首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We have studied whether a nucleotide receptor mediates the effects of extracellular ATP and UTP on phosphatidylcholine metabolism in rat cultured glomerular mesangial cells. 2. ATP and UTP stimulated a biphasic 1,2-diacylglycerol (DAG) formation in [3H]-arachidonic acid-labelled mesangial cells. In contrast, in cells labelled with [3H]-myristic acid, a tracer that preferentially marks phosphatidylcholine, both nucleotides induced a delayed monophasic production of DAG with a concomitant increase in phosphatidic acid and choline formation. 3. A phospholipase D-mediated phosphatidylcholine hydrolysis was further suggested by the observation that ATP and UTP stimulate the accumulation of phosphatidylethanol, when ethanol was added to mesangial cells. 4. The rank order of potency of a series of nucleotide analogues for stimulation of phosphatidylethanol formation was UTP = ATP > ITP > ATP gamma S > beta gamma-imido-ATP = ADP > 2-methylthio-ATP = beta gamma-methylene-ATP = ADP beta S, while AMP, adenosine, CTP and GTP were inactive, indicating the presence of a nucleotide receptor. 5. Elevation of cytosolic free Ca2+ by the calcium ionophore A23187 (1 microM) or the Ca(2+)-ATPase inhibitor, thapsigargin (200 nM) slightly increased phosphatidylethanol formation. However, chelation of cytosolic Ca2+ with high concentrations of Quin 2 did not attenuate ATP- and UTP-induced phosphatidylethanol production, thus suggesting that Ca2+ is not crucially involved in agonist-stimulated phospholipase D activation. 6. The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), but not the biologically inactive 4 alpha-phorbol 12,13-didecanoate, increased phospholipase D activity in mesangial cells, suggesting that PKC may mediate nucleotide-induced phosphatidylcholine hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. We employed the perforated patch whole-cell technique to investigate the effects of ATP and other related nucleotides on membrane conductances in avian exocrine salt gland cells. 2. ATP (10 microM-1 mM) evoked an increase in maxi-K+ and Cl- conductances with a reversal potential of -35 mV. At lower concentrations of ATP (< or = 100 microM) responses were generally oscillatory with a sustained response observed at higher concentrations (> or = 200 microM). 3. Both oscillatory and sustained responses were abolished by the removal of bath Ca2+. In cells preincubated in extracellular saline containing reduced Ca2+, the application of ATP resulted in a transient increase in current. 4. As increasing concentrations of ATP (and related nucleotides) evoked a graded sequence of events with little run-down we were able to establish a rank order of potency in single cells. The order of potency of ATP analogues and agonists of the various P2-receptor subtypes was UTP > ATP = 2-methylthio-ATP > ADP. Adenosine (1 microM-1 mM), AMP (1 microM-1 mM), alpha,beta-methylene-ATP (1 microM-1 mM) and beta,gamma-methylene-ATP (1 microM-1 mM) were without effect. 5. In conclusion, although unable to preclude a role for a P2Y-receptor, our results suggest that ATP binds to a P2U-receptor increasing [Ca2+]i and subsequently activating Ca(2+)-sensitive K+ and Cl- currents.  相似文献   

3.
