首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of cholinergic neurons in the midbrain and pons which project directly to the thalamus was investigated in the rat using a procedure which allows the simultaneous detection of retrogradely transported horseradish peroxidase (HRP) and immunohistochemical demonstration of choline acetyltransferase (ChAT) in the same neurons. HRP injections were placed in the dorsal half of the anterior third of the thalamus on one side which included the anteroventral nucleus as well as portions of the rostral intralaminar and reticular nuclei. These thalamic nuclei showed the highest density of immunohistochemically detectable cholinergic fibers. Neurons containing both HRP and ChAT, which represented cholinergic neurons projecting directly to the thalamus, were found in the midbrain and pons in the lateral tegmental reticular formation, parabrachial region and lateral dorsal tegmental nucleus. Ipsilateral to the injection site over 91% of the HRP labeled neurons in all of these regions were cholinergic, while an average of 60% of the cholinergic neurons had transported HRP. Contralateral to the injection site 5-6% of the cholinergic neurons in these regions were also retrogradely labeled. These findings demonstrate direct cholinergic projections to the thalamus from neurons in several regions in the tegmentum and suggest that tegmental projections to the thalamus are predominantly cholinergic.  相似文献   

2.
The basal forebrain can be considered to be a rostral extension of the ascending reticular activating system. A large number of neurons in the basal forebrain have been shown to display higher firing rates when low-voltage fast activity is present in the cortical EEG as opposed to states characterized by large slow waves in both unanaesthetized and anaesthetized animals. However, a smaller number of cells with increased discharge rate during slow waves was also observed in most of these studies. While it is likely that these two types of neurons have opposite roles in the regulation of cortical activation, it is not known how they respond to inputs from the brainstem or the periphery. In the present study, extracellular recordings were made in the basal forebrain of urethane-anaesthetized rats. A total of 52 neurons were studied in which the firing rate was significantly higher during fast cortical EEG waves (F-cells), and 14 neurons in which activity was significantly greater during slow waves (S-cells). The two cell types responded differently to stimulation of the pedunculopontine tegmental nucleus (PPT) and dorsal raphe nucleus (DRN) with short (0.5–1 s) trains of pulses and to noxious sensory stimuli (tail pinch). These stimulations excited most F-cells (80–96%) and inhibited the majority of S-cells (55–67%). In the few F-cells that were inhibited by stimulation, the response varied with the background firing rate of the cell: the higher the firing rate at the time of stimulation, the higher the probability of observing an inhibitory response. In contrast, single electrical pulses delivered to the PPT and DRN excited the majority (72%) of both F- and S-cells. Previous in vitro studies have shown that the application of acetylcholine or serotonin has predominantly inhibitory effects on basal forebrain cholinergic neurons. The predominantly excitatory effect of noxious, PPT and DRN stimulation on F-cells therefore suggests that glutamatergic or other excitatory afferents play a more dominant role in regulating basal forebrain neurons. We have previously shown that F-cells are more prevalent than S-cells. In combination, these findings suggest that basal forebrain neurons, and F-cells in particular, are important in mediating the ascending excitatory drive from the brainstem to the cerebral cortex.  相似文献   

