首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the stability of Sr2(FeMo)O6−δ-type perovskites was tailored by the substitution of Mo with Ti. Redox stable Sr2Fe1.4TixMo0.6−xO6−δ (x = 0.1, 0.2 and 0.3) perovskites were successfully obtained and evaluated as potential electrode materials for SOFCs. The crystal structure as a function of temperature, microstructure, redox stability, and thermal expansion properties in reducing and oxidizing atmospheres, oxygen content change, and transport properties in air and reducing conditions, as well as chemical stability and compatibility towards typical electrolytes have been systematically studied. All Sr2Fe1.4TixMo0.6−xO6−δ compounds exhibit a regular crystal structure with Pm-3m space group, showing excellent stability in oxidizing and reducing conditions. The increase of Ti-doping content in materials increases the thermal expansion coefficient (TEC), oxygen content change, and electrical conductivity in air, while it decreases the conductivity in reducing condition. All three materials are stable and compatible with studied electrolytes. Interestingly, redox stable Sr2Fe1.4Ti0.1Mo0.5O6−δ, possessing 1 μm grain size, low TEC (15.3 × 10−6 K−1), large oxygen content change of 0.72 mol·mol−1 between 30 and 900 °C, satisfactory conductivity of 4.1–7.3 S·cm−1 in 5% H2 at 600–800 °C, and good transport coefficients D and k, could be considered as a potential anode material for SOFCs, and are thus of great interest for further studies.  相似文献   

2.
Bulk ceria-zirconia solid solutions (Ce1−xZrxO2−δ, CZO) are highly suited for application as oxygen storage materials in automotive three-way catalytic converters (TWC) due to the high levels of achievable oxygen non-stoichiometry δ. In thin film CZO, the oxygen storage properties are expected to be further enhanced. The present study addresses this aspect. CZO thin films with 0 ≤ x ≤ 1 were investigated. A unique nano-thermogravimetric method for thin films that is based on the resonant nanobalance approach for high-temperature characterization of oxygen non-stoichiometry in CZO was implemented. The high-temperature electrical conductivity and the non-stoichiometry δ of CZO were measured under oxygen partial pressures pO2 in the range of 10−24–0.2 bar. Markedly enhanced reducibility and electronic conductivity of CeO2-ZrO2 as compared to CeO2−δ and ZrO2 were observed. A comparison of temperature- and pO2-dependences of the non-stoichiometry of thin films with literature data for bulk Ce1−xZrxO2−δ shows enhanced reducibility in the former. The maximum conductivity was found for Ce0.8Zr0.2O2−δ, whereas Ce0.5Zr0.5O2-δ showed the highest non-stoichiometry, yielding δ = 0.16 at 900 °C and pO2 of 10−14 bar. The defect interactions in Ce1−xZrxO2−δ are analyzed in the framework of defect models for ceria and zirconia.  相似文献   

3.
PbTi1−xFexO3−δ (x = 0, 0.3, 0.5, and 0.7) ceramics were prepared using the classical solid-state reaction method. The investigated system presented properties that were derived from composition, microstructure, and oxygen deficiency. The phase investigations indicated that all of the samples were well crystallized, and the formation of a cubic structure with small traces of impurities was promoted, in addition to a tetragonal structure, as Fe3+ concentration increased. The scanning electron microscopy (SEM) images for PbTi1−xFexO3−δ ceramics revealed microstructures that were inhomogeneous with an intergranular porosity. The dielectric permittivity increased systematically with Fe3+ concentration, increasing up to x = 0.7. A complex impedance analysis revealed the presence of multiple semicircles in the spectra, demonstrating a local electrical inhomogeneity due the different microstructures and amounts of oxygen vacancies distributed within the sample. The increase of the substitution with Fe3+ ions onto Ti4+ sites led to the improvement of the magnetic properties due to the gradual increase in the interactions between Fe3+ ions, which were mediated by the presence of oxygen vacancies. The PbTi1−xFexO3−δ became a multifunctional system with reasonable dielectric, piezoelectric, and magnetic characteristics, making it suitable for application in magnetoelectric devices.  相似文献   

