首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The chemical process of using additives to stabilize soils is to improve soil that lacks strong engineering properties. In particular, the moisture susceptibility of subgrade soil through seasonal rains is still questionable. The presence of water in the construction is the cause of deterioration and premature distress of pavements and their supporting geotechnical structures. In this work, the chemical use of hydrophobic caltite (HC) in various amounts (ranging from 3%, 5%, to 7%) and 5% of cement to enhance laterite soils is investigated. The investigation includes the evaluation of soil properties, such as, unconfined compressive strength (UCS) by curing in air and under water, flexural strength (FS), and California Bearing Ratio (CBR) soaked and unsoaked. The addition of caltite with cement increases the strength characteristics with the UCS values of 2078–2853 kPa during the early curing stages (7th day), and 4688–4876 kPa after 90 days of curing. The added caltite in the cement soil samples shows a reduction index of strength loss underwater with the UCS values of 3196, 3334, and 3751 kPa for caltite cemented soil when compared with cement soil alone. FS results suggest that the inclusion of caltite in cement means that post-peak behavior can be enhanced, reducing the brittleness and increasing the ductility. The successful reaction with soil additives occurred in the curing period of 7 days. In terms of the microstructural analysis, results show that HC with cement reduces the porosity, voids, and cracking of laterite soils. Furthermore, new polymer globules, products from the reaction, appeared on the clay particle surfaces, thereby reducing the water absorption. The addition of hydrophobic-caltite to the soil–cement mixture results in increased strength and reduced water absorption in a soil–cement mix, thus achieving a given strength value.  相似文献   

2.
Geopolymers, or also known as alkali-activated binders, have recently emerged as a viable alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline activation of industrial waste to create cementitious products inside treated soils, increasing the clayey soils’ mechanical and physical qualities. This paper aims to review the utilization of fly ash and ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing strength. Previous research only used one type of precursor: fly ash or GGBFS, but the strength value obtained did not meet the ASTM D 4609 (<0.8 Mpa) standard required for soil-stabilizing criteria of road construction applications. This current research focused on the combination of two types of precursors, which are fly ash and GGBFS. The findings of an unconfined compressive strength (UCS) test on stabilized soil samples were discussed. Finally, the paper concludes that GGBFS and fly-ash-based geo-polymers for soil stabilization techniques can be successfully used as a binder for soil stabilization. However, additional research is required to meet the requirement of ASTM D 4609 standard in road construction applications, particularly in subgrade layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号