1. Prejunctional purinoceptors modulating the release of noradrenaline were compared in mouse and rat vas deferens. Tissue slices were preincubated with [3H]-noradrenaline and then superfused and stimulated electrically, in most experiments by trains of 60 pulses, 1 Hz. 2. In mouse vas deferens, 2-chloroadenosine (IC50 0.24 microM), beta,gamma-methylene-ATP (IC50 3.8 microM), alpha,beta-methylene-ATP (IC50 2.9 microM) and 2-methylthio-ATP (only 30 microM tested) reduced the evoked overflow of tritium. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), 10 nM, antagonized the effect of 2-chloro-adenosine (apparent pKB 10.2) as well as of beta,gamma-methylene-ATP (apparent pKB 9.6) and alpha,beta-methylene-ATP. Suramin, 300 microM, attenuated the effect of 2-chloroadenosine at best very slightly, antagonized the effect of beta,gamma-methylene-ATP (apparent pKB 4.5) and, when combined with DPCPX 10 nM, caused a further marked shift to the right of the concentration-response curve of beta,gamma-methylene-ATP beyond the shift produced by DPCPX alone. 3. In rat vas deferens, 2-chloroadenosine (IC50 0.20 microM), beta,gamma-methylene-ATP (IC50 4.8 microM), alpha,beta-methylene-ATP (IC50 3.0 microM) and 2-methylthio-ATP (only 30 microM tested) also reduced the evoked overflow of tritium. DPCPX, 10 nM, antagonized the effect of 2-chloroadenosine (apparent pKB 9.7) as well as of beta,gamma-methylene-ATP (apparent pKB 9.6) and alpha,beta-methylene-ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. P2-purinoceptors have not been characterized in human pulmonary vessels and we therefore examined the effects of adenosine 5'-triphosphate (ATP) and its analogues on human isolated small pulmonary arteries (SPA) in vitro. 2. Contractile responses were induced by all of the analogues, with the rank order of potency alpha,beta-methylene-ATP (alpha,beta-meATP) = beta,gamma-methylene-ATP (beta,gamma-meATP) greater than ATP greater than 2-methylthio-ATP, indicating the presence of vasoconstrictor P2x receptors. 3. In precontracted SPA, vasodilator responses were produced by all of the analogues. The rank order of potency for the analogues causing vasodilator responses was: 2-methylthio-ATP much greater than ATP much greater than beta,gamma-meATP = alpha,beta-meATP, indicating a vasodilator P2y receptor. 4. Removal of endothelial cells had no significant effect on either the contractile or relaxant responses to any of the analogues. 5. After pretreatment of the endothelium-denuded vessels with alpha,beta-meATP (to desensitize P2x receptors), the contractile response to beta,gamma-meATP (a potent P2x receptor agonist) was abolished. 6. We conclude that both P2x- and P2y-purinoceptors are present in human SPA and that both receptors reside on the vascular smooth muscle.  相似文献   

5.
Vascular endothelial cells from different parts of the circulation are known to show different functional responses, presumably corresponding to physiological roles. Previous studies have shown that ATP acts on P2 purinergic receptors of endothelial cells of major blood vessels, stimulating the formation of inositol phosphates. Here we have compared the action of ATP and congeners acting on endothelial cells of bovine thoracic aorta with cells derived from the microvasculature of bovine adrenal medulla. With measurement of total inositol phosphates, cells from the aorta showed a rank order of agonist potency of 2-methylthio-ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP greater than ATP greater than beta, gamma-imido-ATP greater than beta, gamma-methylene-ATP, consistent with action at receptors of the P2Y subtype. However, with adrenal cells the rank order of potency was ATP gamma S greater than ATP greater than beta, gamma-imido-ATP greater than ADP greater than beta, gamma-methylene-ATP = 2-methylthio-ATP. This profile is not consistent with either P2X or P2Y receptors. When the nature of this inositol phosphate response was analyzed with anion exchange chromatography, it was found that the aortic cells showed an inositol trisphosphate stimulation that peaked within a few seconds and rapidly declined, whereas the response of the adrenal medulla cells continued to rise through 5 min. Analysis of isomers of inositol phosphates revealed a different pattern of metabolism between the two cell types, which may account for the different time course of response. With adrenal cells, ATP at low micromolar concentrations caused a dose-dependent increase in levels of cyclic AMP and had a greater than additive effect on cyclic AMP levels when combined with submaximal stimulation by prostaglandin E2. These results suggest the presence of a P2Y receptor on aortic endothelial cells, with an 'atypical' purinocepter, i.e., neither P2X nor P2Y, on adrenal cells. Furthermore, they show that activation of P2 receptors on the two cell types has different functional consequences.  相似文献   

6.
