首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium botulinum and Clostridium tetani are Gram-positive, spore-forming, and anaerobic bacteria that produce the most potent neurotoxins, botulinum toxin (BoNT) and tetanus toxin (TeNT), responsible for flaccid and spastic paralysis, respectively. The main habitat of these toxigenic bacteria is the environment (soil, sediments, cadavers, decayed plants, intestinal content of healthy carrier animals). C. botulinum can grow and produce BoNT in food, leading to food-borne botulism, and in some circumstances, C. botulinum can colonize the intestinal tract and induce infant botulism or adult intestinal toxemia botulism. More rarely, C. botulinum colonizes wounds, whereas tetanus is always a result of wound contamination by C. tetani. The synthesis of neurotoxins is strictly regulated by complex regulatory networks. The highest levels of neurotoxins are produced at the end of the exponential growth and in the early stationary growth phase. Both microorganisms, except C. botulinum E, share an alternative sigma factor, BotR and TetR, respectively, the genes of which are located upstream of the neurotoxin genes. These factors are essential for neurotoxin gene expression. C. botulinum and C. tetani share also a two-component system (TCS) that negatively regulates neurotoxin synthesis, but each microorganism uses additional distinct sets of TCSs. Neurotoxin synthesis is interlocked with the general metabolism, and CodY, a master regulator of metabolism in Gram-positive bacteria, is involved in both clostridial species. The environmental and nutritional factors controlling neurotoxin synthesis are still poorly understood. The transition from amino acid to peptide metabolism seems to be an important factor. Moreover, a small non-coding RNA in C. tetani, and quorum-sensing systems in C. botulinum and possibly in C. tetani, also control toxin synthesis. However, both species use also distinct regulatory pathways; this reflects the adaptation of C. botulinum and C. tetani to different ecological niches.  相似文献   

2.
Botulinum neurotoxins (BoNT) are some of nature’s most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL) immunoassay for BoNT/B, using monoclonal antibodies (mAbs) MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism.  相似文献   

3.
Antitoxin, the only licensed drug therapy for botulism, neutralizes circulating botulinum neurotoxin (BoNT). However, antitoxin is no longer effective when a critical amount of BoNT has already entered its target nerve cells. The outcome is a chronic phase of botulism that is characterized by prolonged paralysis. In this stage, blocking toxin activity within cells by next-generation intraneuronal anti-botulinum drugs (INABDs) may shorten the chronic phase of the disease and accelerate recovery. However, there is a lack of adequate animal models that simulate the chronic phase of botulism for evaluating the efficacy of INABDs. Herein, we report the development of a rabbit model for the chronic phase of botulism, induced by intoxication with a sublethal dose of BoNT. Spirometry monitoring enabled us to detect deviations from normal respiration and to quantitatively define the time to symptom onset and disease duration. A 0.85 rabbit intramuscular median lethal dose of BoNT/A elicited the most consistent and prolonged disease duration (mean = 11.8 days, relative standard deviation = 27.9%) that still enabled spontaneous recovery. Post-exposure treatment with antitoxin at various time points significantly shortened the disease duration, providing a proof of concept that the new model is adequate for evaluating novel therapeutics for botulism.  相似文献   

4.
Food-borne botulinum neurotoxin (BoNT) in the gastrointestinal lumen must cross an epithelial barrier to reach peripheral nerves to mediate its toxicity. The detailed mechanism by which BoNT traverses this barrier remains unclear.We found that hemagglutinin (HA) proteins of type B BoNT complex play an important role in the intestinal absorption of BoNT, disrupting the paracellular barrier of intestinal epithelium, which facilitates transepithelial delivery of BoNT both in vitro and in vivo (Matsumura, T., et al., 2008. Cell. Microbiol. 10, 355-364). We also found that type A HA proteins have a similar disrupting activity with a greater potency than type B HA proteins in the human intestinal epithelial cell lines Caco-2 and T84. In contrast, type C HA proteins in the toxin complex (up to 300 nM) have no detectable effect on the paracellular barrier in these human cell lines. These results may indicate that types A and B HA contribute to develop the food-borne human botulism by facilitating the intestinal transepithelial delivery of BoNTs.  相似文献   

