首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

In kindreds carrying path_BRCA1/2 variants, some women in these families will develop cancer despite testing negative for the family’s pathogenic variant. These families may have additional genetic variants, which not only may increase the susceptibility of the families’ path_BRCA1/2, but also be capable of causing cancer in the absence of the path_BRCA1/2 variants. We aimed to identify novel genetic variants in prospectively detected breast cancer (BC) or gynecological cancer cases tested negative for their families’ pathogenic BRCA1/2 variant (path_BRCA1 or path_BRCA2).

Methods

Women with BC or gynecological cancer who had tested negative for path_BRCA1 or path_BRCA2 variants were included. Forty-four cancer susceptibility genes were screened for genetic variation through a targeted amplicon-based sequencing assay. Protein- and RNA splicing-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as the ones most likely affecting pre-mRNA splicing were experimentally analyzed in a minigene assay.

Results

We identified 48 women who were tested negative for their family’s path_BRCA1 (n?=?13) or path_BRCA2 (n?=?35) variants. Pathogenic variants in the ATM, BRCA2, MSH6 and MUTYH genes were found in 10% (5/48) of the cases, of whom 15% (2/13) were from path_BRCA1 and 9% (3/35) from path_BRCA2 families. Out of the 26 unique VUS, 3 (12%) were predicted to affect RNA splicing (APC c.721G?>?A, MAP3K1 c.764A?>?G and MSH2 c.815C?>?T). However, by using a minigene, assay we here show that APC c.721G?>?A does not cause a splicing defect, similarly to what has been recently reported for the MAP3K1 c.764A?>?G. The MSH2 c.815C?>?T was previously described as causing partial exon skipping and it was identified in this work together with the path_BRCA2 c.9382C?>?T (p.R3128X).

Conclusion

All women in breast or breast/ovarian cancer kindreds would benefit from being offered genetic testing irrespective of which causative genetic variants have been demonstrated in their relatives.
  相似文献   

2.
The known breast cancer susceptibility genes only account for 20% to 25% of the excess familial risk of the disease [1]. The present study assessed the contribution of BRCA1/2 mutations and CHEK2 variants to the relative risk of breast cancer for women with affected mothers or sisters. The familial relative risks were estimated by Poisson regression based on the Swedish Family-Cancer Database. The Database was also used to calculate the distribution of life expectancy, the number of daughters per family and the age specific cumulative risk of female breast cancer. This information, together with the penetrances of BRCA1, BRCA2 and CHEK2 from the literature, was used to simulate the familial clustering of breast cancer under different scenarios. The excess risk explained by BRCA1, BRCA2 and CHEK2 decreased steeply with the age at diagnosis of the cancers. Around 40% of the familial risk for cases diagnosed before the age of 50 years was associated with BRCA1/2 mutations. In contrast, roughly 85% of the familial risk of breast cancer diagnosed before the age of 69 years remained unexplained. The contribution of CHEK2 to familial breast cancer was small.  相似文献   

3.

Objectives

This study was undertaken to determine: 1) Type and prevalence of founder mutations BRCA1 and BRCA2 genes in Polish families with strong aggregation of breast and/or ovarian cancer. 2) Risk of breast and/or ovarian cancer depending on type of BRCA1 gene mutation. 3) Prevalence of BRCA1 mutation and of other alleles presumably linked with predisposition to breast cancer in unselected Polish patients with breast cancer. 4) Risk of breast cancer in patients with 5972C/T polymorphism that alters the BRCA2 protein structure.

