首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene therapy was initially thought of as a means to correct single gene defects in hereditary disease. In the meantime, cancer has become by far the most important indication for gene therapy in clinical trials. In the foreseeable future, the best way to achieve reasonable intratumoral concentrations of a transgene with available vectors is direct intratumoral injection with or without the aid of various techniques such as endoscopy or CT-guidance. At present, viral and non-viral methods of gene transfer are used either in vivo or ex vivo/in vitro. The most important viral vectors currently in use in clinical trials comprise retroviruses, adenoviruses, adeno-associated viruses, and herpes viruses. None of the available vectors satisfies all the criteria of an ideal gene therapeutic system, and vectors with only minimal residues of their parent viruses ("gutless vectors") as well as completely "synthetic viral vectors" will gain more and more importance in the future. Non-viral gene therapy methods include liposomes, injection of vector-free DNA ("naked DNA"), protein-DNA complexes, delivery by "gene gun," calcium-phosphate precipitation, electroporation, and intracellular microinjection of DNA. The first clinical trial of gene therapy for cancer was performed in 1991 in patients with melanoma, and since then more than 5000 patients have been treated worldwide in more than 400 clinical protocols. With the exception of a case of fatal toxicity in a young man with hereditary liver disease treated intrahepatically with high doses of adenovirus, side effects have been rare and usually mild in all these studies and expression of the transgene could be demonstrated in patients in vivo. However, despite anecdotal reports of therapeutic responses in some patients, unequivocal proof of clinical efficacy is still lacking for most of the varied approaches to gene therapy in humans. As well as our only fragmentary understanding of the molecular pathophysiology of many diseases, the principal reason for the present lack of clinical success of gene therapy is the very low transduction and expression efficiency in vivo of available vectors. Despite the complexities of gene therapy for cancer, the numerous different approaches can be subdivided into three basic concepts: (1) strengthening of the immune response against a tumour, (2) repair of cell cycle defects caused by losses of tumour suppressor genes or inappropriate activation of oncogenes, and (3) suicide gene strategies. In addition, the importance of gene marker studies and gene therapeutic protection of normal tissue are briefly covered in this review.  相似文献   

2.
The goal of hemophilia gene therapy is to obtain long-term therapeutic levels of factor VIII (FVIII) or factor IX (FIX) without stimulating an immune response against the transgene product or the vector. The success of gene therapy is largely dependent on the development of appropriate gene delivery vectors. Both viral vectors and nonviral vectors have been considered for the development of hemophilia gene therapy. In general, viral vectors are far more efficient than nonviral gene delivery approaches and resulted in long-term therapeutic levels of FVIII or FIX in preclinical animal models. However, there are several reasons why a nonviral treatment would still be desirable, particularly because some viral vectors are associated with inflammatory reactions, that render transgene expression transient, or with an increased risk of insertional oncogenesis when random integrating vectors are used. Nonviral vectors may obviate some of these concerns. Since nonviral vectors are typically assembled in cell-free systems from well-defined components, they have significant manufacturing advantages over viral vectors. The continued development of improved nonviral gene delivery approaches offers new perspectives for gene therapy of chronic diseases including hemophilia.  相似文献   

3.
Chandrashekran A  Gordon MY  Casimir C 《Blood》2004,104(9):2697-2703
Gene therapy for a wide variety of disorders would be greatly enhanced by the development of vectors that could be targeted for gene delivery to specific populations of cells. We describe here high-efficiency targeted transduction based on a novel targeting strategy that exploits the ability of retroviruses to incorporate host cell proteins into the surface of the viral particle as they bud through the plasma membrane. Ecotropic retroviral particles produced in cells engineered to express the membrane-bound form of stem cell factor (mbSCF) transduce both human cell lines and primary cells with high efficiency in a strictly c-kit (SCF receptor)-dependent fashion. The availability of efficient targeted vectors provides a platform for the development of a new generation of therapies using in vivo gene delivery.  相似文献   

4.
The goal of cancer gene therapy is the selective and efficient eradication of tumor cells without significant systemic toxicity. Although several different gene therapy approaches have been developed and tested both in preclinical and clinical trials, none of these methods are suitable for the safe and efficient treatment of cancer. Recent advances in tumor cell biology have accelerated the identification of novel proteins as targets for gene transfer strategies. However, the development of vectors and delivery systems for specific and efficient gene therapy has not kept pace with these discoveries. Below, we describe the most widely used gene therapy approaches and discuss the caveats of using these techniques in the clinic.  相似文献   