The metabolism of adenine nucleotides and of their analogues by ecto-enzymes in the innervated frog sartorius muscle was investigated with HPLC. The breakdown of beta, gamma-methylene-ATP was also evaluated by studying the ability of the adenosine uptake inhibitor, dipyridamole, and of the adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), to modify the effect of beta, gamma-methylene-ATP on nerve-evoked twitches. ATP-gamma-S at low (10 microM) but not at high (> or = 100 microM) concentrations was quickly metabolised into a compound with a higher negative charge. L-ATP, homo-ATP and 2-methylthio-ATP were metabolised into compounds with a lower negative charge. Beta-gamma-Imido-ATP and gamma-anilino-ATP were only metabolised slightly. As determined by HPLC, beta, gamma-methylene-ATP was not metabolised. In contrast, this ATP analogue inhibited nerve-evoked twitch responses, an effect which was potentiated by dipyridamole and antagonised by DPCPX. Alpha, beta-Methylene-ATP was dephosphorylated into alpha, beta-methylene-ADP, which was virtually resistant to metabolism in the absence of ATP. In the presence of ATP, alpha, beta-methylene-ADP was transiently phosphorylated into alpha, beta-methylene-ATP. Formation of ATP from ADP was observed even in the absence of an exogenous phosphate donor, and was prevented by the adenylate kinase inhibitor, P1P5-di-(adenosine-5')pentaphosphate (AP5A). AP5A caused only partial inhibition of AMP formation from ADP. The results suggest that some ATP analogues with substitutions in the gamma-phosphate, such as ATP-gamma-S and beta, gamma-methylene-ATP, are metabolised in the innervated frog sartorius muscle. The ADP analogue, alpha, beta-methylene-ADP, might be a substrate for an ecto-nucleoside diphosphate kinase. ADP, besides being dephosphorylated, is also a substrate for an ecto-adenylate kinase in innervated frog sartorius muscle.  相似文献   

7.
1. The effect of adenosine triphosphate (ATP) and its stable analogues, alpha, beta-methylene-ATP and beta, gamma-methylene-ATP, on the efferent function of capsaicin-sensitive non-adrenergic, non-cholinergic (NANC) nerves was tested in guinea-pig isolated atria. 2. Transmural nerve stimulation of atria isolated from reserpine-pretreated guinea-pigs, in the presence of 1 microM atropine and 0.3 microM CGP 20712A, induced a transient positive inotropic effect attributable to calcitonin gene-related peptide (CGRP) release from NANC nerve endings. 3. ATP (1-30 microM) concentration-dependently reduced the cardiac response to transmural nerve stimulation, without affecting the inotropic response to 10 nM exogenous CGRP. The inhibitory effect of ATP was competitively antagonized by the P1-purinoceptor antagonist, 8-phenyltheophylline (8-PT, 1 microM), but was unaffected by the P2-purinoceptor antagonist, suramin (100 microM). 4. beta, gamma-methylene-ATP in the same concentration range as ATP, inhibited the cardiac response to transmural nerve stimulation. The inhibitory effect of beta, gamma-methylene ATP was antagonized by 1 microM 8-PT. The desensitizing agonist for P2-purinoceptors, alpha, beta-methylene ATP did not induce any inhibitory effect either on the cardiac response to transmural nerve stimulation or on the inhibitory effect curve for ATP. 5. The inhibitory effect of ATP on the NANC neurotransmission was inconsistently modified in the presence of 10 microM alpha, beta-methylene-adenosine diphosphate, an inhibitor of the 5'-ectonucleotidases. 6. These results demonstrate that ATP modulates the efferent function of cardiac NANC nerve endings through prejunctional inhibitory receptors belonging to the P1 type.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. The effects of extracellular adenosine 5'-triphosphate ([ATP]zero) on the L-type Ca2+ channel currents in guinea-pig single sinoatrial nodal (SAN) cells, isolated by enzymatic dissociation, were investigated by use of whole-cell patch-clamp techniques. 2. The application of [ATP]zero (2 microM-1 mM) produced an inhibitory effect on the L-type Ca2+ channel current peak amplitude (10 mM Ba2+ as charge carrier) in a concentration-dependent and reversible manner with an IC50 of 100 microM and a Hill coefficient of 1.83. 3. The presence of the adenosine receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.1 microM) and 8-phenyltheophylline (10 microM) did not affect the [ATP]zero-induced inhibition of the Ca2+ channel currents. Adenosine (100 microM) had little effect on the basal Ca2+ channel currents. Adenosine 500 microM, caused 23% inhibition of the Ca2+ channel current, which was abolished by 0.1 microM DPCPX. 4. The presence of the P2-purinoceptor antagonists, suramin (1, 10 and 100 microM), reactive blue 2 (1 and 10 microM) and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 50 and 100 microM) failed to affect the inhibitory action of [ATP]zero on Ca2+ channel currents. 5. The relative rank order of potency of different nucleotides and nucleosides, at a concentration of 100 microM, on the inhibition of the Ca2+ channel currents is as follows: adenosine 5'-triphosphate (ATP) = alpha,beta-methylene-ATP (alpha,beta MeATP) > > 2-methylthioATP (2-MeSATP) > or = adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) > > uridine 5'-triphosphate (UTP) = adenosine 5'-diphosphate (ADP) > adenosine 5'-monophosphate (AMP) > or = adenosine. 6. These results suggest that [ATP]zero may play an important role in the heart beat by inhibiting the L-type Ca2+ channel currents in single SAN cells. This inhibitory effect is not due to the formation of adenosine resulting from the enzymatic degradation of [ATP]zero. Based on the relative order of inhibitory potency of different nucleotides and nucleosides on the L-type Ca2+ channel currents and the ineffectiveness of the purinoceptor antagonists tested, a novel type of purinoceptor may be involved.  相似文献   

9.