Summary of the results

1. Among 66 families from several regions in Poland with a strong aggregation of breast/ovarian cancer, founder mutation of the BRCA1 gene were disclosed in 34 families and of the BRCA2 gene in on family. Altogether, seven different mutations were disclosed. Five mutations were found in at least two families in this group. The most frequent mutation was 5382insC (18 families), followed by C61G (7 families) and 4153delA (4 families). 2. Among 200 families representative for Poland with strong aggregation of breast/ovarian cancer, mutation of the BRCA1 gene were found in 122 families (61%) and of the BRCA2 gene in seven families (3,5%). 119 out of 122 mutations of the BRCA1 gene (97,5%) were repeatable. Three recurrent mutations of the BRCA1 gene (5382insC, C61G, 4153delA) characteristic for the Polish population were disclosed in 111 families representing 86% of all pathogenic sequences of this gene. 3. The risk of ovarian cancer in carriers of the three most frequent recurrent mutation of the BRCA1 gene in Poland is similar (OR 43.6 for 5382insC and 50 for 4153delA). The risk of breast cancer is significantly different for 4153delA (OR 1) and for other mutations (OR 10.9). 4. Among 2012 unselected breast cancers diagnosed in hospitals of nine Polish cities, mutations of the BRCA1 gene (5382insC, C61G, 4153delA) were disclosed in 2.9% patients. CHEK2 alternation (1100delC, IVS2+1G>A, I157T) was discovered in 8.1% and NBS1 mutation (657del5) in 0.8% of the patients. The changes were more frequent in the study than the control group. However, the risk of breast cancer was significantly higher for only three of them. Two changes, namely 5382insC and C61G of the BRCA1 gene revealed a high penetrance (OR 6.2 and 15.0, respectively), while I157T of the CHEK2 gene was associated with a low risk of breast cancer (OR 1.4). Mutations of the BRCA1, CHEK2 and NSB1 genes were significantly more frequent in patients with breast cancer diagnosed prior to 50 years of age. The mean age at diagnosis was 47.2 years for carriers of the BRCA1 mutation, 50.7 years for NBS1 and 54.2 for CHEK2. The mean age at diagnosis in the group of patients without any if the mutations described above was 56.1 years. When breast cancer patients with the diagnosis before and after 50 years of age were compared, the greatest difference in the frequency of mutation was revealed for the BRCA1 gene (5.5% vs 1.5%).BRCA1 mutations were significantly more frequent I familial aggregates of the tumor (10.8%), but were also present in sporadic cases (1.8%). For the CHEK2 and NBS1 genes, there was no correlation between frequency and family history of cancer in probands. 5. A higher frequency of heterozygous carriers of 5972C/T polymorphism of the BRCA2 gene was demonstrated for breast cancer prior to 50 years of age (OR 1.4). the risk of breast cancer prior to 50 years of age was particularly high in 5972T/T homozygote (OR 4.7). This polymorphism was associated with breast cancer notable for intraductal growth.

Conclusions

1. Efficient molecular diagnostics of genetic predisposition to breast/ovarian cancer in Poland could be based on relatively simple tests disclosing some of the most frequent recurrent mutations of the BRCA1 gene. 2. The risk of breast cancer seems to be only slightly higher in carriers of some BRCA1 gene mutations. This finding should be taken into account during work on prevention schemes for carriers of the BRCA1 mutations. 3. 5382insC and C61G mutations of the BRCA1 gene are linked with high risk of breast cancer. Changes in the CHEK2 and NBS1 genes appear to be linked with a higher risk of breast cancers, particularly at young age. However, penetrance in this case is low. All patients with breast cancer should be tested for BRCA1 gene mutations because the percentage of mutations is also high in patients older than 50 years of age or without familiar aggregation of breast/ovarian cancer. 4. Polymorphic changes in the BRCA2 gene sequence previously regarded as non-pathogenic may nevertheless predispose, homozygotes in particular, to breast cancer. Apparently, the recessive character of these changes is responsible for the negative family history in most cases. The use of DNA tests is the only way to disclose increased risk of breast cancer in carriers of the 5972T/T mutation.
  相似文献   