4.
In this study, we report a low-temperature approach involving a combination of a sol–gel hydrothermal method and spark plasma sintering (SPS) for the fabrication of cubic phase ZrW2−xMoxO8 (0.00 ≤ x ≤ 2.00) bulk ceramics. The cubic-ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.50) bulk ceramics were successfully synthesized within a temperature range of 623–923 K in a very short amount of time (6–7 min), which is several hundred degrees lower than the typical solid-state approach. Meanwhile, scanning electron microscopy and density measurements revealed that the cubic-ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.50) bulk ceramics were densified to more than 90%. X-ray diffraction (XRD) results revealed that the cubic phase ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.5) bulk ceramics, as well as the sol–gel-hydrothermally synthesized ZrW2−xMoxO7(OH)2·2H2O precursors correspond to their respective pure single phases. The bulk ceramics demonstrated negative thermal expansion characteristics, and the coefficients of negative thermal expansion were shown to be tunable in cubic-ZrW2−xMoxO8 bulk ceramics with respect to x value and sintering temperature. The cubic-ZrW2−xMoxO8 solid solution can thus have potential applications in electronic devices such as heat sinks that require regulation of thermal expansion.  相似文献   

5.
The nanostructured β″ precipitates are critical for the strength of Al-Mg-Si-(Cu) aluminum alloys. However, there are still controversial reports about the composition of Cu-containing β″ phases. In this work, first-principles calculations based on density functional theory were used to investigate the composition, mechanical properties, and electronic structure of Cu-containing β″ phases. The results predict that the Cu-containing β″ precipitates with a stoichiometry of Mg4+xAl2−xCuSi4 (x = 0, 1) are energetically favorable. As the concentration of Cu atoms increases, Cu-containing β″ phases with different compositions will appear, such as Mg4AlCu2Si4 and Mg4Cu3Si4. The replacement order of Cu atoms in β″ phases can be summarized as one Si3/Al site → two Si3/Al sites → two Si3/Al sites and one Mg1 site. The calculated elastic constants of the considered β″ phases suggest that they are all mechanically stable, and all β″ phases are ductile. When Cu atoms replace Al atoms at Si3/Al sites in β″ phases, the values of bulk modulus (B), shear modulus (G), and Young’s modulus (E) all increase. The calculation of the phonon spectrum shows that Mg4+xAl2−xCuSi4 (x = 0, 1) are also dynamically stable. The electronic structure analysis shows that the bond between the Si atom and the Cu atom has a covalent like property. The incorporation of the Cu atom enhances the electron interaction between the Mg2 and the Si3 atom so that the Mg2 atom also joins the Si network, which may be one of the reasons why Cu atoms increase the structure stability of the β″ phases.  相似文献   

6.
The electronics related to the fifth generation mobile communication technology (5G) are projected to possess significant market potential. High dielectric constant microwave ceramics used as filters and resonators in 5G have thus attracted great attention. The Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) ceramic system has aroused people’s interest due to its underlying excellent microwave dielectric properties. In this paper, the relationships between the dielectric constant, Nd-doped content, sintering temperature and the density of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) ceramics were studied. The linear regression equation was established by statistical product and service solution (SPSS) data analysis software, and the factors affecting the dielectric constant have been analyzed by using the enter and stepwise methods, respectively. It is found that the model established by the stepwise method is practically significant with Y = −71.168 + 6.946x1 + 25.799x3, where Y, x1 and x3 represent the dielectric constant, Nd content and the density, respectively. According to this model, the influence of density on the dielectric constant is greater than that of Nd doping concentration. We bring the linear regression analysis method into the research field of microwave dielectric ceramics, hoping to provide an instructive for the optimization of ceramic technology.  相似文献   

7.
The electrical conductivity of La0.5−xSr0.5FeO3−δ, investigated as a function of the nominal cation deficiency in the A-sublattice, x, varying from 0 to 0.02, has demonstrated a nonlinear dependence. An increase in the x value from 0 to 0.01 resulted in a considerable increase in electrical conductivity, which was shown to be attributed mainly to an increase in the mobility of the charge carriers. A combined analysis of the defect equilibrium and the charge transport in La0.5−xSr0.5FeO3−δ revealed the increase in the mobility of oxygen ions, electrons, and holes by factors of ~1.5, 1.3, and 1.7, respectively. The observed effect is assumed to be conditioned by a variation in the oxide structure under the action of the cationic vacancy formation. It was found that the cation deficiency limit in La0.5−xSr0.5FeO3−δ did not exceed 0.01. A small overstep of this limit was shown to result in the formation of (Sr,La)Fe12O19 impurity, which even in undetectable amounts reduced the conductivity of the material. The presence of (Sr,La)Fe12O19 impurity was revealed by X-ray diffraction on the ceramic surface after heat treatment at 1300 °C. It is most likely that the formation of traces of the liquid phase under these conditions is responsible for the impurity migration to the ceramic surface. The introduction of a cation deficiency of 0.01 into the A-sublattice of La0.5−xSr0.5FeO3−δ can be recommended as an effective means to enhance both the oxygen ion and the electron conductivity and improve ceramic sinterability.  相似文献   