1. Whole-cell and outside-out patch clamp recordings were used to characterize the physiological and pharmacological properties of the P2x-purinoceptors of myenteric neurones from the guinea-pig ileum. 2. Adenosine 5'-triphosphate (ATP) and analogues (1-3000 microM) evoked a rapid inward current in > 90% of all recorded neurones. The reversal potential of this current was dependent on the extracellular sodium concentration, at +14 +/- 1.9, 0 +/- 1.6 and -12 +/- 1 mV for 166, 83 and 42 mM of sodium, respectively. The fast activation and inactivation of this current occurred even when guanosine 5'-triphosphate (GTP) was omitted from the pipette solution or substituted with an equimolar concentration of guanosine 5'-o-[2-thiotriphosphate] (GTP-gamma-S). Single channel currents were observed when these outside-out membrane patches were exposed to ATP (10-30 microM). These channels have a unitary conductance of about 17 picosiemens. 3. The rank-order of potency of the agonists used to induce the whole-cell currents was: ATP-gamma-S = ATP = 2-methylthio-ATP (2-Me-S-ATP) > > alpha, beta-methylene ATP = beta, gamma-methylene ATP; adenosine and uridine 5'-triphosphate (UTP) (up to 1 mM) were inactive. 4. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (1-30 microM) antagonized the effects of ATP (1 mM) with an IC50 of 4 microM. alpha, beta-Methylene ATP (100 microM) did not affect the ATP (30 microM)-induced current. Cibacron Blue 3GA increased the ATP activated cationic current whereas Basilen Blue E-3G had a very weak antagonistic effect (IC50 > or = 3 mM). Suramin potentiated the currents induced by ATP through a mechanism that was independent of its inhibitory effect on ectonucleotidase activity, as suramin also potentiated the effect of alpha, beta-methylene ATP (an ATP analogue that is resistant to nucleotidases). 5. In conclusion, the myenteric P2x-purinoceptor shares some properties with other purinoceptors in particular with the P2x4- and P2x6-purinoceptors. This receptor has also some unusual pharmacological properties suggesting that myenteric neurones express a novel subtype of P2x-purinoceptors. The properties of this receptor, however, might be a result of the combination of two or more of the homomeric purinoceptors so far characterized.  相似文献   

10.
1. The effects of the P2-purinoceptor agonists, adenosine 5'-triphosphate (ATP), alpha, beta-methylene ATP (alpha, beta-MeATP), beta, gamma-methylene ATP (beta, gamma-MeATP), L-beta, gamma-methylene ATP (L-beta, gamma-MeATP), adenosine-5'-O-(2-thiodiphosphate) (ADP beta S), and 2-methylthio ATP (2-MeSATP) were investigated on the isometric tension of the rat anococcygeus muscle. 2. Non-cumulative additions of ATP (100-1500 microM), alpha, beta-MeATP (1-300 microM), beta, gamma-MeATP (10-300 microM), L-beta, gamma-MeATP (3-100 microM) and ADP beta S (1-100 microM) produced concentration-dependent contractions, whereas 2-MeSATP (1-100 microM) had no effect. The rank order of potency was alpha, beta-MeATP > L-beta, gamma-MeATP > or = ADP beta S > beta, gamma-MeATP > > ATP > 2-MeSATP. 3. Contractions to cumulative additions of ATP, alpha, beta-MeATP, beta, gamma-MeATP and L-beta, gamma-MeATP were subject to desensitization whilst those to ADP beta S were unaffected. 4. Contractions to ATP, alpha, beta-MeATP, beta, gamma-MeATP and ADP beta S were abolished by the non-selective P2X/. P2Y-purinoceptor antagonist, suramin (100 microM). In contrast, contractions to ATP, alpha, beta-MeATP and beta, gamma-MeATP were not affected by the non-selective P1-purinoceptor antagonist 8-(p-sulphophenyl)-theophylline (8SPT, 30 microM). Blockade of P2X-purinoceptors with the selective P2X-purinoceptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 microM) or desensitization with L-beta, gamma-MeATP (10 microM) abolished contractions to alpha, beta-MeATP, but enhanced those to ADP beta S. The P2Y-purinoceptor antagonist, reactive blue 2 (RB2, 100 microM) enhanced contractions to ATP and alpha, beta-MeATP but abolished those to ADP beta S. 5. Simultaneous addition of alpha, beta-MeATP and ADP beta S produced an additive contraction. 6. The findings suggest that in the rat anococcygeus, smooth muscle cells are endowed with two distinct P2-purinoceptors which subserve contractions: a P2X-purinoceptor activated by ATP and its analogues, and another type of P2-purinoceptor activated by ADP beta S.  相似文献   

11.