3.
Basal forebrain cholinergic neurons project to the hippocampus and cerebral cortex where they play an important role in cortical activation, attention, and memory. These neurons have been shown to express functional neurotensin receptors and to receive a dense neurotensinergic innervation. In the present study, we investigated the origin of this innervation by combining retrograde transport of cholera toxin with immunohistochemical detection of neurotensin. After injection of cholera toxin in the anterior substantia innominata and diagonal band of Broca, retrogradely labelled cells were widely distributed throughout forebrain limbic structures. Only a small proportion of these cells, located (by decreasing order of frequency) in the lateral septum, medial preoptic area, rostral hypothalamus, nucleus accumbens, and rostral basal forebrain, were dually labelled for neurotensin. After injection of cholera toxin in the posterior substantia innominata and magnocellular preoptic nucleus, retrogradely labelled cells were detected throughout the limbic forebrain and ponto-mesencephalic tegmentum. Here again, only a small proportion of these cells, located (by decreasing order of frequency) in the nucleus accumbens, lateral septum, rostral basal forebrain, hypothalamus, bed nucleus of the stria terminalis, supramammilliary nucleus, ventral tegmental area, and raphe complex co-localized neurotensin. In view of the burst generating properties of neurotensin on basal forebrain cholinergic neurons, our results suggest that neurotensin projections may be part of the septo-hippocampo-septal loop regulating hippocampal theta activity. More caudally, neurotensin axons originating from the lateral hypothalamus and pontomesencephalic tegmentum may contribute to the contingent of ascending reticular formation fibers involved in the regulation of the sleep-wake cycle. J. Comp. Neurol. 391:30–41, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The distribution of presumptive glutamatergic and/or aspartatergic neurons retrogradely labeled following injections of [3H]-D-aspartate into the magnocellular basal forebrain of the rat was compared with the distribution of neurons labeled by comparable injections of the nonspecific retrograde axonal tracer wheat germ agglutinin conjugated to horseradish peroxidase. Cells retrogradely labeled by wheat germ agglutinin-horseradish peroxidase were found in a wide range of limbic and limbic-related structures in the forebrain and brainstem. In the telencephalon, labeled neurons were seen in the orbital, medial prefrontal, and agranular insular cortical areas, the amygdaloid complex, and the hippocampal formation. Labeled cells were also seen in the olfactory cortex, the lateral septum, the ventral striatopallidal region, and the magnocellular basal forebrain itself. In the diencephalon, neurons were labeled in the midline nuclear complex of the thalamus, the lateral habenular nucleus, and the hypothalamus. In the brainstem, labeled cells were found bilaterally in the ventral midbrain, the central gray, the reticular formation, the parabrachial nuclei, the raphe nuclei, the laterodorsal tegmental nucleus, and the locus coeruleus. A significant fraction of the afferents to the magnocellular basal forebrain appear to be glutamatergic and/or aspartatergic. Only a few of the regions labeled with wheat germ agglutinin-horseradish peroxidase were not also labeled with [3H]-D-aspartate in the comparable experiments. Most prominent among the non-glutamatergic/aspartatergic projections were those from fields CA1 and CA3 of the hippocampus, the hilus of the dentate gyrus, the dorsal subiculum, the tuberomammillary nucleus, and the ventral pallidum. In addition, most of the lateral hypothalamic and brainstem projections to the magnocellular basal forebrain were not significantly labeled with [3H]-D-aspartate. In addition to these inputs, a commissural projection from the region of the contralateral nucleus of the horizontal limb of the diagonal band was confirmed with both wheat germ agglutinin-horseradish peroxidase and the anterograde axonal tracer Phaseolus vulgaris leucoagglutinin. This projection did not label with [3H]-D-aspartate or [3H]-GABA, suggesting that it is not glutamatergic/aspartatergic or GABAergic. Furthermore, double labeling experiments with the fluorescent retrograde tracer True Blue and antibodies against choline acetyltransferase indicate that the projection is not cholinergic.  相似文献   

5.
The mesopontine rostromedial tegmental nucleus (RMTg) is a mostly γ-aminobutyric acid (GABA)ergic structure believed to be a node for signaling aversive events to dopamine (DA) neurons in the ventral tegmental area (VTA). The RMTg receives glutamatergic inputs from the lateral habenula (LHb) and sends substantial GABAergic projections to the VTA, which also receives direct projections from the LHb. To further specify the topography of LHb projections to the RMTg and VTA, small focal injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were aimed at different subdivisions of the LHb. The subnuclear origin of LHb inputs to the VTA and RMTg was then confirmed by injections of the retrograde tracer cholera toxin subunit b into the VTA or RMTg. Furthermore, we compared the topographic position of retrogradely labeled neurons in the RMTg resulting from VTA injections with that of anterogradely labeled axons emerging from the LHb. As revealed by anterograde and retrograde tracing, LHb projections were organized in a strikingly topographic manner, with inputs to the RMTg mostly arising from the lateral division of the LHb (LHbL), whereas inputs to the VTA mainly emerged from the medial division of the LHb (LHbM). In the RMTg, profusely branched LHb axons were found in close register with VTA projecting neurons and were frequently apposed to the latter. Overall, our findings demonstrate that LHb inputs to the RMTg and VTA arise from different divisions of the LHb and provide direct evidence for a disynaptic pathway that links the LHbL to the VTA via the RMTg.  相似文献   