5.
Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine.  相似文献   

6.
AIM: To determine the structure factors that mediate the intoxication process of botulinum neurotoxin type A (BoNT/A). METHODS: Triton X-114 phase separation experiments and 1-anilino-8-naphthalene sulfonate binding assay were used to study the structural factor that corresponds to the hydrophobicity change of BoNT/A. In addition, sucrose density gradient centrifugation and a chemical crosslinking study were employed to determine the quaternary structure of BoNT/A. RESULTS: Our results demonstrated that in other than acidic conditions, the disulfide reduction is the structural factor that corresponds to the hydrophobicity change of BoNT/A. The quaternary structure of BoNT/A exists as a dimmer in acidic solution (pH 4.5), although the monomeric structure of BoNT/A was reported based on X-ray crystallography. CONCLUSION: Disulfide bond reduction is critical for BoNT/A's channel formation and ability to cross endosome membranes. This result implies that compounds that block this disulfide bond reduction may serve as potential therapeutic agents for botulism.  相似文献   

7.
Botulinum neurotoxins (BoNTs) are the causative agents of a potentially lethal paralytic disease targeting cholinergic nerve terminals. Multiple BoNT serotypes exist, with types A, B and E being the main cause of human botulism. Their extreme toxicity has been exploited for cosmetic and therapeutic uses to treat a wide range of neuromuscular disorders. Although naturally occurring BoNT types share a common end effect, their activity varies significantly based on the neuronal cell-surface receptors and intracellular SNARE substrates they target. These properties are the result of structural variations that have traditionally been studied using biophysical methods such as X-ray crystallography. Here, we determined the first structures of botulinum neurotoxins using single-particle cryogenic electron microscopy. The maps obtained at 3.6 and 3.7 Å for BoNT/B and /E, respectively, highlight the subtle structural dynamism between domains, and of the binding domain in particular. This study demonstrates how the recent advances made in the field of single-particle electron microscopy can be applied to bacterial toxins of clinical relevance and the botulinum neurotoxin family in particular.  相似文献   

8.
Capek P  Dickerson TJ 《Toxins》2010,2(1):24-53
Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.  相似文献   

9.
Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs to BoNT /A, B and E serotypes. We generated mAbs from human immune single-chain Fv (scFv) yeast-display libraries and isolated scFvs with high affinity for BoNT/C, BoNT/CD, BoNT/DC and BoNT/D serotypes. We identified four mAbs that bound non-overlapping epitopes on multiple serotypes and mosaic BoNTs. Three of the mAbs underwent molecular evolution to increase affinity. A four-mAb combination provided high-affinity binding and BoNT neutralization of both serotypes and their mosaic toxins. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing and neutralizing BoNT/C and BoNT/D serotypes and their mosaic toxins. A derivative of the four-antibody combination (NTM-1634) completed a Phase 1 clinical trial (Snow et al., Antimicrobial Agents and Chemotherapy, 2019) with no drug-related serious adverse events.  相似文献   

10.
The botulinum neurotoxin, the caustic agent that causes botulism, is the most lethal toxin known to man. The neurotoxin composed of a heavy chain (HC) and a light chain (LC) enters neurons and cleaves SNARE proteins, leading to flaccid paralysis, which, in severe occurrences, can result in death. A therapeutic target for botulinum neurotoxin (BoNT) intoxication is the LC, a zinc metalloprotease that directly cleaves SNARE proteins. Herein we report dipeptides containing an aromatic connected to the N-terminus via a sulfonamide and a hydroxamic acid at the C-terminus as BoNT/A LC inhibitors. On the basis of a structure–activity relationship study, 33 was discovered to inhibit the BoNT/A LC with an IC50 of 21 nM. X-ray crystallography analysis of 30 and 33 revealed that the dipeptides inhibit through a competitive mechanism and identified several key intermolecular interactions.  相似文献   