1. The effects of pyrimidines and purines on the d.c. potential of the rat isolated superior cervical ganglion (SCG) have been examined by a grease-gap technique to determine the structure-activity requirements of the receptor activated by pyrimidines, i.e. a pyrimidinoceptor. 2. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl (ZTP), the pyrimidines, cytidine 5'-triphosphate (CTP), uridine 5'-triphosphate (UTP) and thymidine 5'-triphosphate (TTP) and the purines, adenosine 5'-triphosphate (ATP; in the presence of an A1-purinoceptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (1 microM)), adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), guanosine 5'-triphosphate (GTP), inosine 5'-triphosphate (1TP) depolarized ganglia in a concentration-dependent manner. The relative order of ZTP and purine 5'-triphosphates in depolarizing ganglia was ZTP > or = ATP gamma S > > ATP > or = ITP = GTP, and for the pyrimidine 5'-triphosphates UTP > TTP > or = CTP. Depolarizations evoked by ATP gamma S were followed by concentration-dependent hyperpolarizations at 100 and 1000 microM. 3. At concentrations of between 0.1 microM and 1 mM, uridine 5'-diphosphate (UDP), uridine 5'-diphosphoglucose (UDPG) and uridine 5'-diphosphoglucuronic acid (UDPGA) evoked significant and concentration-dependent depolarizations, whereas uridine 5'-monophosphate (UMP), uridine and uracil were inactive or produced small (< 45 microV) depolarizations. The relative order of potency of uridine analogues in depolarizing ganglia was UDP > or = UTP > UDPG > UDPGA > > uracil > or = UMP = pseudouridine > or = uridine. At 3 and 10 mM, uridine produced concentration-dependent hyperpolarizations. Nikkomycin Z, a nucleoside resembling UTP (viz. the triphosphate chain at the 5'-position on the ribose moiety being replaced by a peptide), was inactive between 1 microM and 1 mM. Generally, a concentration of 10 mM was required before thymidine, 6-azathymine, 6-azauracil or 6-azauridine depolarized ganglia. 4. Suramin (300 microM), a P2-purinoceptor antagonist, significantly depressed depolarizations evoked by alpha, beta-methylene-ATP (alpha, beta-MeATP; 100 microM), ATP gamma S (100 microM), CTP (1 mM), GTP (1 mM), ZTP (30 microM) and ATP (300 microM) in the presence of DPCPX (1 microM). Suramin reversed a small depolarization evoked by UMP (1 mM) into a small hyperpolarization. In contrast depolarizations evoked by UDP, UTP, UDPG (all at 100 microM) and TTP (300 microM) were unaltered or enhanced by suramin. 5. It is concluded that the rat SCG contains distinct nucleotide receptors including a P2-purinoceptor (activated by alpha, beta-MeATP, ATP, GTP, ITP and ZTP) and a pyrimidinoceptor (activated by UTP, UDP, UDPG, UDPGA and TTP). The pyrimidinoceptor on rat SCG neurones had specific structure activity requirements with the di- and triphosphates of uridine being the most effective depolarizing agonists examined.  相似文献   

12.