5.
Hemophilia A and B gene therapy requires long-term and stable expression of coagulation factor VIII (FVIII) or factor IX (FIX), respectively, and would need to compare favorably with protein replacement therapy. Onco-retroviral and lentiviral vectors are attractive vectors for gene therapy of hemophilia. These vectors have the potential for long-term expression because they integrate stably in the target cell genome. Whereas onco-retroviral vectors can only transduce dividing cells, lentiviral vectors can transduce a broad variety of cell types irrespective of cell division. Several preclinical and clinical studies have explored the use of onco-retroviral and, more recently, lentiviral vectors for gene therapy of hemophilia A or B. Both ex vivo and in vivo gene therapy approaches have been evaluated, resulting in therapeutic FVIII or FIX levels in preclinical animal models. Whereas in vivo gene therapy using onco-retroviral or lentiviral vectors often led to long-term FVIII or FIX expression from transduced hepatocytes, ex vivo approaches were generally hampered by either low or transient expression of FVIII or FIX levels in vivo and/or inefficient engraftment. Furthermore, immune responses against the transgene product remain a major issue that must be resolved before the full potential of these vectors eventually can be exploited clinically. Nevertheless, the continued progress in vector design combined with a better understanding of vector biology may ultimately yield more effective gene therapy approaches using these integrating vectors.  相似文献   

6.
Major attention has been focused on the development of gene therapy approaches for the treatment of vascular diseases. In this review, we focus on an alternative use of gene therapy: the use of genetic means to study vascular cell biology and physiology. Both viral and nonviral gene transfer strategies have limitations, but because of the overwhelming inflammatory responses associated with the use of viral vectors, nonviral gene transfer methods are likely to be used more abundantly for future applications in the vasculature. Researchers have made great strides in the advancement of gene delivery to the vasculature in vivo. However, the efficiency of gene transfer seen with most nonviral approaches has been exceedingly low. We discuss how to circumvent and take advantage of a number of the barriers that limit efficient gene delivery to the vasculature to achieve high-level gene expression in appropriate cell types within the vessel wall. With such levels of expression, gene transfer offers the ability to alter pathways at the molecular level by genetically modulating the activity of a gene product, thus obviating the need to rely on pharmacological agents and their foreseen and unforeseen side effects. This genetic ability to alter distinct gene products within a signaling or biosynthetic pathway or to alter structural interactions within and between cells is extremely useful and technologically possible today. Hopefully, with the availability of these tools, new advances in cardiovascular physiology will emerge.  相似文献   

7.
Lentivirus-derived vectors are among the most promising viral vectors for gene therapy currently available, but their use in clinical practice is limited by the associated risk of insertional mutagenesis. We have overcome this problem by developing a nonintegrative lentiviral vector derived from HIV type 1 with a class 1 integrase (IN) mutation (replacement of the 262RRK motif by AAH). We generated and characterized HIV type 1 vectors carrying this deficient enzyme and expressing the GFP or neomycin phosphotransferase transgene (NEO) under control of the immediate early promoter of human CMV. These mutant vectors efficiently transduced dividing cell lines and nondividing neural primary cultures in vitro. After transduction, transient GFP fluorescence was observed in dividing cells, whereas long-term GFP fluorescence was observed in nondividing cells, consistent with the viral genome remaining episomal. Moreover, G418 selection of cells transduced with vectors expressing the NEO gene showed that residual integration activity was lower than that of the intact IN by a factor of 500-1,250. These nonintegrative vectors were also efficient in vivo, allowing GFP expression in mouse brain cells after the stereotactic injection of IN-deficient vector particles. Thus, we have developed a generation of lentiviral vectors with a nonintegrative phenotype of great potential value for secure viral gene transfer in clinical applications.  相似文献   

