首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gut microbiota dysbiosis is strongly associated with psychiatric disorders and inflammatory bowel disease (IBD). Herein, we examined whether the fecal microbiota of IBD patients with depression (IBDD) and their gut microbiota culture (iGm) could cause depression and colitis in mice and anti-inflammatory probiotics could mitigate depression in iGm-transplanted or immobilization stress (IS)-exposed mice. Fecal microbiota transplantation (FMT) from IBDD patients, which exhibited Enterobacteriaceae-rich gut microbiota, and its gut microbiota culture (iGm) increased depression-like behaviors in mice. Their treatments heightened the blood lipopolysaccharide (LPS) level and colonic IL-1β and IL-6 expression. However, FMT from healthy volunteers or sulfasalazine treatment alleviated cGm-induced depressive-like behaviors and hippocampal and colonic inflammation in mice. Moreover, oral administration of Lactobacillus plantarum NK151, Bifidobacterium longum NK173, and Bifidobacterium bifidum NK175, which inhibited LPS-induced IL-6 expression in macrophages, alleviated cGm-induced depression-like behaviors, hippocampal NF-κB+Iba1+ cell numbers and IL-1β and IL-6 expression, blood LPS, IL-6, and creatinine levels, and colonic NF-κB+CD11c+ number and IL-1β and IL-6 expression in mice. Treatment with NK151, NK173, or NK175 mitigated immobilization stress (IS)-induced depressive-like behaviors, neuroinflammation, and gut inflammation in mice. NK151, NK173, or NK175 also decreased IS-induced blood LPS, IL-6, and creatinine levels. The transplantation of Enterobacteriaceae-rich gut microbiota can cause depression and colitis, as IS exposure, and anti-inflammatory NK151, NK173, and NK175, may alleviate stress-induced fatigue, depression, and colitis by regulating the expression of proinflammatory and anti-inflammatory cytokines through the suppression of gut bacterial LPS.  相似文献   

2.
A leaky gut is closely connected with systemic inflammation and psychiatric disorder. The rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) induces gut inflammation and cognitive function in mice. Therefore, we selected Bifidobacterium longum NK219, Lactococcus lactis NK209, and Lactobacillus rhamnosus NK210, which induced claudin-1 expression in TNBS- or lipopolysaccharide (LPS)-stimulated Caco-2 cells, from the fecal bacteria collection of humans and investigated their effects on cognitive function and systemic inflammatory immune response in TNBS-treated mice. The intrarectal injection of TNBS increased cognitive impairment-like behaviors in the novel object recognition and Y-maze tests, TNF-α, IL-1β, and IL-17 expression in the hippocampus and colon, and LPS level in the blood and feces, while the expression of hippocampal claudin-5 and colonic claudin-1 decreased. Oral administration of NK209, NK210, and NK219 singly or together decreased TNBS-impaired cognitive behaviors, TNF-α and IL-1β expression, NF-κB+Iba1+ cell and LPS+Iba1+ cell numbers in the hippocampus, and LPS level in the blood and feces, whereas BDNF+NeuN+ cell and claudin-5+ cell numbers and IL-10 expression increased. Furthermore, they suppressed TNBS-induced colon shortening and colonic TNF-α and IL-1β expression, while colonic IL-10 expression and mucin protein-2+ cell and claudin-1+ cell numbers expression increased. Of these, NK219 most strongly alleviated cognitive impairment and colitis. They additively alleviated cognitive impairment with colitis. Based on these findings, NK209, NK210, NK219, and their combinations may alleviate cognitive impairment with systemic inflammation by suppressing the absorption of gut bacterial products including LPS into the blood through the suppression of gut bacterial LPS production and alleviation of a leaky gut by increasing gut tight junction proteins and mucin-2 expression.  相似文献   