11.
Existing antibodies (Abs) used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT) at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B) contains a zinc endopeptidase light chain (LC) domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs) that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv) libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS). The equilibrium dissociation constants (KD) of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM). Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors.  相似文献   

12.
Since Alan Scott’s research, botulinum toxin (BoNT) has been used in several diseases or conditions characterised by muscular overactivity. BoNT acts on either neuromuscular or autonomic cholinergic junctions. Seven different serotypes are known, with antigenic specificity and different therapeutic profiles. BoNT is made up of a heavy chain, involved in binding and membrane translocation, and a light chain, involved in blocking neuroexcytosis. Each serotype shares a specific acceptor on the presynaptic membrane of a cholinergic junction. The available BoNT preparations differ in toxicity, purity and stability. Injection of the neurotoxin produces several modifications at a neuromuscular junction. Axonal sprouting, muscular fibre atrophy, and new end-plates are the most evident histological events after BoNT treatment. They appear to be reversible in untreated muscles. Diffusion can occur at first by haematogeneous or local BoNT spread. Several factors, such as dose, volume, site of injection, muscle size, and muscular fascia, can influence the amount of diffusion and possible side-effects. After prolonged BoNT treatment patients can become unresponsive. Antibodies directed against BoNT have been observed with ELISA or mouse bioassay. Different serotypes have been used to treat non-responder patients. Novel toxins with lower immunogenicity and prolonged clinical efficacy are required for more effective treatment.  相似文献   

13.
Our goal was to develop a sensitive method for detecting Clostridium botulinum neurotoxin type A (BoNT/A). We were able to detect BoNT/A in the femtogram (10(-15)g) range using an indirect immuno-polymerase chain reaction (immuno-PCR) assay and an indirect sandwich immuno-PCR assay. For the indirect immuno-PCR assay, enzyme-linked immunosorbent assay (ELISA) plates were coated with BoNT/A that was recognized by anti-BoNT/A monoclonal antibody. For the indirect sandwich immuno-PCR assay, the monoclonal antibody was immobilized on ELISA plates for detecting BoNT/A that was recognized by its polyclonal antibodies. Reporter DNA was prepared by PCR amplification using biotinylated 5'-primers, and it was coupled with biotinylated antibodies through streptavidin. In order to increase sensitivity and reduce background noise, the amounts of reporter DNA (ranging from 50 fg to 50 ng) and streptavidin (ranging from 0.125 ng to 8 ng) were optimized. Using the optimized concentration of reporter DNA and streptavidin, both indirect and indirect sandwich immuno-PCR assays detected BoNT/A as low as 50 fg. These results are a 10(5)-fold improvement over conventional indirect ELISA and indirect sandwich ELISA methods. The assays we developed are currently the most sensitive methods for detecting BoNT/A.  相似文献   

14.
Botulinum neurotoxins (BoNTs) cause the disease called botulism, which can be lethal. BoNTs are proteins secreted by some species of clostridia and are known to cause paralysis by interfering with nerve impulse transmission. Although the human lethal dose of BoNT is not accurately known, it is estimated to be between 0.1 μg to 70 μg, so it is important to enable detection of small amounts of these toxins. Our laboratory previously reported on the development of Endopep-MS, a mass-spectrometric‑based endopeptidase method to detect, differentiate, and quantify BoNT immunoaffinity purified from complex matrices. In this work, we describe the application of Endopep-MS for the analysis of thirteen blinded samples supplied as part of the EQuATox proficiency test. This method successfully identified the presence or absence of BoNT in all thirteen samples and was able to successfully differentiate the serotype of BoNT present in the samples, which included matrices such as buffer, milk, meat extract, and serum. Furthermore, the method yielded quantitative results which had z-scores in the range of −3 to +3 for quantification of BoNT/A containing samples. These results indicate that Endopep-MS is an excellent technique for detection, differentiation, and quantification of BoNT in complex matrices.  相似文献   