6.
Acetylcholinesterase (AChE) and choline acetyltransferase (ChAc) activities were studied by quantitative histochemical (AChE) as well as biochemical methods (AChE, ChAc) in certain cortical brain areas in rats after stereotaxic lesions had been placed in several structures of the basal forebrain. After lesioning the magnocellular nuclei of the substantia innominata (nuc. basalis Meynert, NBM) the activities of AChE and ChAc decreased to moderate or low residual values in the ipsilateral cortical areas. This indicated that cholinergic pathways were directly linked to frontal, sensory-motor, auditory and visual cortex. After lesions of the globus pallidus the decrease in cortical AChE activity was less pronounced. Lesions of the caudate, accumbens or entopeduncular nucleus did not influence the cortical AChE activities.The results are discussed with respect to the similarity of the organization of the cholinergic projection to the cortex arising from NBM cells and the monoaminergic system which innervates the cortex. It is suggested that both neurotransmitter systems by their interaction might modulate and control cortical information processing and behavior in a manner analogous to the control of peripheral activity by the sympathetic and parasympathetic system.  相似文献   

7.
"Omnipause" neurons (OPNs), located in the nucleus raphe pontis and the reticular formation, actively suppress saccadic eye movements during intersaccadic intervals. To determine the brainstem afferents that may inhibit the OPNs and thereby allow a saccade to occur, we injected horseradish peroxidase into the raphe pontis of four cats at the site of physiologically identified OPNs. Labeled neurons were found in a number of brainstem nuclei. The greatest concentrations, composed of small to medium-sized neurons, were located in a group of nuclei around the habenulopeduncular tract, in the rostral mesencephalic reticular formation, in the deep layers of the superior colliculus, and in parts of the subjacent cuneiform and subcuneiform reticular nuclei. Smaller numbers were found in the nucleus reticularis pontis oralis. Caudal to the injection site, labeled neurons were scattered in parts of the nuclei reticularis gigantocellularis, paragigantocellularis dorsalis, and paragigantocellularis lateralis. A few neurons were labeled in a restricted region of the causal part of the nucleus prepositus hypoglossi and in the nucleus reticularis medullaris ventralis. Larger numbers of neurons were labeled in the dorsal column nuclei and in parts of the cochlear nuclei. Smaller numbers were found in the spinal trigeminal nucleus, the lateral nucleus of the superior olive, and the fastigial nucleus of the cerebellum. The nonreticular brainstem projections may contribute sensory information in a number of modalities since OPNs respond to visual, somesthetic, and auditory stimuli. Our findings indicate a number of regions that may contain neural elements impinging on the OPNs. The best prospects for a saccade initiation signal from one of the labeled populations appear to be the meso-diencephalic reticular formation and/or the superior colliculus.  相似文献   