3.
Lactobacillus plantarum C29 and DW2009 (C29-fermented soybean) alleviate cognitive impairment through the modulation of the microbiota-gut-brain axis. Therefore, we examined whether combining donepezil, a well-known acetylcholinesterase inhibitor, with C29 or DW2009 could synergistically alleviate cognitive impairment in mice. Oral administration of donepezil combined with or without C29 (DC) or DW2009 (DD) alleviated lipopolysaccharide (LPS)-induced cognitive impairment-like behaviors more strongly than treatment with each one alone. Their treatments significantly suppressed the NF-κB+/Iba1+ (activated microglia) population, NF-κB activation, and tumor necrosis factor-α and interleukin-1β expression in the hippocampus, while the brain-derived neurotropic factor (BDNF)+/NeuN+ cell population and BDNF expression increased. Their treatments strongly suppressed LPS-induced colitis. Moreover, they increased the Firmicutes population and decreased the Cyanobacteria population in gut microbiota. Of these, DD most strongly alleviated cognitive impairment, followed by DC. In conclusion, DW2009 may synergistically or additively increase the effect of donepezil against cognitive impairment and colitis by regulating NF-κB-mediated BDNF expression.  相似文献   

4.
The aim of the present study was to examine the effect of green tea extract containing Piper retrofractum fruit (GTP) on dextran-sulfate-sodium (DSS)-induced colitis, the regulatory mechanisms of microRNA (miR)-21, and the nuclear factor-κB (NF-κB) pathway. Different doses of GTP (50, 100, and 200 mg/kg) were administered orally once daily for 14 days, followed by GTP with 3% DSS for 7 days. Compared with the DSS-treated control, GTP administration alleviated clinical symptoms, including the disease activity index (DAI), colon shortening, and the degree of histological damage. Moreover, GTP suppressed miR-21 expression and NF-κB activity in colon tissue of DSS-induced colitis mice. The mRNA levels of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were downregulated by GTP. Colonic nitric oxide (NO) and prostaglandin E2 (PGE2) production, and myeloperoxidase (MPO) activity were also lowered by GTP. Taken together, our results revealed that GTP inhibits DSS-induced colonic inflammation by suppressing miR-21 expression and NF-κB activity, suggesting that it may be used as a potential functional material for improving colitis.  相似文献   

5.
The bioactive peptides hydrolyzed from bone collagen have been found to possess health-promoting effects by regulating chronic diseases such as arthritis and hypertension. In the current study, the anti-inflammatory effect of bovine bone gelatin peptides (GP) was evaluated in 264.7 macrophages cells and followed by animal trials to investigate their interference on inflammatory cytokines and gut microbiota compositions in dextran sodium sulfate (DSS)-induced C57BL/6 mice. The GP was demonstrated to alleviate the extra secretion of interleukin-6 (IL-6), nitric oxide (NO) and tumor necrosis factor-α(TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. In DSS-induced colitis mice, the gavage of GP was demonstrated to ameliorate the IBD symptoms of weight loss, hematochezia and inflammatory infiltration in intestinal tissues. In serum, the proinflammatory cytokines (TNF-α,IL-6, MCP-1, IL-1β) were suppressed along with the decreasing effect on toll-like receptor 4 and cyclooxygenase-2 by GP treatment. In the analysis of gut microbiota, the GP was checked to modulate the abundance of Akkermansia, Parasutterella, Peptococcus, Bifidobacterium and Saccharibacteria. The above results imply that GP could attenuate DSS-induced colitis by suppressing the inflammatory cytokines and regulating the gut microbiota.  相似文献   

6.
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease. Probiotics have a potential beneficial effect on the prevention of UC onset and relapse in clinical trials. Lactobacillus rhamnosus GG (L. rhamnosus GG) have shown clinical benefits on UC patients, however, the precise mechanisms are unknown. The aim of this study is to explore the effect of extracellular vesicles released from L. rhamnosus GG (LGG-EVs) on dextran sulfate sodium (DSS)-induced colitis and propose the underlying mechanism of LGG-EVs for protecting against colitis. The results showed that LGG-EVs could prevent colonic tissue damage and shortening of the colon (p < 0.01), and ameliorate intestinal inflammation by inhibiting TLR4-NF-κB-NLRP3 axis activation. Consistently, the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-2) were suppressed effectively upon LGG-EVs treatment (p < 0.05). The 16S rRNA sequencing showed that LGG-EVs administration could reshape the gut microbiota in DSS-induced colitis mice, which further alters the metabolism pathways of gut microbiota. These findings propose a novel perspective of L. rhamnosus GG in attenuating inflammation mediated by extracellular vesicles and offer consideration for developing oral gavage of LGG-EVs for colitis therapies.  相似文献   