8.
For both the B2O3-Bi2O3-CaO and B2O3-Bi2O3-SrO glass systems, γ-ray and neutron attenuation qualities were evaluated. Utilizing the Phy-X/PSD program, within the 0.015–15 MeV energy range, linear attenuation coefficients (µ) and mass attenuation coefficients (μ/ρ) were calculated, and the attained μ/ρ quantities match well with respective simulation results computed by MCNPX, Geant4, and Penelope codes. Instead of B2O3/CaO or B2O3/SrO, the Bi2O3 addition causes improved γ-ray shielding competence, i.e., rise in effective atomic number (Zeff) and a fall in half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). Exposure buildup factors (EBFs) and energy absorption buildup factors (EABFs) were derived using a geometric progression (G–P) fitting approach at 1–40 mfp penetration depths (PDs), within the 0.015–15 MeV range. Computed radiation protection efficiency (RPE) values confirm their excellent capacity for lower energy photons shielding. Comparably greater density (7.59 g/cm3), larger μ, μ/ρ, Zeff, equivalent atomic number (Zeq), and RPE, with the lowest HVL, TVL, MFP, EBFs, and EABFs derived for 30B2O3-60Bi2O3-10SrO (mol%) glass suggest it as an excellent γ-ray attenuator. Additionally, 30B2O3-60Bi2O3-10SrO (mol%) glass holds a commensurably bigger macroscopic removal cross-section for fast neutrons (ΣR) (=0.1199 cm−1), obtained by applying Phy-X/PSD for fast neutrons shielding, owing to the presence of larger wt% of ‘Bi’ (80.6813 wt%) and moderate ‘B’ (2.0869 wt%) elements in it. 70B2O3-5Bi2O3-25CaO (mol%) sample (B: 17.5887 wt%, Bi: 24.2855 wt%, Ca: 11.6436 wt%, and O: 46.4821 wt%) shows high potentiality for thermal or slow neutrons and intermediate energy neutrons capture or absorption due to comprised high wt% of ‘B’ element in it.  相似文献   

9.
The structure, oxygen non-stoichiometry, and defect equilibrium in perovskite-type PrBa1−xSrxFe2O6−δ (x = 0, 0.25, 0.50) synthesized at 1350 °C were studied. For all compositions, X-ray diffraction testifies to the formation of a cubic structure (S.G. Pm3¯m), but an electron diffraction study reveals additional diffuse satellites around each Bragg spot, indicating the primary incommensurate modulation with wave vectors about ±0.43a*. The results were interpreted as a sign of the short-order in both A-cation and anion sublattices in the areas of a few nanometers in size, and of an intermediate state before the formation of an ordered superstructure. An increase in oxygen deficiency was found to promote the ordering, whereas partial substitution of barium by strontium caused the opposite effect. The oxygen content in oxides as a function of oxygen partial pressure and temperature was measured by coulometric titration, and the data were used for the modeling of defect equilibrium in oxides. The simulation results implied oxygen vacancy ordering in PrBa1−xSrxFe2O6−δ that is in agreement with the electron diffraction study. Besides oxidation and charge disproportionation reactions, the reactions of oxygen vacancy distribution between non-equivalent anion positions, and their trapping in clusters with Pr3+ ions were taken into account by the model. It was demonstrated that an increase in the strontium content in Pr0.5Ba0.5−xSrxFeO3−δ suppressed ordering of oxygen vacancies, increased the binding energy of oxygen ions in the oxides, and resulted in an increase in the concentration of p-type carriers.  相似文献   