8.
In a previous study (Herbert et al., J. Comp. Neurol. [1990];293:540-580), we demonstrated that the ascending afferent projections from the medulla to the parabrachial nucleus (PB) mark out functionally specific terminal domains within the PB. In this study, we examine the organization of the forebrain afferents to the PB. The PB was found to receive afferents from the infralimbic, the lateral prefrontal, and the insular cortical areas; the dorsomedial, the ventromedial, the median preoptic, and the paraventricular hypothalamic nuclei; the dorsal, the retrochiasmatic, and the lateral hypothalamic areas; the central nucleus of the amygdala; the substantia innominata; and the bed nucleus of the stria terminalis. In general, forebrain areas tend to innervate the same PB subnuclei from which they receive their input. Three major patterns of afferent termination were noted in the PB; these corresponded to the three primary sources of forebrain input to the PB: the cerebral cortex, the hypothalamus, and the basal forebrain. Hypothalamic afferents innervate predominantly rostral portions of the PB, particularly the central lateral and dorsal lateral subnuclei. The basal forebrain projection to the PB ends densely in the external lateral and waist subnuclei. Cortical afferents terminate most heavily in the caudal half of the PB, particularly in the ventral lateral and medial subnuclei. In addition, considerable topography organization was found within the individual projections. For example, tuberal lateral hypothalamic neurons project heavily to the central lateral subnucleus and lightly to the waist area; in contrast, caudal lateral hypothalamic neurons send a moderately heavy projection to both the central lateral and waist subnuclei. Our results show that the forebrain afferents of the PB are topographically organized. These topographical differences may provide a substrate for the diversity of visceral functions associated with the PB.  相似文献   

9.
The pedunculopontine tegmental nucleus (PPTn) was originally defined on cytoarchitectonic grounds in humans. We have employed cytoarchitectonic, cytochemical, and connectional criteria to define a homologous cell group in the rat. A detailed cytoarchitectonic delineation of the mesopontine tegmentum, including the PPTn, was performed employing tissue stained for Nissl substance. Choline acetyltransferase (ChAT) immunostained tissue was then analyzed in order to investigate the relationship of cholinergic perikarya, dendritic arborizations, and axonal trajectories within this cytoarchitectonic scheme. To confirm some of our cytoarchitectonic delineations, the relationships between neuronal elements staining for ChAT and tyrosine hydroxylase were investigated on tissue stained immunohistochemically for the simultaneous demonstration of these two enzymes. The PPTn consists of large, multipolar neurons, all of which stain immunohistochemically for ChAT. It is present within cross-sections that also include the A-6 through A-9 catecholamine cell groups and is traversed by catecholaminergic axons within the dorsal tegmental bundle and central tegmental tract. The dendrites of PPTn neurons respect several nuclear boundaries and are oriented perpendicularly to several well-defined fiber tracts. Cholinergic axons ascend from the mesopontine tegmentum through the dorsal tegmental bundle and a more lateral dorsal ascending pathway. A portion of the latter terminates within the lateral geniculate nucleus. It has been widely believed that the PPTn is reciprocally connected with several extrapyramidal structures, including the globus pallidus and substantia nigra pars reticulata. Therefore, the relationships of pallidotegmental and nigrotegmental pathways to the PPTn were investigated employing the anterograde autoradiographic methodology. The reciprocity of tegmental connections with the substantia nigra and entopeduncular nucleus was investigated employing combined WGA-HRP injections and ChAT immunohistochemistry. The pallido- and nigrotegmental terminal fields did not coincide with the PPTn, but, rather, were located just medial and dorsomedial to it (the midbrain extrapyramidal area). The midbrain extrapyramidal area, but not the PPTn, was reciprocally connected with the substantia nigra and entopeduncular nucleus. We discuss these results in light of other cytoarchitectonic, cytochemical, connectional, and physiologic studies of the functional anatomy of the mesopontine tegmentum.  相似文献   