7.
Our previous studies have shown that heat-killed Lactobacillus sakei K040706 exerts immunostimulatory and anti-inflammatory activities in macrophages, cyclophosphamide (CYP)-treated mice, and dextran sulfate sodium–induced colitis mice. However, the immunostimulatory effects of live Lactobacillus sakei K040706 (live K040706) against CYP-induced immunosuppression and its underlying molecular mechanisms remain unknown. Therefore, we investigated the immunostimulatory effects of live K040706 (108 or 109 colony forming unit (CFU)/day, p.o.) in CYP-induced immunosuppressed mice. Oral administration of live K040706 prevented the CYP-induced decreases in body weight, thymus index, natural killer (NK) cell activity, T and B cell proliferation, and cytokine (interferon (IFN)-γ, interleukin (IL)-2, and IL-12) production. The administration of live K040706 also exerted positive effects on the gut microbiota of CYP-induced mice, resulting in a microbiota composition similar to that of normal mice. Moreover, live K040706 significantly enhanced IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in the splenocytes and Peyer’s patch (PP) cells of mice and increased bone marrow (BM) cell proliferation. Taken together, our data indicate that live K040706 may effectively accelerate recovery from CYP-induced immunosuppression, leading to activation of the immune system. Therefore, live K040706 may serve as a potential immunomodulatory agent against immunosuppression.  相似文献   

8.
9.
Sweet tea (Lithocarpus litseifolius [Hance] Chun) is a new resource for food raw materials, with plenty of health functions. This study aimed to investigate the preventive effect and potential mechanism of sweet tea extract (STE) against ulcerative colitis (UC). Briefly, BABL/c mice were treated with STE (100 and 400 mg/kg) for 2 weeks to prevent 3% dextran sulfate sodium (DSS)-induced UC. It was found that STE supplementation significantly prevented DSS-induced UC symptoms; suppressed the levels of pro-inflammatory mediators, such as myeloperoxidase and tumor necrosis factor-α; increased the levels of anti-inflammatory cytokines; and up-regulated the expression of tight junction proteins (Zonula occludens-1 and Occludin). STE also altered the gut microbiota profile of UC mice by increasing Bacteroidetes, Lactobacillus, Akkermansia, Lachnospiraceae_NK4A136_group, and Alistipes and inhibiting Firmicutes, Proteobacteria, and Helicobacter, accompanied by a significant increase in the content of butyric acid. Moreover, STE increased the expression of G-protein-coupled receptor (GPR) 43 and GPR109A and inhibited the expression of histone deacetylase 3 (HDAC3) and nuclear factor-κB p65 (NF-κB p65) in the colon. In conclusion, this study indicated that STE has a good preventive effect on UC by regulating gut microbiota to activate butyrate-GPR-mediated anti-inflammatory signaling and simultaneously inhibit HDAC3/NF-κB inflammatory signaling.  相似文献   

10.
Cone of Pinus densiflora (CP), or Korean red pinecone, is a cluster of Pinus densiflora fruit. CP has also been verified in several studies to have anti-oxidation, anti-fungal, anti-bacterial, and anti-melanogenic effects. However, anti-inflammatory effects have not yet been confirmed in the inflammatory responses of pinecones to allergic contact dermatitis. The purpose of this study is to prove the anti-inflammatory effect of CP on allergic contact dermatitis (ACD) in vitro and in vivo. CP inhibited the expression of TSLP, TARC, MCP-1, TNF-α, and IL-6 in TNF-α/IFN-γ-stimulated HaCaT cells and MCP-1, GM-CSF, TNF-α, IL-6, and IL-8 in PMACI (phorbol-12-myristate-13-acetate plus A23187)-stimulated HMC-1 cells. CP inhibited the phosphorylation of mitogen-activated protein kinase (MAPKs), as well as the translocation of NF-κB on TNF-α/IFN-γ stimulated in HaCaT cells. In vivo, CP decreased major symptoms of ACD, levels of IL-6 in skin lesion, thickening of the epidermis and dermis, infiltration of eosinophils and mast cells, and the infiltration of CD4+ T cells and CD8+ T cells. This result suggests that CP represents a potential alternative medicine to ACD for diseases such as chronic skin inflammation.  相似文献   