8.
Adenovirus (Ad) and adeno-associated virus (AAV) have attractive and complementary properties that can be exploited for gene transfer purposes. Ad vectors are probably the most efficient vehicles to deliver foreign genes both in vitro and in vivo. AAV exhibits the unique ability to establish latency by efficiently integrating at a specific locus of human chromosome 19 (AAVS1). Two viral elements are necessary for the integration at AAVS1: Rep68/78 and the inverted terminal repeats (AAV-ITRs). In this study, we report the development of two helper-dependent adenoviral (HD) vectors, one carrying the Rep78 gene, the other an AAV-ITR-flanked transgene. Although Rep proteins have been demonstrated to interfere with Ad replication, HD Rep78 vector was successfully amplified on serial passages in 293CRE4 cells with a yield of 50-100 transducing units per cell. DNA integration at the AAVS1 site also was demonstrated in hepatoma cells coinfected with the HD-expressing Rep78 and with the second HD vector carrying a transgene flanked by AAV-ITRs. The high transduction efficiency, large cloning capacity, and high titer of the HD, combined with the site-specific integration machinery provided by AAV-derived components, make the Ad/AAV hybrid viruses a promising vehicle for gene therapy.  相似文献   

9.
Shayakhmetov DM 《Viruses》2010,2(1):244-261
Numerous human genetic and acquired diseases could be corrected or ameliorated if viruses are harnessed to safely and effectively deliver therapeutic genes to diseased cells and tissues in vivo. Innate immune and inflammatory response represents one of the key stumbling blocks during the development of viral-based therapies. In this review, current data on the early innate immune responses to viruses and to the most commonly used gene therapy vectors (using adenovirus and adeno-associated virus) will be discussed. Recent findings in the field may help develop new approaches to moderate these innate immune anti-viral responses and thus improve the safety of viral vectors for human gene therapy applications.  相似文献   

10.
Adenovirus (Ad) vectors have been extensively used to deliver recombinant genes to a great variety of cell types in vitro and in vivo. Ad-based vectors are available that replace the Ad early region 1 (E1) with recombinant foreign genes. The resultant E1-deleted vectors can then be propagated on 293 cells, a human embryonal kidney cell line that constitutively expresses the E1 genes. Unfortunately, infection of cells and tissues in vivo results in low-level expression of Ad early and late proteins (despite the absence of E1 activity) resulting in immune recognition of virally infected cells. The infected cells are subsequently eliminated, resulting in only a transient expression of foreign genes in vivo. We hypothesize that a second-generation Ad vector with a deletion of viral genes necessary for Ad genome replication should block viral DNA replication and decrease viral protein production, resulting in a diminished immune response and extended duration of foreign gene expression in vivo. As a first step toward the generation of such a modified vector, we report the construction of cell lines that not only express the E1 genes but also constitutively express the Ad serotype 2 140-kDa DNA polymerase protein, one of three virally encoded proteins essential for Ad genome replication. The Ad polymerase-expressing cell lines support the replication and growth of H5ts36, an Ad with a temperature-sensitive mutation of the Ad polymerase protein. These packaging cell lines can be used to prepare Ad vectors deleted for the E1 and polymerase functions, which should facilitate development of viral vectors for gene therapy of human diseases.  相似文献   

11.
Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders most commonly affecting young adults. Currently available therapies can result in induction and maintenance of remission, but are not curative and have sometimes important side effects. Advances in basic research in IBD have provided new therapeutic opportunities to target the inflammatory process involved. Gene and cell therapy approaches are suitable to prevent inflammation in the gastrointestinal tract and show therefore potential in the treatment of IBD. In this review, we present the current progress in the field of both gene and cell therapy and future prospects in the context of IBD. Regarding gene therapy, we focus on viral vectors and their applications in preclinical models. The focus for cell therapy is on regulatory T lymphocytes and mesenchymal stromal cells, their potential for the treatment of IBD and the progress made in both preclinical models and clinical trials.  相似文献   