10.
Microinjection of cholinergic agonists in a dorsolateral part of the mesopontine tegmentum has been shown to induce a rapid eye movement (REM) sleep-like state. Physiological evidence indicates that not only acetylcholine but also various amine transmitters, including those implicated in behavioral state regulation, affect neuronal activity in this region of the pontine reticular formation. In the present study, sources of select aminergic and cholinergic inputs to this REM sleep induction zone were identified and quantitatively analyzed by using fluorescence retrograde tracing combined with immunofluorescence in the rat. In addition to previously demonstrated cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei, the REM sleep induction zone received various aminergic inputs that originated in widely distributed regions of the brainstem and hypothalamus. Serotoninergic afferents represented a mean of 44% of all aminergic/cholinergic source neurons projecting to the REM sleep induction zone, which was comparable to the mean percentage of 39% represented by cholinergic afferent neurons. The serotoninergic afferents originated from the raphe nuclei at all brainstem levels, with heavier projections from the pontine than from the medullary raphe nuclei. Unexpectedly, an additional major serotoninergic input was provided by serotoninergic neurons in the nucleus prosupralemniscus (B9). Noradrenergic afferent neurons represented a mean of 14% of all aminergic/cholinergic source neurons, which was only about one-third of the mean percentage of either cholinergic or serotoninergic source neurons. These noradrenergic projection neurons were located not only in the locus ceruleus (8%) but also in the lateral tegmentum, including the A5 (4%) and A7 (2%) cell groups. Histaminergic neurons in the tuberomammillary hypothalamic nucleus represented a minor group of afferent neurons (3%), and a still smaller input came from adrenegic C1 neurons. The pattern of these transmitter-specific afferent connections appeared to be similar regardless of the longitudinal level within the REM sleep induction zone. The present results are consistent with previous behavioral and physiological evidence for a role of the pontine REM sleep induction zone in triggering REM sleep. The regulation of REM sleep induction would be best understood in terms of a state-dependent interplay of cholinergic, serotoninergic, and other inputs all acting convergently upon neurons in the REM sleep-inducing region of the pontine reticular formation.  相似文献   

11.
The cholinergic innervation of the rat's posterior cingulate cortex (Brodmann's area 29) was studied using acetylcholinesterase (AChE) histochemistry. Electrolytic lesion of the ipsilateral medial septum and diagonal band region (MS-DB) reduced the diffuse AChE staining in layers I, II, III and V of the cingulate cortex. Kainic acid lesion of the ipsilateral globus pallidus and substantia innominata area (GP-SI) abolished the dense band of AChE stain in layer IV, with small reductions of AChE stain in other layers. The results indicate that the medial cholinergic pathway from MS-DB terminates diffusely in layers I, II, III and V while the lateral cholinergic pathway from the GP-SI predominantly ends in layer IV of the posterior cingulate cortex.  相似文献   

12.
Immunocytochemical techniques were used to examine and compare the effects of intracerebroventricular administration of nerve growth factor (NGF) on Fos expression within identified cholinergic and non-cholinergic neurons located in different regions of the adult rat basal forebrain. Animals were killed 1, 3, 6, and 12 h after receiving NGF (0.5 or 5.0 μg) or vehicle into the left lateral ventricle and sections through the medial septum, diagonal band of Broca, nucleus basalis magnocellularis, and striatum were processed for the combined immunocytochemical detection of Fos and choline acetyltransferase (a marker for cholinergic neurons), or Fos and parvalbumin (a marker for gamma aminobutyric acid (GABA)-containing neurons). NGF produced a significant increase in the percentage of cholinergic neurons containing Fos-like immunoreactivity within all four regions examined. The largest increases were detected in the medial septum (47.8%) and the horizontal limb of the diagonal band of Broca (67.7%). In these areas, NGF-mediated induction of Fos-like immunoreactivity was detected as early as 3 h, peaked at 6 h, and was reduced by 12 h, postinfusion. Small but significant increases in the percentage of cholinergic neurons containing Fos-like immunoreactivity were also detected in the striatum (4.2%) and in the nucleus basalis magnocellularis (19.2%) 3–12 h following administration of the higher dose of NGF. No evidence for an NGF-mediated induction of Fos within parvalbumin-containing neurons was detected in any of the four regions at any of the time-points examined; however, evidence for an NGF-mediated induction of Fos within epithelial cells lining the lateral ventricle was observed. These data demonstrate that NGF induces Fos expression within cholinergic, and not parvalbumin-containing (GABAergic), neurons in the basal forebrain, and furthermore that intracerebroventricular administration of NGF influences the different subgroups of basal forebrain cholinergic neurons to different degrees. ©1977 Elsevier Science B.V. All rights reserved.  相似文献   