1. Membrane current responses to ATP in enzymically-dispersed single smooth muscle cells from the chicken rectum were investigated by the whole-cell voltage clamp technique. 2. In cells dialysed with a KCl-rich solution under voltage clamp at a holding potential of -40 mV, ATP (10 microM) produced an inward current followed by an outward current. When the holding potential was changed to 0 mV and -80 mV, the biphasic current response to ATP was converted to an outward current alone and an inward current alone, respectively. 3. External application of tetraethylammonium (TEA, 5 mM), intracellular dialysis with a CsCl-rich solution, or inclusion of EGTA (10 mM) in the pipette abolished the outward current response to ATP. 4. Neither depletion of Ca2+ store with caffeine (10 mM) nor block of voltage-gated Ca2+ channels with nifedipine (10 microM) affected the biphasic current response to ATP. After removal of the extracellular Ca2+ the outward current response to ATP was abolished. 5. alpha,beta-methylene ATP (100 microM) elicited a current similar to the ATP-induced current. In the presence of alpha,beta-methylene ATP (100 microM), application of ATP (100 microM) was without effect. 6. In CsCl-filled cells, ATP analogues elicited an inward current and the order of potency was ATP not equal to alpha, beta-methylene ATP > ADP >> AMP. 7. Inclusion of GTP gamma S (0.2 mM) or GDP beta S (2 mM) in the pipette did not affect the ATP-induced inward current in CsCl-filled cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. Using a grease-gap technique, we have investigated the effects of purine and pyrimidine nucleotides on the d.c. potential of the rat isolated superior cervical ganglion (SCG). 2. Of the purines tested, adenosine, adenosine 5'-triphosphate (ATP), beta,gamma-methylene-adenosine 5'-triphosphate (beta,gamma-MeATP) at up to 300 microM produced concentration-dependent hyperpolarizations, whereas 2-methyl-thio-ATP (2-Me.S.ATP) and alpha,beta-methylene-ATP (alpha,beta-MeATP) depolarized ganglia. Of the pyrimidines tested, uridine 5'-triphosphate (UTP) produced concentration-dependent depolarizations and cytosine 5'-triphosphate (CTP) at 1000 microM produced considerably smaller but significant depolarizations. In contrast uridine 5'-monophosphate (UMP) at 1000 microM hyperpolarized ganglia. The relative order of potency of purines and pyrimidines to depolarize ganglia was: UTP > alpha,beta-MeATP >> CTP > 2-Me.S.ATP and to hyperpolarize ganglia was: adenosine = beta,gamma-MeATP > ATP > UMP. 3. The ability of purines and pyrimidines to alter the depolarizing response caused by muscarine and of purines to alter depolarization induced by gamma-aminobutyric acid (GABA) was determined. The relative order of potency of nucleotides in depressing submaximal depolarization caused by muscarine (100 nM) was: adenosine = ATP > beta,gamma-MeATP whereas 2-Me.S.ATP, alpha,beta-MeATP and UTP did not significantly alter depolarization caused by muscarine. At 100 microM beta,gamma-MeATP and adenosine but not ATP potentiated GABA-induced depolarizations. 4. Hyperpolarizations caused by adenosine, ATP, beta,gamma-MeATP and UMP and depolarizations caused by alpha,beta-MeATP were enhanced in medium containing reduced concentrations of calcium (0.1 mM) and potassium (2 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. Extracellular ATP and UTP have been reported to activate a nucleotide receptor that mediates phosphoinositide and phosphatidylcholine hydrolysis by phospholipases C and D, respectively. Here we report that ATP and UTP potently stimulate mesangial cell proliferation. 2. Both nucleotides stimulate phosphorylation and activation of mitogen-activated protein kinase and a biphasic phosphorylation of the up-stream mitogen-activated protein kinase kinase. 3. When added at 100 microM, ATP gamma S, UTP and ATP were the most potent activators of mitogen-activated protein kinase. beta gamma-imido-ATP was somewhat less active and ADP and 2-methylthio-ATP caused a weak induction of enzyme activity. Activation of mitogen-activated protein kinase by both ATP and UTP is dose-dependently attenuated by the P2-receptor antagonist, suramin. 4. The protein kinase C activator 12-0-tetradecanoylphorbol 13-acetate, but not the biologically inactive 4 alpha-phorbol 12,13-didecanoate, increased mitogen-activated protein kinase activity in mesangial cells, suggesting that protein kinase C may mediate nucleotide-induced stimulation of mitogen-activated protein kinase. 