10.
Phase composition, crystal structure, and selected physicochemical properties of the high entropy Ln(Co,Cr,Fe,Mn,Ni)O3−δ (Ln = La, Pr, Gd, Nd, Sm) perovskites, as well as the possibility of Sr doping in Ln1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ series, are reported is this work. With the use of the Pechini method, all undoped compositions are successfully synthesized. The samples exhibit distorted, orthorhombic or rhombohedral crystal structure, and a linear correlation is observed between the ionic radius of Ln and the value of the quasi-cubic perovskite lattice constant. The oxides show moderate thermal expansion, with a lack of visible contribution from the chemical expansion effect. Temperature-dependent values of the total electrical conductivity are reported, and the observed behavior appears distinctive from that of non-high entropy transition metal-based perovskites, beyond the expectations based on the rule-of-mixtures. In terms of formation of solid solutions in Sr-doped Ln1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ materials, the results indicate a strong influence of the Ln radius, and while for La-based series the Sr solubility limit is at the level of xmax = 0.3, for the smaller Pr it is equal to just 0.1. In the case of Nd-, Sm- and Gd-based materials, even for the xSr = 0.1, the formation of secondary phases is observed on the SEM + EDS images.  相似文献   

11.
The study of structural morphology and the optical properties of nanoparticles produced by combustion methods are gaining significance due to their multifold applications. In this regard, in the present work, the strontium-doped cobalt aluminate nanoparticles were synthesized by utilizing Co1−xSrxAl2O4 (0 ≤ x ≤ 0.5) L-Alanine as a fuel in an ignition cycle. Subsequently, several characterization studies viz., X-ray diffraction (XRD), energy-dispersive X-ray (EDX) analysis, high-resolution scanning electron microscopy (HRSEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet (UV) spectroscopy and vibrating sample magnetometry (VSM) were accomplished to study the properties of the materials. The XRD analysis confirmed the cubic spinel structure, and the average crystallite size was found to be in the range of 14 to 20 nm using the Debye–Scherrer equation. High-resolution scanning electron microscopy was utilized to inspect the morphology of the Co1−xSrxAl2O4 (0 ≤ x ≤ 0.5) nanoparticles. Further, EDS studies were accomplished to determine the chemical composition. Kubelka–Munk’s approach was used to determine the band gap, and the values were found to be in the range of 3.18–3.32 eV. The energy spectra for the nanoparticles were in the range of 560–1100 cm−1, which is due to the spinel structure of Sr-doped CoAl2O4 nanoparticles. The behavior plots of magnetic induction (M) against the magnetic (H) loops depict the ferromagnetic behavior of the nanomaterials synthesized.  相似文献   

12.
Two perovskite materials with SrMo1−xAlxO3−δ (x = 0.1, 0.2) compositions have been synthesized by reduction from the corresponding scheelite phases, with SrMo1−xAlxO4−δ stoichiometry; the pertinent characterization shows that the defective perovskites can be used as anode materials in solid oxide fuel cells, providing maximum output power densities of 633 mW/cm2 for x = 0.2. To correlate structure and properties, a neutron powder diffraction investigation was carried out for both perovskite and scheelite phases. Both perovskites are cubic, defined in the Pm-3m space group, displaying a random distribution of Mo and Al cations over the 1a sites of the structure. The introduction of Al at Mo positions produced conspicuous amounts of oxygen vacancies in the perovskite, detected by neutrons. This is essential to induce ionic diffusion, providing a mixed ionic and electronic conduction (MIEC), since in MIEC electrodes, charge carriers are combined in one single phase and the ionic conductivity can be one order of magnitude higher than in a conventional material. The thermal expansion coefficients of the reduced and oxidized samples demonstrated that these materials perfectly match with the La0.8Sr0.2Ga0.83Mg0.17O3−δ electrolyte, La0.4Ce0.6O2−δ buffer layer and other components of the cell. Scanning electron microscopy after the test in a real solid oxide fuel cell showed a very dense electrolyte and porous electrodes, essential requirements for this type of fuel. SrMo1−xAlxO3−δ perovskites are, thus, a good replacement of conventional biphasic cermet anodes in solid oxide fuel cells.  相似文献   

13.
Hf1−xSixO2 nanocomposites with different SiO2 doping ratios were synthesized using an ion-assisted co-evaporation process to achieve dense amorphous Hf1−xSixO2 coatings with low loss and a high laser-induced damage threshold (LIDT). The results showed that the Hf1−xSixO2 nanocomposites (x ≥ 0.20) exhibited excellent comprehensive performance with a wide band gap and a dense amorphous microstructure. High-temperature annealing was carried out to ensure better stoichiometry and lower absorption. Precipitation and regrowth of HfO2 grains were observed from 400 °C to 600 °C during annealing of the Hf0.80Si0.20O2 nanocomposites, resulting in excessive surface roughness. A phenomenological model was proposed to explain the phenomenon. The Hf1−xSixO2 nanocomposites (x = 0.3 and 0.4) maintained a dense amorphous structure with low absorption after annealing. Finally, a 1064-nm Hf0.70Si0.30O2/SiO2 high-performance reflector was prepared and achieved low optical loss (15.1 ppm) and a high LIDT (67 J/cm2).  相似文献   