13.
Ali Charara  Andre   Parent 《Brain research》1994,640(1-2):155-170
The retrograde tracer cholera toxin B subunit (CTb) was used in combination with immunohistochemistry for tyrosine hydroxylase (TH), calbindin D-28k (CaBP), choline acetyltransferase (ChAT) and 5-hydroxytryptamine (5-HT) to determine the distribution and relative proportion of brainstem chemospecific neurons that project to the pallidum in the squirrel monkey (Saimiri sciureus). Large injections of CTb involving both pallidal segments produce numerous retrogradely labeled neurons in the substantia nigra (SN), the pedunculopontine tegmental nucleus (PPN) and the dorsal raphe nucleus (DR). Labeled neurons are distributed uniformly in SN with a slight numerical increase at the junction between the pars compacta (SNc) and the ventral tegmental area (VTA). Retrogradely labeled neurons abound also in PPN, principally in its pars dissipata, whereas other CTb-labeled cells are scattered throughout the rostrocaudal extent of DR. After CTb injection involving specifically the internal pallidal segment (GPi), the same pattern of cell distribution is found in SN, PPN and DR, except that the number of retrogradely labeled cells is lower than after large pallidal complex injections. Approximately 70% of all CTb-labeled neurons in SNc-VTA complex display TH immunoreactivity, whereas 20% are immunoreactive for CaBP. About 39% of all retrogradely labeled neurons in PPN are immunoreactive for ChAT, whereas approximately 38% of the labeled neurons in DR display 5-HT immunoreactivity. Following CTb injection in the external pallidal segment (GPe), the number of labeled cells is much smaller than after GPi injection. The majority of CTb-labeled cells in SNc-VTA complex are located in the lateral half of SNc and approximately 93% of these neurons display TH immunoreactivity compared to 10% that are immunoreactive for CaBP; very few CTb-labeled cells occur in PPN. Retrogradely labeled cells in DR are located more laterally than those that projects to the GPi and about 25% of them are immunoreactive for 5-HT. These results suggest that, in addition to their action at striatal and/or nigral levels, the brainstem dopaminergic, cholinergic and serotoninergic neurons influence the output of the primate basal ganglia by acting directly upon GPi neurons.  相似文献   

14.
A potential reciprocal projection from the cerebral cortex to the nucleus basalis was studied in the rat using a new stabilization method to adapt tetramethylbenzidine-horseradish peroxidase histochemistry for electron microscopy. Following insular or cingulate cortical injections of wheat germ agglutinin-horseradish peroxidase conjugate, anterogradely labeled axon terminals were seen making symmetric synaptic contacts with retrogradely labeled nucleus basalis neurons. Labeled axon terminals contained round vesicles. Most of such contacts were located on distal dendrites, although a small number of synapses on proximal dendrites and cell somata were seen as well. These findings suggest that there is a reciprocal, excitatory projection from the cerebral cortex to the nucleus basalis in the rat.  相似文献   

15.
Injections of WGA-HRP were made in the rat trigeminal ganglion and C1-3 dorsal root ganglia (DRGs) to study the central projection patterns and their relations to each other. Trigeminal ganglion injections resulted in heavy terminal labeling in all trigeminal sensory nuclei. Prominent labeling was also observed in the solitary tract nucleus and in the medial parts of the dorsal horn at C1-3 levels, but labeling could be followed caudally to the C7 segment. Contralateral trigeminal projections were found in the nucleus caudalis and in the dorsal horn at C1-3 levels. The C1 DRG was found to be inconstant in the rat. When it was present, small amounts of terminal labeling were found in the external cuneate nucleus (ECN) and the central cervical nucleus (CCN). No dorsal horn projections were seen from the C1 DRG. Injections in the C2 DRG resulted in heavy labeling in the ECN, nucleus X, CCN, and dorsal horn, where it was mainly located in lateral areas. Labeling could be followed caudally to the Th 7 segment. C2 DRG projections also appeared in the cuneate nucleus (Cun), in all the trigeminal sensory nuclei, and in the spinal, medial, and lateral vestibular nuclei. A small C2 DRG projection was observed in the ventral cochlear nucleus. C3 DRG injections resulted in heavy labeling in both medial middle and lateral parts of the dorsal horn, in the ECN, and in nucleus X, whereas the labeling in the CCN was somewhat weaker. Smaller projections were seen to trigeminal nuclei, Cun, and the column of Clarke. Comparisons of the central projection fields of trigeminal and upper cervical primary afferents indicated a somatotopic organization but with a certain degree of overlap.  相似文献   