11.
Fermented camel’s milk has various health beneficial prebiotics and probiotics. This study aimed to evaluate the preventive efficacy of Bacillus amyloliquefaciens enriched camel milk (BEY) in 2-, 4- and 6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice models. To this end, the immune modulatory effects of Bacillus amyloliquefaciens (BA) on TNF-α challenged HT29 colon cells were estimated using the cell proliferation and cytokines ELISA method. BEY was prepared using the incubation method and nutritional value was quantified by comparing it to commercial yogurt. Furthermore, TNBS-induced colitis was established and the level of disease index, pathological scores, and inflammatory markers of BEY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BA is non-toxic to HT29 colon cells and balanced the inflammatory cytokines. BEY reduced the colitis disease index, and improved the body weight and colon length of the TNBS-induced mice. Additionally, Myeloperoxidase (MPO) and pro-inflammatory cytokines (IL1β, IL6, IL8 and TNF-α) were attenuated by BEY treatment. Moreover, the inflammatory progress mRNA and protein markers nuclear factor kappa B (NFκB), phosphatase and tensin homolog (PTEN), proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2) and occludin were significantly down-regulated by BEY treatment. Interestingly, significant suppression of PCNA was observed in colonic tissues using the immunohistochemical examination. Treatment with BEY increased the epigenetic (microRNA217) interactions with PCNA. In conclusion, the BEY clearly alleviated the colitis symptoms and in the future could be used to formulate a probiotic-based diet for the host gut health and control the inflammatory bowel syndrome in mammals.  相似文献   

12.
Alginate oligosaccharides (AOS) are shown to have various biological activities of great value to medicine, food, and agriculture. However, little information is available about their beneficial effects and mechanisms on ulcerative colitis. In this study, AOS with a polymerization degree between 2 and 4 were found to possess anti-inflammatory effects in vitro and in vivo. AOS could decrease the levels of nitric oxide (NO), IL-1β, IL-6, and TNFα, and upregulate the levels of IL-10 in both RAW 264.7 and bone-marrow-derived macrophage (BMDM) cells under lipopolysaccharide (LPS) stimulation. Additionally, oral AOS administration could significantly prevent bodyweight loss, colonic shortening, and rectal bleeding in dextran sodium sulfate (DSS)-induced colitis mice. AOS pretreatment could also reduce disease activity index scores and histopathologic scores and downregulate proinflammatory cytokine levels. Importantly, AOS administration could reverse DSS-induced AMPK deactivation and NF-κB activation in colonic tissues, as evidenced by enhanced AMPK phosphorylation and p65 phosphorylation inhibition. AOS could also upregulate AMPK phosphorylation and inhibit NF-κB activation in vitro. Moreover, 16S rRNA gene sequencing of gut microbiota indicated that supplemental doses of AOS could affect overall gut microbiota structure to a varying extent and specifically change the abundance of some bacteria. Medium-dose AOS could be superior to low- or high-dose AOS in maintaining remission in DSS-induced colitis mice. In conclusion, AOS can play a protective role in colitis through modulation of gut microbiota and the AMPK/NF-kB pathway.  相似文献   