15.
Botulism is a serious foodborne neuroparalytic disease, caused by botulinum neurotoxin (BoNT), produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A – H) have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We report here a group of serotype B specific monoclonal antibodies (mAbs) capable of binding toxin under physiological conditions. Thus, they serve as capture antibodies for a sandwich (capture) ELISA. The antibodies were generated using recombinant peptide fragments corresponding to the receptor-binding domain of the toxin heavy chain as immunogen. Their binding properties suggest that they bind a complex epitope with dissociation constants (KD’s) for individual antibodies ranging from 10 to 48 × 10−11 M. Assay performance for all possible combinations of capture-detector antibody pairs was evaluated and the antibody pair resulting in the lowest level of detection (L.O.D.), ~20 pg/mL was determined. Toxin was detected in spiked dairy samples with good recoveries at concentrations as low as 0.5 pg/mL and in ground beef samples at levels as low as 2 ng/g. Thus, the sandwich ELISA described here uses mAb for both the capture and detector antibodies (binding different epitopes on the toxin molecule) and readily detects toxin in those food samples tested.  相似文献   

16.
Potent Botulinum neurotoxins (BoNTs) represent a threat to public health and safety. Botulism is a disease caused by BoNT intoxication that results in muscle paralysis that can be fatal. Sensitive assays capable of detecting BoNTs from different substrates and settings are essential to limit foodborne contamination and morbidity. In this report, we describe a rapid 96-well microfluidic double sandwich immunoassay for the sensitive detection of BoNT-A from animal sera. This BoNT microfluidic assay requires only 5 μL of serum, provides results in 75 min using a standard fluorescence microplate reader and generates minimal hazardous waste. The assay has a <30 pg·mL−1 limit of detection (LOD) of BoNT-A from spiked human serum. This sensitive microfluidic BoNT-A assay offers a fast and simplified workflow suitable for the detection of BoNT-A from serum samples of limited volume in most laboratory settings.  相似文献   

17.
Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A–E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins.  相似文献   

18.
Recent cell-based and animal experiments have demonstrated an effective reduction in botulinum neurotoxin A (BoNT/A) by copper. Aim: We aimed to analyze whether the successful symptomatic BoNT/A treatment of patients with Wilson’s disease (WD) corresponds with unusually high doses per session. Among the 156 WD patients regularly seen at the outpatient department of the university hospital in Düsseldorf (Germany), only 6 patients had been treated with BoNT/A during the past 5 years. The laboratory findings, indications for BoNT treatment, preparations, and doses per session were extracted retrospectively from the charts. These parameters were compared with those of 13 other patients described in the literature. BoNT/A injection therapy is a rare (<4%) symptomatic treatment in WD, only necessary in exceptional cases, and is often applied only transiently. In those cases for which dose information was available, the dose per session and indication appear to be within usual limits. Despite the evidence that copper can interfere with the botulinum toxin in preclinical models, patients with WD do not require higher doses of the toxin than other patients with dystonia.  相似文献   

19.
Food-borne botulism is a rare disease that results from ingestion of the toxins produced by Clostridium botulinum. The most common cause of the disease is the consumption of home-canned foods prepared under inappropriate conditions, especially in rural environments. In this report, a food-borne botulism outbreak potentially caused by roasted home-canned mushrooms is evaluated and the major reasons for delayed diagnosis are emphasized. The clinical features, symptoms and prognosis of the five botulism patients involved in this outbreak are presented. The clinical progressions, treatments, durations of mechanical ventilation, intensive care unit stays and hospital stays of the three patients admitted to Akdeniz University Hospital are reported.  相似文献   

20.
Cure of experimental botulism and antibotulismic effect of toosendanin   总被引:13,自引:1,他引:12  
INTRODUCTION The botulinum neurotoxins (BoNTs) synthesizedby strains of the anaerobic bacteria, Clostridiumbotulinum, are the most lethal biotoxins known tomankind. BoNTs comprise a family of seven immuno-logically distinct neurotoxic proteins (BoNT/A-/G).These toxins act on nerve terminals to block neurotrans-mitter release[1]. BoNT poisoning results in inhibitionof synaptic transmission at the skeletal neuromuscularjunction and subsequent respiratory failure[2]. Althoughthe i…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号