4.
Li-Fraumeni and Li-Fraumeni-like syndrome (LFS/LFL) are clinically heterogeneous cancer predisposition syndromes characterized by diagnosis of early-onset and often multiple cancers with variable tumor patterns and incomplete penetrance. To date, the genetic modifiers described in LFS/LFL have been shown to map to either TP53 or its main negative regulator, MDM2. Additionally, all studies were focused on families with different TP53 germline mutations. Hence, in this study we explored the effect of the most studied polymorphisms of p53 pathway genes on clinical manifestations of individuals carrying the founder TP53 mutation R337H (n?=?136) and controls (n?=?186). Cancer-affected carriers had been diagnosed either with adrenocortical carcinoma (ACC, n?=?29) or breast cancer (BC, n?=?43). Allelic discrimation using TaqMan assay was used for genotyping MDM2 SNP 309 (rs2279744) as well as MDM4 (rs1563828) and USP7 (rs1529916) polymorphisms. We found significantly higher MDM2 SNP 309 GG genotype and G allele frequencies in the LFS cohort than in controls. Furthermore, median age at first diagnosis was earlier in MDM2 SNP309 GG carriers when compared to other genotypes for both cancers (ACC: age 1 vs. 2 years; BC: age 35 vs. 43 years, respectively), although not statistically different. The allelic and genotypic frequencies for all SNPs did not differ between cancer affected and unaffected carriers, neither between patients with ACC or BC. In conclusion, our results suggest that MDM2 SNP 309 may contribute to the LFL phenotype and also to an earlier age at diagnosis of ACC and BC cancer in carriers of the R337H founder mutation.  相似文献   

5.

Purpose

We aimed to establish the spectrum of BRCA1/2 mutations among the breast cancer (BC) patients from the Republic of Macedonia.

Methods

We used targeted next-generation sequencing (NGS), Sanger DNA sequencing, and multiplex ligation probe amplification analysis (MLPA) to search for point mutations and deletions/duplications involving BRCA1 and BRCA2-coding regions.

Results

We have analyzed a total of 313 BC patients, enriched for family history of cancer, early age of onset and bilateral and/or triple negative (TN) BC. A total of 26 pathogenic mutations were observed in 49 unrelated BC patients (49/313, 15.7%). BRCA2 mutations (27/49, 55.1%) were more common than BRCA1 mutations (22/49, 44.9%). We identified five novel point mutations, one in BRCA1 (c.4352_4356delA) and four in BRCA2 (c.151G>T, c.4707_4708delCA, c.7811_7814delTGTG, and c.9304_9305delG), as well as two novel deletions involving parts of the BRCA1 gene (c.81??_593+?del and c.5470??_5530+?del). The most common mutations were c.181T>G, c.5266dupC, and c.3700_3704del5 in BRCA1 and c.7879A>T, c.8317_8330del14 and c.5722_5723delCT in BRCA2 gene. Thus far, BRCA2 c.7879A>T and c.8317_8330del14 mutations have been described in several isolated cases; however, our study is the first one showing that they have a founder effect among Macedonian population. Nine recurrent mutations account for 65.3% of all of the detected mutations allowing for implementation of a fast first-step BRCA1/2 mutational screening strategy in our country.

Conclusion

This study provides a comprehensive view of known and novel BRCA1/2 mutations in BC patients from the Republic of Macedonia and contributes to the global spectrum of BRCA1/2 mutations in breast cancer.
  相似文献   

6.

Purpose of Review

The use of panel testing of multiple cancer-causing genes has allowed to find a subset of patients with harmful mutations in moderate penetrance genes. While extensive information is available regarding patients with BRCA1 and BRCA2 pathogenic variants, information regarding these less common genes and their management remains scarce. The aim of this review is to discuss penetrance, incidence, and management recommendations for PALB2, ATM, and CHEK2.

Recent Findings

NCCN guidelines now provide management recommendation for patients with pathogenic variants in these genes. In addition, more widespread testing has provided more information on penetrance and incidence. Although this is a huge step toward improving quality of care, prospective studies are still needed. We summarize the NCCN and other guidelines/suggestions for these genes and deliver our insight on the matter based on the best information we could find.

Summary

PALB2, ATM, and CHEK2 are less penetrant than BRCA1–2 and have a different spectrum, suggesting differing management. Data about incidence and penetrance along with management recommendations for these genes are provided.
  相似文献   

7.

Purpose

The BRCA1 and BRCA2 (BRCA) genes are heavily involved in mammalian cell DNA repair processes. Germline pathogenic mutations in BRCA increase the lifetime risk of developing breast and/or ovarian cancer in women. In the Arabian Peninsula, most breast and ovarian cancers are diagnosed as early-onset cases, some of which may be due to germline variants in BRCA genes. To identify the BRCA germline mutation frequency and spectrum in the Arab breast and ovarian cancers, we have sequenced the protein-coding exons of these genes.