13.
Inflammatory bowel disease (IBD) is a recurring inflammatory disease of the gastrointestinal tract with unclear etiology, but it is thought to be related to factors like immune abnormalities and gut microbial dysbiosis. Probiotics can regulate host immunity and gut microbiota; thus, we investigated the alleviation effect and mechanism of the strain Lactobacillus gasseri G098 (G098) on dextran sodium sulfate (DSS)-induced colitis in mice. Three groups of mice (n = 8 per group) were included: normal control (NC), DSS-induced colitis mice (DSS), and colitis mice given strain (G098). Our results showed that administering G098 effectively reversed DSS-induced colitis-associated symptoms (mitigating weight loss, reducing disease activity index and pathology scores; p < 0.05 in all cases) and prevented DSS-induced mortality (62.5% in DSS group; 100% in G098 group). The mortality rate and symptom improvement by G098 administration was accompanied by a healthier serum cytokine balance (significant decreases in serum pro-inflammatory factors, interleukin (IL)-6 [p < 0.05], IL-1β [p < 0.01], and tumor necrosis factor (TNF)-α [p < 0.001], and significant increase in the serum anti-inflammatory factor IL-13 [p < 0.01], compared with DSS group) and gut microbiome modulation (characterized by a higher gut microbiota diversity [p < 0.05], significantly more Firmicutes and Lachnoclostridium [p < 0.05], significantly fewer Bacteroidetes [p < 0.05], and significant higher gene abundances of sugar degradation-related pathways [p < 0.05], compared with DSS-treated group). Taken altogether, our results suggested that G098 intake could mitigate DSS-induced colitis through modulating host immunity and gut microbiome, and strain treatment is a promising strategy for managing IBD.  相似文献   

14.
This study was designed to explore the different intestinal barrier repair mechanisms of Bifidobacterium breve (B. breve) H4-2 and H9-3 with different exopolysaccharide (EPS) production in mice with colitis. The lipopolysaccharide (LPS)-induced IEC-6 cell inflammation model and dextran sulphate sodium (DSS)-induced mice colitis model were used. Histopathological changes, epithelial barrier integrity, short-chain fatty acid (SCFA) content, cytokine levels, NF-κB expression level, and intestinal flora were analyzed to evaluate the role of B. breve in alleviating colitis. Cell experiments indicated that both B. breve strains could regulate cytokine levels. In vivo experiments confirmed that oral administration of B. breve H4-2 and B. breve H9-3 significantly increased the expression of mucin, occludin, claudin-1, ZO-1, decreased the levels of IL-6, TNF-α, IL-1β and increased IL-10. Both strains of B. breve also inhibited the expression of the NF-κB signaling pathway. Moreover, B. breve H4-2 and H9-3 intervention significantly increased the levels of SCFAs, reduced the abundance of Proteobacteria and Bacteroidea, and increased the abundance of Muribaculaceae. These results demonstrate that EPS-producing B. breve strains H4-2 and H9-3 can regulate the physical, immune, and microbial barrier to repair the intestinal damage caused by DSS in mice. Of the two strains, H4-2 had a higher EPS output and was more effective at repair than H9-3. These results will provide insights useful for clinical applications and the development of probiotic products for the treatment of colitis.  相似文献   

15.
Rubber seed oil (RSO) is a typical PUFA-enriched plant oil, but it has not been widely used as a healthy edible oil resource due to the lack of understanding of its nutritional values, health biological effects, and action mechanisms. This work was conducted to characterize the basic physicochemical properties, evaluate the antioxidant and anti-inflammatory properties, and explore the involved mechanisms of RSO in LPS-induced RAW 264.7 cells. In the present study, the basic physicochemical parameters of RSO indicated that RSO has good qualities as a potential edible plant oil resource. In LPS-induced macrophages, RSO supplementation displayed a significant antioxidant effect by decreasing ROS and MDA levels as well as elevating T-AOC. In addition, RSO supplementation showed an anti-inflammatory effect by reducing the production of NO, IL-1β, IL-6, and TNF-α while promoting the production of IL-10. Moreover, RSO supplementation decreased the mRNA expression of IL-6, IL-1β, TNF-α, iNOS, and MCP-1 genes while increasing the mRNA expression of the IL-10 gene. Furthermore, RSO supplementation increased Nrf2 protein expression and up-regulated antioxidant genes (HO-1 and NQO-1), which was accompanied by the decrease in TLR4 protein expression and NF-κB p65 phosphorylation as well as IκBα phosphorylation. This study provided some insight into the applications of RSO as a healthy edible oil resource.  相似文献   

