommendations of precision surface treatment of workpieces based on hard, brittle ceramic material and bronze samples on equipment with a raster trajectory of the tool movement are presented. The optimal pressure value when processing ceramics should be considered 203–270 kPa (2.1–2.8 kg/cm2).  相似文献   

16.
BackgroundTransbronchial cryobiopsy (TBCB) is an option to surgical biopsy for the diagnosis in interstitial lung diseases. Several impact factors have received wide attention, including the freezing time, cryoprobe size, and contact pressure. However, the effect of the applied gas pressure on the specimen size has not been well elucidated. The purpose of this study is to investigate the effect of the applied gas pressure on the TBCB specimen size.MethodsCryoprobes with a diameter of 1.9 mm were used to perform TBCB on 4 beagle canines under general anesthesia. TBCB was performed with a total of 16 time-pressure combinations that were randomly combined with 4 freezing times (3, 4, 5, and 6 s) and 4 gas pressures (40, 50, 55, and 60 bar). For each combination, 8 biopsies were performed. The size and quality of specimens, as well as complications, were evaluated.ResultsA total of 128 TBCB specimens were obtained. With the same freezing time, the specimen sizes obtained by different applied gas pressures were significantly different (P<0.05) and positively correlated with the gas pressures (r: 0.797–0.867). With the same gas pressure, the size of the TBCB specimens was positively correlated with the freezing time (r: 0.503–0.752). In the 40-bar group, no tissues were obtained when the freezing times were 3–5 s. In the 50-bar and 55-bar groups, qualified specimens were obtained when the freezing times were 5 and 6 s. In the 60-bar group, qualified specimens were obtained when the freezing times were 3–6 s.ConclusionsThe TBCB specimen size was positively correlated with the applied gas pressure. The applied gas pressure contributed to the sample size and quality. To obtain qualified specimens with a 1.9-mm cryoprobe during TBCB, the lowest limit of the normal working gas pressure range should be increased to greater than 50 bar.  相似文献   

17.
In this study, a dynamic constitutive model for woven-carbon-fiber-reinforced plastics (CFRP) is formulated by combining dynamic tensile test data and fitting curves and incorporating variation rules established for the modulus of elasticity, strength, and fracture strain with respect to the strain rate. The dynamic constitutive model is then implemented with finite element software. The accuracy and applicability of the dynamic constitutive model are evaluated by comparing the numerically predicted load–displacement curves and strain distributions with the test data. The stress distribution, failure factor, modulus, and strength of the material under dynamic tension are also explored. The results show that the response simulated with the dynamic constitutive model is in good agreement with the experimental results. The strain is uniformly distributed during the elastic phase compared with the DIC strain field. Subsequently, it becomes nonuniform when stress exceeds 600 MPa. Then, the brittle fracture occurs. With the increase in the strain rate, the input modulus decreased, and the tensile strength increased. When the displacement was 0.13 mm, the simulation model was damaged at a low strain rate, and the stress value was 837.8 MPa. When it reached the high strain rate of 800 s1, no failure occurred, and the maximum stress value was 432.5 MPa. For the same specimen, the strain rate was the smallest on both clamped ends, and the modulus and strength were large at the ends and small in the middle. The fitting curve derived from the test data was completely input into the dynamic constitutive model to better capture the dynamic change in the material properties.  相似文献   

18.
Matric suction has an important effect on the behavior of unsaturated soils, and polypropylene fibers are often used to improve soil. In order to probe into the mechanism of matric suction and fiber reinforcement, triaxial shear tests are carried out with changing matric suction and net confining pressure. Unsaturated clay in the Shaoxing section of East Zhejiang Grand Canal is selected with polypropylene fiber as a reinforcement material in the tests. The results show that the total cohesion intercept and effective internal friction angle of soil increase with the increase in matric suction, while the adsorption internal friction angle decreases gradually. Similarly, the contribution of matric suction to shear strength decreases. The total cohesion intercept is more sensitive to matric suction. As the length of fiber is 12 mm, the shear strength parameters of soil will be improved accordingly, which makes the fiber reinforcement achieve the best. The stress–strain relationship is approximately hyperbolic and strain hardening. The characteristics of strain hardening are more obvious with the increase in matric suction, and the soil specimens present plastic failure. The volumetric strain of specimen is more sensitive to the changing net confining pressure. It increases with the increase in net confining pressure, and increases linearly as the matric suction is zero. The failure modes of triaxial tests are divided into tensile failure and friction failure.  相似文献   

19.
Rock is the main construction material of rock engineering, such as the engineering of mines and tunnels; in addition, its mechanical properties and failure laws are of great significance to the stability evaluation of rock engineering, especially under the conditions of coupled static–static stresses. In this study, granite specimens were manufactured with artificial flaws. Coupled static and dynamic loads tests were carried out with a modified split Hopkinson pressure bar (SHPB) apparatus; and six typical levels of axial pre-stresses and three crack inclination angles were designed. Three-dimensional digital image correlation (3D-DIC) was also applied to record and analyze the fracturing process and damage evolution of the specimens. The test results show that there was no compaction stage in the stress–strain curve under combined dynamic and static loading. The dynamic strength of the specimens increased first and then decreased with the increase in the static pressure; moreover, the specimens reached the maximum dynamic strength when the static pressure was 10% UCS. The dynamic strength decreased first and then increased with the increase in the crack inclination angle; and the lowest strength appeared when the inclination angle was 45°. The change in axial compression had a significant influence on the failure mode, and the failure mode gradually transformed from shear–tensile failure to shear failure with the increase in the pre-stress. The tensile strain was usually generated at the end of the fractures or near the rock bridge. When the axial pressure was small, the tensile strain zone parallel to the loading direction was easily generated; and when the axial pressure was large, a shear strain zone developed, extending along the diagonal direction. The research results can provide a theoretical reference for the correct understanding of the failure mechanisms of granite and its engineering stability under actual conditions.  相似文献   

20.
The densification behavior, microstructure and mechanical properties of bulk TiB2-based ceramic composites, fabricated using the spark plasma sintering (SPS) technique with elements of (Fe–Ni–Ti–Al) sinter-aid were investigated. Comparing the change of shrinkage displacement of pure TiB2 and TiB2–5 wt% (Fe–Ni–Ti–Al), the addition of elements Fe–Ni–Ti–Al into TiB2 can facilitate sintering of the TiB2 ceramics. As the sintering temperature exceeds 1300 °C, the relative density does not significantly change. Alumina particles and austenite (Fe–Ni–Ti) metallic binder distributed homogeneously in the grain boundary of TiB2 can inhibit the growth of the TiB2 grains when the sintering temperature is below 1300 °C. The density and particle size of TiB2 greatly influence the mechanical behavior of TiB2–5 wt% (Fe–Ni–Ti–Al) composites. The specimen sintered at 1300 has the highest microhardness of 21.1 ± 0.1 GPa with an elastic modulus of 461.4 GPa. The content of secondary borides (M2B, being M = Fe, Ni), which are more brittle than TiB2 particles, can also influence the fracture toughness. The specimen sintered at 1500 °C has the highest fracture toughness of 6.16 ± 0.30 MPa·m1/2 with the smallest M2B phase. The results obtained provide insight into fabrication of ceramic composites with improved mechanical property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号