Methods

All BRCA coding exons were sequenced using genomic DNA isolated from lymphocytes in 173 Arab breast and ovarian cancer patients by a massively parallel sequencing technology and verified by Sanger sequencing.

Results

We identified a total of 17 distinct pathogenic mutations, of which four were novel, in 28 patients; nine out of 108 breast (8.3%) and 19 out of 65 ovarian cancer (29.2%) patients. Thirteen of the 17 mutations were detected in BRCA1 and four mutations were found in BRCA2 gene. Four pathogenic BRCA1 mutations (c.1140dupG, c.4136_4137delCT, c.5095C>T, and c.5530delC) accounted for 54% of all the mutations detected in our patient cohort. Additionally, we identified a likely pathogenic BRCA1 missense variant in two of 108 breast (1.9%) and a BRCA2 missense variant in one of 65 ovarian cancer (1.5%) patients.

Conclusions

The overall frequencies of the BRCA germline mutations were 10.2% in breast and 30.7% in ovarian cancer patients. These data shed new light into the prevalence of BRCA mutations in the Arab women population.
  相似文献   

8.
BRCA1 and BRCA2 mutations confer an increased lifetime risk of breast cancer; however, the associations of microRNA (miRNA) binding site single nucleotide polymorphisms (SNPs) in 3′ untranslated region (3′-UTR) of BRCA1 and BRCA2 with breast cancer (BC) risk were rarely reported. In this case–control study (498 BC patients and 498 matched controls), three SNPs (rs8176318, rs12516 and rs15869) were selected in the 3′-UTR of BRCA1 and BRCA2 genes, which were within miRNA-binding seed regions and might have potential function to regulate the expression of BRCA1/BRCA2. Unconditional logistic regression model was used to analyze the association between three SNPs and BC risk with adjustment of reproductive factors, and Student’s t test was performed to assess relative expression of BRCA2 in human breast cancer cell lines. Multifactor dimensionality reduction method was applied to calculate gene–reproductive factors interactions. A novel finding showed that AC [odds ratio (OR) 1.524; 95% confidence interval (CI) 1.141–2.035] genotype of rs15869 in BRCA2 could increase the risk of BC and recombinant plasmid-pGenesil-1-miR-627 could negatively regulate the expression of BRCA2 in MCF-7 and MDA-MB-231 cells. Gene–reproductive factors interactions analysis revealed that rs15869 together with age at menarche and number of pregnancy could increase the risk of BC by 2.39-fold and TT genotype (OR 0.316; 95% CI 0.130–0.767) of rs8176318 had a significant association with progesterone receptor status in BC patients. Our findings suggest that the miRNA-binding SNPs in BRCA1/BRCA2 and their interaction with reproductive factors might contribute to BC risk, and miR-627 might down-regulate BRCA2 expression in MCF-7 and MDA-MB-231 cells.  相似文献   

9.

Background

Pathogenic BRCA1 founder mutations (c.4035delA, c.5266dupC) contribute to 3.77% of all consecutive primary breast cancers and 9.9% of all consecutive primary ovarian cancers. Identifying germline pathogenic gene variants in patients with primary breast and ovarian cancer could significantly impact the medical management of patients. The aim of the study was to evaluate the rate of pathogenic mutations in the 26 breast and ovarian cancer susceptibility genes in patients who meet the criteria for BRCA1/2 testing and to compare the accuracy of different selection criteria for second-line testing in a founder population.

Methods

Fifteen female probands and 1 male proband that met National Comprehensive Cancer Network (NCCN) criteria for BRCA1/2 testing were included in the study and underwent 26-gene panel testing. Fourteen probands had breast cancer, one proband had ovarian cancer, and one proband had both breast and ovarian cancer. In a 26-gene panel, the following breast and/or ovarian cancer susceptibility genes were included: ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FAM175A, MEN1, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. All patients previously tested negative for BRCA1 founder mutations.