16.
Probiotics have been shown to benefit patients with constipation and depression, but whether they specifically alleviate constipation in patients with depression remains unclear. The aim of this study was to investigate the effect of Lacticaseibacillus paracasei strain Shirota (LcS), formerly Lactobacillus casei strain Shirota, on constipation in patients with depression with specific etiology and gut microbiota and on depressive regimens. Eighty-two patients with constipation were recruited. The subjects consumed 100 mL of a LcS beverage (108 CFU/mL) or placebo every day for 9 weeks. After ingesting beverages for this period, we observed no significant differences in the total patient constipation-symptom (PAC-SYM) scores in the LcS group when compared with the placebo group. However, symptoms/scores in item 7 (rectal tearing or bleeding after a bowel movement) and items 8–12 (stool symptom subscale) were more alleviated in the LcS group than in the placebo group. The Beck Depression Index (BDI) and Hamilton Depression Rating Scale (HAMD) scores were all significantly decreased, and the degree of depression was significantly improved in both the placebo and LcS groups (p < 0.05), but there was no significant difference between the groups. The LcS intervention increased the beneficial Adlercreutzia, Megasphaera and Veillonella levels and decreased the bacterial levels related to mental illness, such as Rikenellaceae_RC9_gut_group, Sutterella and Oscillibacter. Additionally, the interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) levels were significantly decreased in both the placebo and LcS groups (p < 0.05). In particular, the IL-6 levels were significantly lower in the LcS group than the placebo group after the ingestion period (p < 0.05). In conclusion, the daily consumption of LcS for 9 weeks appeared to relieve constipation and improve the potentially depressive symptoms in patients with depression and significantly decrease the IL-6 levels. In addition, the LcS supplementation also appeared to regulate the intestinal microbiota related to mental illness.  相似文献   

17.
Background: Crohn’s disease (CD) is characterized by chronic inflammation of the gastrointestinal tract with alternating periods of exacerbation and remission. The aim of this study was to determine the time-dependent effects of dietary oat beta-glucans on colon apoptosis and autophagy in the CD rat model. Methods: A total of 150 Sprague–Dawley rats were divided into two main groups: healthy control (H) and a TNBS (2,4,6-trinitrobenzosulfonic acid)-induced colitis (C) group, both including subgroups fed with feed without beta-glucans (βG−) or feed supplemented with low- (βGl) or high-molar-mass oat beta-glucans (βGh) for 3, 7, or 21 days. The expression of autophagy (LC3B) and apoptosis (Caspase-3) markers, as well as Toll-like (TLRs) and Dectin-1 receptors, in the colon epithelial cells, was determined using immunohistochemistry and Western blot. Results: The results showed that in rats with colitis, after 3 days of induction of inflammation, the expression of Caspase-3 and LC3B in intestinal epithelial cells did not change, while that of TLR 4 and Dectin-1 decreased. Beta-glucan supplementation caused an increase in the expression of TLR 5 and Dectin-1 with no changes in the expression of Caspase-3 and LC3B. After 7 days, a high expression of Caspase-3 was observed in the colitis-induced animals without any changes in the expression of LC3B and TLRs, and simultaneously, a decrease in Dectin-1 expression was observed. The consumption of feed with βGl or βGh resulted in a decrease in Caspase-3 expression and an increase in TLR 5 expression in the CβGl group, with no change in the expression of LC3B and TLR 4. After 21 days, the expression of Caspase-3 and TLRs was not changed by colitis, while that of LC3B and Dectin-1 was decreased. Feed supplementation with βGh resulted in an increase in the expression of both Caspase-3 and LC3B, while the consumption of feed with βGh and βGl increased Dectin-1 expression. However, regardless of the type of nutritional intervention, the expression of TLRs did not change after 21 days. Conclusions: Dietary intake of βGl and βGh significantly reduced colitis by time-dependent modification of autophagy and apoptosis, with βGI exhibiting a stronger effect on apoptosis and βGh on autophagy. The mechanism of this action may be based on the activation of TLRs and Dectin-1 receptor and depends on the period of exacerbation or remission of CD.  相似文献   

18.
Resveratrol has well-known anticancer properties; however, its oligomers, including α-viniferin, ε-viniferin, and kobophenol A, have not yet been well investigated. This is the first study examining the anti-epithelial-mesenchymal transition (EMT) effects of α-viniferin and ε-viniferin on A549, NCI-H460, NCI-H520, MCF-7, HOS, and U2OS cells. The results showed that α-viniferin and ε-viniferin significantly inhibited EMT, invasion and migration in TGF-β1- or IL-1β-induced non-small cell lung cancer. α-Viniferin and ε-viniferin also reversed TGF-β1-induced reactive oxygen species (ROS), MMP2, vimentin, Zeb1, Snail, p-SMAD2, p-SMAD3, and ABCG2 expression in A549 cells. Furthermore, ε-viniferin was found to significantly inhibit lung metastasis in A549 cell xenograft metastatic mouse models. In view of these findings, α-viniferin and ε-viniferin may play an important role in the prevention of EMT and cancer metastasis in lung cancer.  相似文献   

19.