14.
The atomic structure of antiphase boundaries in Sr-doped lanthanum scandate (La1−xSrxScO3−δ) perovskite, promising as the proton conductor, was modelled by means of DFT method. Two structural types of interfaces formed by structural octahedral coupling were constructed: edge- and face-shared. The energetic stability of these two interfaces was investigated. The mechanisms of oxygen vacancy formation and migration in both types of interfaces were modelled. It was shown that both interfaces are structurally stable and facilitate oxygen ionic migration. Oxygen vacancy formation energy in interfaces is lower than that in the regular structure, which favours the oxygen vacancy segregation within such interfaces. The calculated energy profile suggests that both types of interfaces are advantageous for oxygen ion migration in the material.  相似文献   

15.
A DNA/chitosan-Fe3O4 magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP) on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe3O4 nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM) was used to study the surface features of DNA/chitosan/Fe3O4/HRP layer. The results of electrochemical impedance spectroscopy (EIS) show that Fe3O4 and enzyme were successfully immobilized on the electrode surface by the DNA/chitosan bio-polyion complex membrane. Direct electron transfer (DET) and bioelectrocatalysis of HRP in the DNA/chitosan/Fe3O4 film were investigated by cyclic voltammetry (CV) and constant potential amperometry. The HRP-immobilized electrode was found to undergo DET and exhibited a fast electron transfer rate constant of 3.7 s−1. The CV results showed that the modified electrode gave rise to well-defined peaks in phosphate buffer, corresponding to the electrochemical redox reaction between HRP(Fe(III)) and HRP(Fe(II)). The obtained electrode also displayed an electrocatalytic reduction behavior towards H2O2. The resulting DNA/chitosan/Fe3O4/HRP/glassy carbon electrode (GCE) shows a high sensitivity (20.8 A·cm−2·M−1) toward H2O2. A linear response to H2O2 measurement was obtained over the range from 2 μM to 100 μM (R2 = 0.99) and an amperometric detection limit of 1 μM (S/N = 3). The apparent Michaelis-Menten constant of HRP immobilized on the electrode was 0.28 mM. Furthermore, the electrode exhibits both good operational stability and storage stability.  相似文献   

16.
The results of the study of the three-component system of CuO–V2O5–Ta2O5 oxides showed, inter alia, that in the air atmosphere in one of its cross-sections, i.e., in the CuV2O6–CuTa2O6 system, a new substitutional solid solution with the general formula CuTa2−xVxO6 and homogeneity range for x > 0.0 and x ≤ 0.3 is formed. The influence of the degree of incorporation of V5+ ions into the CuTa2O6 crystal lattice in place of Ta5+ ions on the unit cell volume, thermal stability and IR spectra of the obtained solid solution was determined. Moreover, the value of the band gap energy of the CuTa2−xVxO6 solid solution was estimated in the range of 0.0 < x ≤ 0.3, and on this basis, the new solid solution was classified as a semiconductor. On the basis of the research results, the studied system of CuO–V2O5–Ta2O5 oxides was also divided into 12 subsidiary subsystems.  相似文献   

17.
A series of three-dimensional porous composite α-MnO2/reduced graphene oxides (α-MnO2/RGO) were prepared by nano-assembly in a hydrothermal environment at pH 9.0–13.0 using graphene oxide as the precursor, KMnO4 and MnCl2 as the manganese sources and F as the control agent of the α-MnO2 crystal form. The α-MnO2/RGO composites prepared at different hydrothermal pH levels presented porous network structures but there were significant differences in these structures. The special pore structure promoted the migration of ions in the electrolyte in the electrode material, and the larger specific surface area promoted the contact between the electrode material and the electrolyte ions. The introduction of graphene solved the problem of poor conductivity of MnO2, facilitated the rapid transfer of electrons, and significantly improved the electrochemical performance of materials. When the pH was 12.0, the specific surface area of the 3D porous composite material αMGs-12.0 was 264 m2·g−1, and it displayed the best super-capacitive performance; in Na2SO4 solution with 1.0 mol·L−1 electrolyte, the specific capacitance was 504 F·g−1 when the current density was 0.5 A·g−1 and the specific capacitance retention rate after 5000 cycles was 88.27%, showing that the composite had excellent electrochemical performance.  相似文献   