Results

In 44% (7 out of 16) of tested probands, pathogenic mutations were identified. Six probands carried pathogenic mutations in BRCA1, and one proband carried pathogenic mutations in BRCA2. In patients, a variant of uncertain significance was found in BRCA2, RAD50, MRE11A and CDH1. The Manchester scoring system showed a high accuracy (87.5%), high sensitivity (85.7%) and high specificity (88.9%) for the prediction of pathogenic non-founder BRCA1/2 mutations.

Conclusion

A relatively high incidence of pathogenic non-founder BRCA1/2 mutations was observed in a founder population. The Manchester scoring system predicted the probability of non-founder pathogenic mutations with high accuracy.
  相似文献   

10.

Background

BRCA2 c.68-7T>A has been demonstrated to cause aberrant splicing and is possibly pathogenic. The population prevalence of the variant is 0.2%, which higher than usual for pathogenic BRCA2 variants. The pathogenicity of the variant is discussed.

Methods

The outpatient genetic clinic at The Norwegian Radium Hospital, part of Oslo University Hospital, has invited breast cancer kindreds for genetic examinations and prospective follow-up of high risk patients since 1988. We have complete files of all activities and results, and we examined the files for association between BRCA2 c.68-7T>A and breast cancer.

Results

Seventeen out of 714 (2.4%) breast cancer kindreds sequenced for BRCA2 carried the variant BRCA2 c.68-7T>A (p?<?0.0001 compared to population controls). Segregation analysis was inconclusive (likelihood ratio 0.36) for pathogenicity. Two breast cancers were prospectively observed during 134 observation years (annual incidence rate 1.5% (95% CI 0.15% to 5.4%) and one additional breast cancer was diagnosed at first (prevalence) round.

Conclusion

BRCA2 c.68-7T>A is associated with breast cancer. In the families selected due to aggregation of breast cancer, carriers of the BRCA2 c.68-7T>A variant have increased risk for breast cancer. It is, however, possible that the variant has lower penetrance than the average pathogenic BRCA2 variants, and that in the families selected for having known aggregation of breast cancer other (modifying) factors contributed to the observed results.
  相似文献   

11.
The most well recognized breast cancer susceptibility genes are BRCA1 and BRCA2. Studies in individuals carrying mutations in these genes have led to clinical care guidelines for screening and prevention. Beyond BRCA1 and BRCA2, mutations in TP53, PTEN, STK11, and CDH1 also significantly increase the risk of breast cancer. Early identification of women at increased risk of breast cancer due to specific genetic susceptibility may lead to enhanced screening and prevention strategies and potentially improved overall survival for this group of patients as has been seen with carriers of BRCA1 and BRCA2 mutations. In addition to high penetrance genes, increasing numbers of genes that confer a moderate risk of breast cancer have been identified such as CHEK2, PALB2, and ATM; however, the clinical application of these genes is much more challenging. This review will discuss both high and moderate penetrance breast cancer susceptibility genes.  相似文献   

12.

Background

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) account for the majority of hereditary breast and/or ovarian cancers. Pakistan has one of the highest rates of breast cancer incidence in Asia, where BRCA1/2 small-range mutations account for 17% of early-onset and familial breast/ovarian cancer patients. We report the first study from Pakistan evaluating the prevalence of BRCA1/2 large genomic rearrangements (LGRs) in breast and/or ovarian cancer patients who do not harbor small-range BRCA1/2 mutations.

Materials and methods

Both BRCA1/2 genes were comprehensively screened for LGRs using multiplex ligation-dependent probe amplification in 120 BRCA1/2 small-range mutations negative early-onset or familial breast/ovarian cancer patients from Pakistan (Group 1). The breakpoints were characterized by long-range PCR- and DNA-sequencing analyses. An additional cohort of 445 BRCA1/2 negative high-risk patients (Group 2) was analyzed for the presence of LGRs identified in Group 1.