BACKGROUND/OBJECTIVES

A variety of immunomodulators can improve the efficacy of low-dose chemotherapeutics. Active hexose correlated compound (AHCC), a mushroom mycelia extract, has been shown to be a strong immunomodulator. Whether AHCC could enhance the antitumor effect of low-dose 5-fluorouracil (5-FU) via regulation of host immunity is unknown.

MATERIALS/METHODS

In the current study Hepatoma 22 (H22) tumor-bearing mice were treated with PBS, 5-FU (10 mg·kg-1·d-1, i.p), or AHCC (360 mg·kg-1·d-1, i.g) plus 5-FU, respectively, for 5 d. CD3+, CD4+, CD8+, and NK in peripheral blood were detected by flow cytometry. ALT, AST, BUN, and Cr levels were measured by biochemical assay. IL-2 and TNFα in serum were measured using the RIA kit and apoptosis of tumor was detected by TUNEL staining. Bax, Bcl-2, and TS protein levels were measured by immunohistochemical staining and mRNA level was evaluated by RT-PCR.

RESULTS

Diet consumption and body weight showed that AHCC had no apparent toxicity. AHCC could reverse liver injury and myelosuppression induced by 5-FU (P < 0.05). Compared to mice treated with 5-FU, mice treated with AHCC plus 5-FU had higher thymus index, percentages of CD3+, CD4+, and NK cells (P < 0.01), and ratio of CD4+/CD8+ (P < 0.01) in peripheral blood. Radioimmunoassay showed that mice treated with AHCC plus 5-FU had the highest serum levels of IL-2 and TNFα compared with the vehicle group and 5-FU group. More importantly, the combination of AHCC and 5-FU produced a more potent antitumor effect (P < 0.05) and caused more severe apoptosis in tumor tissue (P < 0.05) compared with the 5-FU group. In addition, the combination of AHCC and 5-FU further up-regulated the expression of Bcl-2 associated X protein (Bax) (P < 0.01), while it down-regulated the expression of B cell lymphoma 2 (Bcl-2) (P < 0.01).

CONCLUSIONS

These results support the claim that AHCC might be beneficial for cancer patients receiving chemotherapy.  相似文献   

20.
Supplementation of dietary fiber has been proved to be an effective strategy to prevent and relieve inflammatory bowel disease (IBD) through gut microbiota modulation. However, more attention has been paid to the efficacy of soluble dietary fiber than that of insoluble dietary fiber (IDF). In the present study, we investigated whether IDF from barley leaf (BLIDF) can inhibit gut inflammation via modulating the intestinal microbiota in DSS-induced colitis mice. The mice were fed 1.52% BLIDF-supplemented diet for 28 days. Results demonstrated that feeding BLIDF markedly mitigated DSS-induced acute colitis symptoms and down-regulated IL-6, TNF-α, and IL-1β levels in the colon and serum of colitis mice. BLIDF supplementation effectively reduced the abundance of Akkermansia and increased the abundance of Parasutterella, Erysipelatoclostridium, and Alistipes. Importantly, the anti-colitis effects of BLIDF were abolished when the intestinal microbiota was depleted by antibiotics. Furthermore, the targeted microbiota-derived metabolites analysis suggested that BLIDF feeding can reverse the DSS-induced decline of short-chain fatty acids and secondary bile acids in mice feces. Finally, BLIDF supplementation elevated the expression of occludin and mucin2, and decreased the expression of claudin-1 in colons of DSS-treated mice. Overall, our observations suggest that BLIDF exerts anti-inflammatory effects via modulating the intestinal microbiota composition and increasing the production of microbiota-derived metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号