5. Down-regulation of protein kinase C -alpha and -delta isoenzymes by 4 h or 8 h treatment with phorbol ester partially inhibited ATP- and UTP-triggered mitogen-activated protein kinase activation. Moreover, a 24 h treatment of mesangial cells with phorbol ester, a regimen that also causes depletion of protein kinase C-epsilon did not further reduce the level of mitogen-activated protein kinase stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. Some postganglionic sympathetic axons possess P2Y-like P2-purinoceptors which, when activated, decrease the release of noradrenaline. We examined the question of whether such receptors also occur at the noradrenergic axons in the rat brain cortex. Slices of the brain cortex were preincubated with [3H]-noradrenaline, then superfused with medium containing desipramine (1 microM) and stimulated electrically, in most experiments by trains of 4 pulses/100 Hz. 2. The selective adenosine A1-receptor agonist, N6-cyclopentyl-adenosine (CPA; 0.03-3 microM) as well as the non-subtype-selective agonist 5'-N-ethylcarboxamido-adenosine (NECA; 0.3-3 microM) reduced the evoked overflow of tritium, whereas the adenosine A2a-receptor agonist, 2-p-(2-carbonylethyl)-phenethylamino-5'-N-ethylcarboxamido-a denosine (CGS-21680; 0.003-30 microM) and the adenosine A3-receptor agonist N6-2-(4-aminophenyl)ethyl-adenosine (APNEA; 0.03-3 microM) caused no change. Of the nucleotides tested, ATP (30-300 microM), adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S; 30-300 microM), adenosine-5'-O-(2-thiodiphosphate) (ADP beta S; 30-300 microM), P1,P4-di(adenosine-5')-tetraphosphate (Ap4A; 30-300 microM) and the preferential P2Y-purinoceptor agonist, 2-methylthio-ATP (300 microM) decreased the evoked overflow of tritium. The P2X-purinoceptor agonist, alpha,beta-methylene-ATP (3-300 microM) caused no change. 3. The A1-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 nM) attenuated the effects of the nucleosides CPA (apparent pKB value 9.8) and NECA as well as of the nucleotides ATP (apparent pKB 9.3), ATP gamma S (apparent pKB 9.2) and ADP beta S (apparent pKB 8.7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Adenosine 5''-triphosphate (ATP) and some of its analogues contract the guinea-pig vas deferens, acting via receptors which have been classified as P2X-purinoceptors. We have recently shown, however, that the effects of ATP are enhanced, rather than inhibited, by the non-selective P2 antagonist, suramin, and that this enhancement could not easily be explained in terms of inhibition by suramin of the breakdown of ATP. We therefore investigated the effects of suramin on contractions induced by ATP analogues, to define the structure-activity relationships of the suramin-resistant response. 2. In the absence of suramin, the order of potency for ATP analogues was adenosine 5''-(alpha,beta-methylene)triphosphonate (AMPCPP) = P1,P5-diadenosine pentaphosphate (Ap5A) = adenosine 5''-tetraphosphate (Ap4) > adenosine 5''-O-(3-thiotriphosphate) (ATP gamma S) = adenylyl 5''-(beta,gamma-methylene) diphosphonate (AMPPCP) > P1,P5-diadenosine tetraphosphate (Ap4A) > adenosine 5''-O-(2- thiodiphosphate) (ADP beta S) > 2-methylthioadenosine 5''-triphosphate (MeSATP) > or = ATP > adenosine 5''-diphosphate (ADP). This is generally in agreement with previously reported structure-activity relationships in this tissue. 3. In the presence of suramin (1 mM), responses to Ap5A, Ap4A, AMPPCP, ADP beta S and ADP were abolished or greatly reduced, and contractions induced by AMPCPP, Ap4 and ATP gamma S were inhibited. Contractions induced by MeSATP however, like those induced by ATP itself, were not reduced, but at concentrations above 100 microM were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. We have studied both the electrophysiological and contractile effects of the purine nucleotide, adenosine-5'-triphosphate (ATP), as well as a number of its structural analogues as agonists at P2X purinoceptors in the rat vas deferens in vitro. 2. Electrophysiological effects were investigated by a whole cell voltage clamp technique (holding potential-70 mV) with fast flow concentration-clamp applications of agonists in single isolated smooth muscle cells. ATP, 2-methylthio adenosine-5'-triphosphate (2-MeSATP) and alpha,beta methylene adenosine-5'-triphosphate (alpha,beta-meATP) all evoked inward currents over a similar concentration range (0.3-10 microM), being approximately equipotent with similar concentrations for threshold effects (0.3 microM). ADP (10 microM) also evoked a rapid current of similar peak amplitude to that seen with ATP (10 microM). 