Results

Three different BRCA1 LGRs were identified in Group 1 (4/120; 3.3%), two of these were novel. Exon 1–2 deletion was observed in two unrelated patients: an early-onset breast cancer patient and another bilateral breast cancer patient from a hereditary breast cancer (HBC) family. Novel exon 20–21 deletion was detected in a 29-year-old breast cancer patient from a HBC family. Another novel exon 21–24 deletion was identified in a breast-ovarian cancer patient from a hereditary breast and ovarian cancer family. The breakpoints of all deletions were characterized. Screening of the 445 patients in Group 2 for the three LGRs revealed ten additional patients harboring exon 1–2 deletion or exon 21–24 deletion (10/445; 2.2%). No BRCA2 LGRs were identified.

Conclusions

LGRs in BRCA1 are found with a considerable frequency in Pakistani breast/ovarian cancer cases. Our findings suggest that BRCA1 exons 1–2 deletion and exons 21–24 deletion should be included in the recurrent BRCA1/2 mutations panel for genetic testing of high-risk Pakistani breast/ovarian cancer patients.
  相似文献   

13.

Purpose

Although breast cancer in young women accounts for <10% of diagnoses annually, tumors in young patients exhibit more aggressive characteristics and higher mortality rates. Determination of the frequency of germline mutations in cancer predisposition genes is needed to improve the understanding of breast cancer etiology in young women.

Methods

All female patients enrolled in the Clinical Breast Cancer Project between 2001 and 2015 and diagnosed with invasive breast cancer before age 40 were included in this study. Family history was classified using the NCCN Familial Risk Assessment guidelines. Targeted sequencing of 94 cancer predisposition genes was performed using peripheral blood DNA. Variants were detected using VariantStudio and classified using ClinVar.

Results

Seven percent (141/1980) of patients were young women and 44 had a significant family history. Sequencing was completed for 118 women with genomic DNA. Pathogenic mutations were present in 27 patients: BRCA1 (n = 10), BRCA2 (n = 12), TP53 (n = 1), and CHEK2 (n = 4). Mutations classified as pathogenic were also detected in APC (n = 1) and MUTYH (n = 2). Variants of uncertain significance (VUS) were detected in an additional 17 patients in ten genes.

Discussion

Pathogenic mutations in high- and moderate-risk breast cancer genes were detected in 23% of young women with an additional 3% having pathogenic mutations in colon cancer predisposition genes. VUS were observed in 14% of women in genes such as ATM, BRCA2, CDH1, CHEK2, and PALB2. Identification of those non-genetic factors is critical to reduce the burden of breast cancer in this population.
  相似文献   

14.

Background

PALB2 (Partner and Localizer of BRCA2) was identified as a moderate-risk gene in breast and pancreatic cancers. Recently, it was reported that PALB2 carriers have a high risk of developing breast cancer, with the cumulative risk of 34 % by the age of 70.

Patients and methods

Peripheral blood samples from 155 patients at risk for hereditary breast and/or ovarian cancer were tested for BRCA1/2 and PALB2 by targeted sequencing using a next-generation sequencer. Of these 155, 146 met NCCN criteria and the remaining 9 did not.

Results

BRCA1/2 analysis was performed on 155 patients, for whom the results were reported previously (Hirotsu Y et al. Mol Genet Genomic Med, doi:10.1002/mgg3.157, 2015). Eleven patients were identified to have deleterious BRCA mutations (Hirotsu Y et al. Mol Genet Genomic Med, doi:10.1002/mgg3.157, 2015). However, none of the 155 patients were found to have deleterious PALB2 germline mutations. Missense mutations [variants of uncertain significance (VUS)] of PALB2 were found in 12 cases. In silico analyses by SIFT (Sorting Intolerant Form Tolerant) and PolyPhen2 (Polymorphism Phenotyping version 2) indicated that 2 of 12 VUS were deleterious and probably damaging.

Conclusions

This is the first report on PALB2 mutations in Japan, revealing two missense mutations as “deleterious and probably damaging” by in silico analyses, but no PALB2 premature truncation mutations were identified. The sample size is relatively small and a larger cohort study is needed in Japan.
  相似文献   

15.