12.
Fanconi anemia (FA) is a rare genetic disorder characterized by progressive pancytopenia, congenital abnormalities, and a predisposition to malignancy. Recently, mutation in a novel gene named FACC (Fanconi anemia C complementing) has been identified as causing one type of FA. Here, we report successful functional complementation of four FA(C) cell lines using a retroviral vector to transfer a copy of the normal FACC gene. The hallmark of the FA cell phenotype is extreme sensitivity to cross-linking agents such as mitomycin C (MMC). Cell lines transduced by FACC viral vectors were distinguished by their ability to grow at concentrations of MMC several orders of magnitude higher than those concentrations inhibitory of parental controls. The genetically corrected cell lines were analyzed for susceptibility to MMC-induced chromosomal breakage and were found to have been normalized. These two different assays confirmed that our retroviral vectors were capable of transferring a functional FACC gene to lymphoid cell lines established from FA(C) patients. We next analyzed the ability of our viral vectors to functionally correct hematopoietic progenitor cells from a patient bearing a splice donor mutation. Progenitor cells were purified by an immunoaffinity column to enrich for cells with high CD34 expression. Similar to FA lymphoid cell lines, this patient's CD34-enriched cells were extremely sensitive to MMC. After infection of these progenitor cells with viral vectors bearing normal FACC, increased numbers of colonies formed both in the absence and presence of < or = 5 nmol/L MMC, but no colonies formed from uninfected cells, even in the absence of MMC. Polymerase chain amplification was used to confirm proviral DNA integration. Thus, retroviral vectors can be engineered to transfer a normal FACC gene to lymphoid cell lines and primary hematopoietic cells bearing four different FACC mutations. FA stem cells rescued by gene transduction should have a selective growth advantage within the hypoplastic FA marrow environment in vivo. These experiments suggest that gene therapy may be an effective treatment strategy for FA.  相似文献   

13.
Targeting cancer gene therapy to endothelial cells seems to be a rational approach, because (a) a clear correlation exists between proliferation of tumor vessels and tumor growth and malignancy, (b) differences of cell membrane structures between tumor endothelial cells and normal endothelial cells exist which could be used for targeting of vectors and (c) tumor endothelial cells are accessible to vector vehicles in spite of the peculiarities of the transvascular and interstitial blood flow in tumors. Based on the knowledge on the pharmacokinetics of macromolecules it can be concluded that vectors targeting tumor endothelial cells should own a long blood residence time after intravascular application. This precondition seems to be fulfilled best by vectors exhibiting a slight anionic charge. A long blood residence time would allow the formation of a high amount of complexes between tumor endothelial cells and vector particles. Such high amount of complexes should enable a high transfection rate of tumor endothelial cells. In view of their pharmacokinetic behavior nonviral vectors seem to be more suitable for in vivo targeting tumor endothelial cells than viral vectors. Specific binding of nonviral vectors to tumor endothelial cells should be enhanced by multifunctional ligands and the transduction efficiency should be improved by cationic carriers. Effector genes should encode proteins potent enough to induce reactions which eliminate the tumor tissue. To be effective to that degree such proteins should induce self-amplifying antitumor reactions. Examples for proteins which have the potential to induce such self-amplifying tumor reactions are proteins endowed with antiangiogenic and antiproliferative activity, enzymes which convert prodrugs into drugs and possibly also proteins which induce embolization of tumor vessels. The pharmacological data for such examples are discussed in detail.  相似文献   

14.
PURPOSE: Carcinoembryonic antigen expression is increased in more than 80% of patients with colorectal cancer. Values are especially higher in patients with advanced stage disease. Virus directed prodrug/enzyme therapy (VDEPT) using genetically engineered viral vectors has been considered as one of the more notable cancer gene therapies for the transduction of various enzymes into cancer cells. We made adenovirus vectors under the control of a CEA promoter that included the HSV-tk gene and investigated its usefulness to specifically target human CEA-producing colorectal cancer cells. METHODS: An adenovirus vector with the lacZ or HSV-tk gene under the control of a CAG or CEA promoter was designed for the VDEPT experiment. Human colorectal cancer cell lines were used for in vitro experiments to assure the transduction efficacy of the inserted genes by these vectors. To conduct the in vivo experiment, liver metastases of the cell line were created in CB17 SCID mouse. We then performed intrasplenic injections of adenovirus vectors and intraperitoneal injections of the prodrug, ganciclovir. RESULTS: RCM-1, the CEA-producing human rectal cancer cell line, was more strongly stained by X-gal staining. Furthermore, COLO320 was faintly stained secondary to a shortage of CEA production. The in vivo VDEPT experiment with RCM-1 and the adenovirus vector driven by the CEA promoter revealed attenuation of liver metastases in the treatment group. CONCLUSIONS: Adenovirus vectors under the control of the CEA promoter can transduce inserted genes effectively into targeted human colorectal cancer cells according to the amount of expressed CEA protein. We anticipate the future use of VDEPT of the HSV-tk/GCV system using this vector in the treatment of advanced colorectal cancers.  相似文献   