3. alpha,beta-meATP was the most potent agonist in producing concentrations of the rat vas deferens whole tissue preparation, with a threshold concentration equal to that in the electrophysiological studies (0.3 microM). However, ATP and 2-MeSATP were at least ten times less potent in studies measuring contraction than in the electrophysiological studies. Furthermore, their concentration-effect curves were shallow with smaller maximal responses than could be achieved with alpha,beta-meATP. ADP, AMP and adenosine were inactive at concentrations up to 1 mM. The rank order of agonist potencies observed for contraction was alpha,beta-meATP >> ATP = 2-MeSATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We examined the effects of adenosine 5'-triphosphate (ATP) and its analogues administered intracerebroventricularly on nociceptive thresholds in rats. Intracerebroventricular (i.c.v.) administration of ATP (10 and 100 nmol/rat), alpha,beta-methylene-ATP (1-30 nmol/rat) and 2', 3'-O-(4-benzoylbenzoyl)-ATP (1-30 nmol/rat) dose-dependently elevated the mechanical nociceptive threshold in the paw pressure test. These antinociceptive effects were rapid and short-lasting, peaking at 5 min and disappearing by 20 min after the administration. However, i.c.v. administration of beta,gamma-methylene-ATP (1-30 nmol/rat) and UTP (10 and 100 nmol/rat) had no significant effects on the mechanical nociceptive threshold. In other tests, i.c.v. administration of alpha,beta-methylene-ATP (10 and 30 nmol/rat) prolonged the thermal nociceptive latency in the hot plate test, but only a higher dose (30 nmol/rat) of alpha,beta-methylene-ATP prolonged the latency in the tail flick test. alpha,beta-Methylene-ATP produced no motor deficit in the inclined plane test. These results suggest that P2X purinoceptors play an inhibitory role in nociception at the supraspinal level.  相似文献   

19.
1. Purinoceptor responses were analyzed in B10 cells, a clonal population of rat brain capillary endothelial cells. 2. B10 cells lack P2U receptors as evidenced by the lack of UTP responses and the failure to amplify P2U-related sequences by polymerase chain reaction. 3. B10 cells responded to adenine nucleotides by large increases in [Ca2+]i. Half maximum effective concentrations were 2-methylthio-ATP: 180 nM > 2-chloro-ATP: 310 nM = ADP: 330 nM > adenosine 5'-O-(3-thiotrisphosphate): 2.3 microM = ATP: 2.7 microM. The maximum response to ATP was only 55% of that to ADP while that to ATP derivatives was 75%. 4. The actions of adenine nucleotides were not associated with a measurable activation of phospholipase C. 5. Cross desensitizations of the actions of ADP and ATP were observed. 6. In additivity experiments, ADP superposed its action on top of that of ATP and ATP partially inhibited the action of ADP. 7. It is concluded that ATP acts as a partial agonist of the P2Y-like receptor of brain capillary endothelial cells.  相似文献   

20.
1. Increasing concentrations of ATP (0.5 microM-300 microM) produced a biphasic increase in intracellular calcium concentration [Ca]i in rat parotid acinar cells, reflecting two distinct Cai responses to extracellular ATP. 2. In the absence of Mg2+ (with 3 mM CaCl2 in the buffer solution), the more sensitive response was maximal at 3-5 microM and was not further increased by 30 microM ATP. This response to ATP was not well maintained and was blocked by ADP (0.5 mM). A second, much larger increase in Cai was observed on addition of 300 microM ATP. This larger effect, which we have described previously, appears to be mediated by ATP4-, and was selectively reversed by 4,4'-di-isothiocyanato-dihydrostilbene-2,2'-disulphonate as well as by high concentrations of alpha,beta-methylene ATP. 3. Among ATP analogues, only the putative P2Z agonist, 3'-0-(4-benzoyl)benzoyl-ATP distinguished between the two responses. This analogue was at least 10 fold more potent than ATP in stimulating the ATP(4-)-response, but did not evoke the more sensitive response. The agonist potency series for both responses to ATP was identical for other analogues examined (ATP > ATP gamma S = 2-methylthio ATP (a P2y-selective agonist) >> ADP, ITP and alpha,beta-methylene ATP (a P2x-selective agonist)). 4. Although the effect of ATP4- could best be characterized as a P2z-type purinoceptor response, this effect was strongly and selectively blocked by reactive blue 2, a putative P2y-purinoceptor antagonist. Reactive blue 2 may bind to and block P2z purinoceptors since [gamma 32P]-ATP binding to parotid cells was inhibited by this compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号