Purpose

BRCA1 germline mutation is closely associated with triple-negative breast cancer. BRCA deficiency leads to impaired DNA repair and tumor development, and understanding this deficiency, in both hereditary and sporadic scenarios, is of great clinical and biological interest. Here, we investigated germline or somatic events that might lead to BRCA1 impairment in triple-negative breast cancer. We also analyzed the clinical implications associated with BRCA deficiency.

Methods

Next-generation sequencing for the BRCA1/2 genes and multiplex ligation-dependent probe amplification (MLPA) for the BRCA1 gene were performed for mutation screening. A customized bisulfite next-generation sequencing approach was used for assessing BRCA1 promoter methylation status in tumor tissue.

Results

A total of 131 triple-negative cases were assessed, and germline pathogenic variants were detected in 13.0% of all cases and in 26% of cases diagnosed in young women. Most germline pathogenic variants (88.2%) occurred in the BRCA1 gene. BRCA1 promoter hypermethylation was detected in 20.6% of tumors; none of these tumors were in BRCA1/2 pathogenic variant carriers. BRCA1 impairment by either germline or somatic events was significantly more frequent in young women (55% in those ≤ 40 years; 33% in those 41–50 years; 22% in those > 50 years of age) and associated with better overall and disease-free survival rates in this group of patients.

Conclusions

BRCA1 deficiency was recurrent in early-onset triple-negative breast cancer in Brazilian patients and associated with improved survival. With the new treatment modalities being investigated, including poly (ADP-ribose)-polymerase (PARP) inhibitor therapy, our results suggest that a significant proportion of young women with this subtype of tumor might benefit from PARP inhibitor treatment, which warrants further investigation.
  相似文献   

16.

Purpose

BRCA mutations contribute to about 20% of all hereditary breast cancers. With full-genome sequencing as the emerging standard for genetic testing, other breast cancer susceptibility genes have been identified and may collectively contribute to up to 30% of all hereditary breast cancers. We re-assessed women who had previously tested negative for a BRCA mutation when outdated techniques were used, and discuss the implications of identifying a mutation several years after initial genetic testing.

Methods

We evaluated the prevalence of mutations in 12 breast cancer susceptibility genes (including BRCA1 and BRCA2) in 190 breast cancer patients with a strong family history of breast cancer. These women had previously tested negative for mutations in the large coding exons of BRCA1 and BRCA2 using the protein truncation test (PTT) between the years of 1996 and 2013.

Results

We identified pathogenic mutations in 17 of 190 (9%) women. Six mutations were detected in BRCA1 (n = 2) and BRCA2 (n = 4). Eleven mutations were found in other breast cancer susceptibility genes including CHEK2 (n = 5), PALB2 (n = 2), BLM (n = 2), ATM (n = 1) and TP53 (n = 1).

Conclusion

Among 190 breast cancer patients with a family history of the disease, and who previously received a negative result for BRCA mutations using the PTT, 17 (9%) women were found to carry a high-risk pathogenic mutation in a breast cancer susceptibility gene. Six of these women were BRCA mutation carriers who were missed previously. These findings support the rationale for updated genetic testing in patients who tested BRCA mutation negative using outdated techniques.
  相似文献   

17.
Beyond BRCA1 and BRCA2 genes, PALB2 (Partner and localizer of BRCA2) emerges as the third breast cancer susceptibility gene due to its role in the same DNA repair pathway: homologous recombination. In most populations studied so far, PALB2 mutations are detected in 1–2 % of BRCA negative female patients. PALB2 gene contains 13 exons; exons 4 and 5 consist 65 % of the coding area. We developed a protein truncation test (PTT) for quick screening of truncating pathogenic mutations of these two large exons. Specific primers were de novo, in silico designed and the PTT-PCR products were translated in the presence of biotinylated lysine and detected colorimetrically. The assay was initially tested in 30 patients with hereditary breast cancer, negative for BRCA mutations and then, in 17 patients with the rare medullary breast cancer subtype. Small PALB2 exons were screened with high-resolution melting curve analysis (HRMA) and the large DNA rearrangements with multiplex ligation-dependent probe amplification (MLPA). Any alterations detected were verified by Sanger DNA Sequencing. The developed PTT methodology is highly specific for clinical significant mutations; positive control samples that produce truncated PALB2 peptides were correctly identified and the method was accurate when compared to DNA sequencing. We did not detect any deleterious PALB2 mutation in both groups of patients. HRMA and MLPA were also negative for all tested samples. However, our novel, fast and cost-effective PTT method for pathogenic mutation detection of the two large PALB2 exons can be applied in screening of a large number of breast cancer patients.  相似文献   