18.
xPb(In1/2Nb1/2)O3-(1−xy)Pb(Mg1/3Nb2/3)O3yPbTiO3 (PIN–PMN–PT) bulks possess excellent electromechanical coupling and dielectric properties, but the corresponding epitaxial PIN–PMN–PT thin films have not yet been explored. This paper adopts a nonlinear thermodynamics analysis to investigate the influences of misfit strains on the phase structures, electromechanical properties, and electrocaloric responses in epitaxial PIN–PMN–PT thin films. The misfit strain–temperature phase diagram was constructed. The results reveal that the PIN–PMN–PT thin films may exist in tetragonal c-, orthorhombic aa-, monoclinic M-, and paraelectric PE phases. It is also found that the c-M and aa-PE phase boundaries exhibit a superior dielectric constant ε11 which reached 1.979 × 106 with um = −0.494%, as well as the c-M phase boundary showing a large piezoelectric response d15 which reached 1.64 × 105 pm/V. In comparison, the c-PE and M-aa phase boundaries exhibit a superior dielectric constant ε33 over 1 × 105 around um = 0.316% and the piezoelectric response d33 reached 7235 pm/V. The large electrocaloric responses appear near the paraelectric- ferroelectric phase boundary. These insights offer a guidance for experiments in epitaxial PIN–PMN–PT thin films.  相似文献   

19.
Materials with pyrochlore structure A2B2O7 have attracted considerable attention owing to their various applications as catalysts, sensors, electrolytes, electrodes, and magnets due to the unique crystal structure and thermal stability. At the same time, the possibility of using such materials for electrochemical applications in salt melts has not been studied. This paper presents the new results of obtaining high-density Mg2+-doped ceramics based on Gd2Zr2O7 with pyrochlore structure and comprehensive investigation of the electrical properties and chemical stability in a lithium chloride melt with additives of various concentrations of lithium oxide, performed for the first time. The solid solution of Gd2−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.10) with the pyrochlore structure was obtained by mechanically milling stoichiometric mixtures of the corresponding oxides, followed by annealing at 1500 °C. The lattice parameter changed non-linearly as a result of different mechanisms of Mg2+ incorporation into the Gd2Zr2O7 structure. At low dopant concentrations (x ≤ 0.03) some interstitial positions can be substituted by Mg2+, with further increasing Mg2+-content, the decrease in the lattice parameter occurred due to the substitution of host-ion sites with smaller dopant-ion. High-density ceramics 99% was prepared at T = 1500 °C. According to the results of the measurements of electrical conductivity as a function of oxygen partial pressure, all investigated samples were characterized by the dominant ionic type of conductivity over a wide range of pO2 (1 × 10–18 ≤ pO2 ≤ 0.21 atm) and T < 800 °C. The sample with the composition of x = 0.03 had the highest oxygen-ion conductivity (10−3 S·cm−1 at 600 °C). The investigation of chemical stability of ceramics in the melt of LiCl with 2.5 mas.% Li2O showed that the sample did not react with the melt during the exposed time of one week at the temperature of 650 °C. This result makes it possible to use these materials as oxygen activity sensors in halide melts.  相似文献   

20.
Thin films of Cd1−xMgxO (CdMgO) (0 ≤ x ≤ 1) were investigated by depositing the films on glass substrates using the co-evaporation technique. The structural, surface morphological, optical, and electrical characteristics of these films were studied as a function of Mg content after annealing at 350 °C. The XRD analysis showed that the deposited films had an amorphous nature. The grain size of the films reduced as the Mg concentration increased, as evidenced by the surface morphology, and EDAX supported the existence of Mg content. It was observed that as the films were annealed, the transmittance of the CdMgO films saw an increase of up to 85%. The blue shift of the absorption edge was observed by the increase of Mg content, which was useful for enhancing the efficiency of solar cells. The optical band gap increased from 2.45 to 6.02 eV as the Mg content increased. With increased Mg content, the refractive index reduced from 2.49 to 1.735, and electrical resistivity increased from 535 Ω cm to 1.57 × 106 Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号