15.
Kenneth Lundstrom 《Viruses》2015,7(5):2321-2333
Alphavirus vectors present an attractive approach for gene therapy applications due to the rapid and simple recombinant virus particle production and their broad range of mammalian host cell transduction. Mainly three types of alphavirus vectors, namely naked RNA, recombinant particles and DNA/RNA layered vectors, have been subjected to preclinical studies with the goal of achieving prophylactic or therapeutic efficacy, particularly in oncology. In this context, immunization with alphavirus vectors has provided protection against challenges with tumor cells. Moreover, alphavirus intratumoral and systemic delivery has demonstrated substantial tumor regression and significant prolonged survival rates in various animal tumor models. Recent discoveries of the strong association of RNA interference and disease have accelerated gene therapy based approaches, where alphavirus-based gene delivery can play an important role.  相似文献   

16.
In recent years, significant progress has been made in the treatment of rheumatoid arthritis (RA). In addition to conventional therapy, novel biologicals targeting tumour necrosis factor-alpha have successfully entered the clinic. However, the majority of the patients still has some actively inflamed joints and some patients suffer from side-effects associated with the high systemic dosages needed to achieve therapeutic levels in the joints. In addition, due to of the short half-life of these proteins there is a need for continuous, multiple injections of the recombinant protein. An alternative approach might be the use of gene transfer to deliver therapeutic genes locally at the site of inflammation. Several viral and non-viral vectors are being used in animal models of RA. The first gene therapy trials for RA have already entered the clinic. New vectors inducing long-term and regulated gene expression in specific tissue are under development, resulting in more efficient gene transfer, for example by using distinct serotypes of viral vectors such as adeno-associated virus. This review gives an overview of some promising vectors used in RA research. Furthermore, several therapeutic genes are discussed that could be used for gene therapy in RA patients.  相似文献   

17.
Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.  相似文献   

18.
We have previously reported the development of improved MLV-based retroviral vectors whose prototype is entitled MT (Kim et al, J. Virol. 72:994-1044; Yu et al, Gene Therapy 7:797-804). The MT vector does not contain any viral coding sequences, and thus the possibility of homologous recombination between the vector and the packaging genome is virtually nil. Indeed, in a shotgun RCR detection assay, an MT-based vector did not produce any RCR. On the contrary, the MFG vector, containing parts of all three viral coding sequences (gag, pol, and env), generated a significant number of RCR. In addition to being safe, MT-based vectors produce levels of gene expression and viral titer comparable to or higher than other vectors currently available within the community. Based on this vector, we have constructed a number of retroviral vectors that can be used for the treatment of a variety of human diseases. Our major target diseases are those that can be treated with or the status of which can be significantly improved with bone marrow transplantation. To obtain the most significant therapeutic effects, it is necessary to achieve the highest possible gene delivery efficiency, drive the highest level of gene expression, and prevent expression of the inserted therapeutic gene from being negatively influenced by the genome environment. To these ends, we compared various LTRs for their effects on the level of gene expression, tested the effect of cis-acting elements that may influence chromatin structure or position effect of the inserted gene, and studied different transduction conditions for their gene delivery efficiency. Data recently obtained from these experiments will be presented.  相似文献   

19.
Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and "bridging" interactions. "Bridging" interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of "bridging interactions" such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated "stealth" vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications.  相似文献   

20.
Efficient retroviral gene transfer to pluripotential hematopoietic stem cells (PHSCs) requires ex vivo culture in multiple hematopoietic growth factors (HGFs) to promote cell division. While treatment of PHSCs with HGF can render stem cells viable targets for retroviral infection, HGFs can promote differentiation, loss of self-renewal potential, and affect the homing/engraftment capacity of PHSCs. To avoid the negative impacts observed with ex vivo transduction protocols, we developed a murine model for in vivo retroviral infection by direct intrafemoral injection (DII), thus abolishing the need for removal of cells from their native microenvironment and the signals necessary to maintain their unique physiology. Using this approach we have demonstrated in vivo retroviral gene transfer to colony-forming units-c (CFU-c), short-term reconstituting cells, and PHSCs. Moreover, direct intrafemoral injection of Jak3 knock-out mice with retroviral particles encoding the Jak3 gene resulted in reconstitution of normally deficient lymphocyte populations concomitant with improved immune function. In addition, DII can be used to target the delivery of other gene therapy vectors including adenoviral vectors to bone marrow cells in vivo. Taken together, these results demonstrate that in vivo retroviral gene transfer by direct intrafemoral injection may be a viable alternative to current ex vivo gene transfer approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号