18.
In families screened for mutations in the BRCA1 or BRCA2 genes and found to have a segregating mutation the breast cancer risk for women shown not to carry the family-specific mutation might be at above “average” risk. We assessed the risk of breast cancer in a clinic based cohort of 725 female proven noncarriers in 239 BRCA1 and BRCA2 families compared with birth-matched controls from the Danish Civil Registration System. Prospective analysis showed no significantly increased risk for breast cancer in noncarriers with a hazard ratio of 0.67 [95 % confidence interval (CI) 0.32–1.42, p = 0.29] for all family members who tested negative and 0.87 (95 % CI 0.38–1.97, p = 0.73) for non-carries who were first-degree relatives of mutation carriers. Proven noncarriers from BRCA1 and BRCA2 families have no markedly increased risk for breast cancer compared to the general population, and our data do not suggest targeted breast cancer surveillance for noncarriers from BRCA1 and BRCA2 families.  相似文献   

19.
Mutations in the BRCA1 and BRCA2 genes significantly contribute to hereditary breast cancer and ovarian cancer, but the phenotypic effect from different mutations is insufficiently recognized. We used a western Danish clinic-based cohort of 299 BRCA families to study the female cancer risk in mutation carriers and their untested first-degree relatives. Founder mutations were characterized and the risk of cancer was assessed in relation to the specific mutations. In BRCA1, the cumulative cancer risk at age 70 was 35 % for breast cancer and 29 % for ovarian cancer. In BRCA2, the cumulative risk was 44 % for breast cancer and 15 % for ovarian cancer. We identified 47 distinct BRCA1 mutations and 48 distinct mutations in BRCA2. Among these, 8 founder mutations [BRCA1 c.81-?_4986+?del, c.3319G>T (p.Glu1107*), c.3874delT and c.5213G>A (p.Gly1738Glu) and BRCA2 c.6373delA, c.7008?1G>A, c.7617+1G>A and c.8474delC] were found to account for 23 % of the BRCA1 mutations and for 32 % of the BRCA2 mutations. The BRCA1 mutation c.3319G>T was, compared to other BRCA1 mutations, associated with a higher risk for ovarian cancer. In conclusion, founder mutations in BRCA1 and BRCA2 contribute to up to one-third of the families in western Denmark and among these the BRCA1 c.3319G>T mutation is potentially linked to an increased risk of ovarian cancer.  相似文献   

20.

Background

The contribution of BRCA1 and BRCA2 to the incidence of male breast cancer (MBC) in the United Kingdom is not known, and the importance of these genes in the increased risk of female breast cancer associated with a family history of breast cancer in a male first-degree relative is unclear.

Methods

We have carried out a population-based study of 94 MBC cases collected in the UK. We screened genomic DNA for mutations in BRCA1 and BRCA2 and used family history data from these cases to calculate the risk of breast cancer to female relatives of MBC cases. We also estimated the contribution of BRCA1 and BRCA2 to this risk.

Results

Nineteen cases (20%) reported a first-degree relative with breast cancer, of whom seven also had an affected second-degree relative. The breast cancer risk in female first-degree relatives was 2.4 times (95% confidence interval [CI] = 1.4–4.0) the risk in the general population. No BRCA1 mutation carriers were identified and five cases were found to carry a mutation in BRCA2. Allowing for a mutation detection sensitivity frequency of 70%, the carrier frequency for BRCA2 mutations was 8% (95% CI = 3–19). All the mutation carriers had a family history of breast, ovarian, prostate or pancreatic cancer. However, BRCA2 accounted for only 15% of the excess familial risk of breast cancer in female first-degree relatives.

Conclusion

These data suggest that other genes that confer an increased risk for both female and male breast cancer have yet to be found.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号