16.
Basal forebrain (BF) cholinergic neurons are prone to degeneration due to age-dependent impairment of uptake and retrograde axonal transport of NGF. Modification and intracellular redistribution of cytoskeletal tau proteins could be responsible for this process. In this study we injected fluorogold (FG) into neocortex and hippocampus of young and aged rats. The number of neurons retrogradely labeled with FG in subdivisions of BF was significantly lower in aged rats than in young ones. We also characterized the distribution of Tau 1 in cellular compartments of BF and hippocampal neurons. Tau 1 immunostaining restricted to neuritic structures was observed in neurons of septo-hippocampal pathways in young rats. In contrast, aged rats displayed the presence of Tau 1 isoform mainly in the somatodendritic compartment of BF neurons. The findings demonstrate that in aged rats reduced retrograde labeling of BF neurons coincide with lower expression of cholinergic markers and is accompanied by altered cellular distribution of Tau 1.  相似文献   

17.
The afferent connections of the pedunculopontine tegmental nucleus (PPT) and the adjacent midbrain extrapyramidal area (MEA) were examined by retrograde tracing with wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP). Major afferents to the PPT originate in the periaqueductal gray, central tegmental field, lateral hypothalamic area, dorsal raphe nucleus, superior colliculus, and pontine and medullary reticular fields. Other putative inputs originate in the paraventricular and preoptic hypothalamic nuclei, the zona incerta, nucleus of the solitary tract, central superior raphe nucleus, substantia innominata, posterior hypothalamic area, and thalamic parafascicular nucleus. The major afferent to the medially adjacent MEA originates in the lateral habenula, while other putative afferents include the perifornical and lateral hypothalamic area, periaqueductal gray, superior colliculus, pontine reticular formation, and dorsal raphe nucleus. MEA inputs from basal ganglia nuclei include moderate projections from the substantia nigra pars reticulata, entopeduncular nucleus, and a small projection from the globus pallidus, but not the subthalamic nucleus. Dense anterograde labeling was observed in the substantia nigra pars compacta, entopeduncular nucleus, subthalamic nucleus, globus pallidus, and caudate-putamen only following WGA-HRP injections involving the MEA. The results of this study demonstrate that the PPT and MEA share many potential afferents. Remarkable differences were found that support distinguishing between these two nuclei in future studies regarding the functional organization of the midbrain and pons. The results, for example, confirm our previous observations that the largely reciprocal connections between the midbrain and basal ganglia distinguish the MEA from the PPT. Afferents from the lateral habenula and contralateral superior colliculus represent extensions of more traditional basal ganglion circuitry which further delineate the MEA from the PPT. The results are discussed with respect to the important role of the midbrain and pons in behavioral state control and locomotor mechanisms.  相似文献   

18.
Afferents of the nucleus raphe magnus (NRM) were retrogradely la-belled by using a transcannula HRP gel technique in conjunction with tetramethylbenzidine nuerohistochemistry to determine the sources of in-puts to the nucleus which could potentially influence the descending antio-ciceptive raphe-spinal system. Large numbers of HRP-labelled neurons were seen in the frontal cortex, dorsomedial nucleus of the hypothalamus, zona incerta, nucleus parafascicularis prerubralis (NPfPr), pretectum, dorsal and lateral periaqueductal gray, nucleus cuneiformis (NC), deep superior col-liculus (dSC), a paraoculomotor cell group which may be the medial acces-sory nucleus of Bechterew, dorsal column nuclei, and spinal trigeminal nucleus. Smaller numbers of labelled cells were also observed in the preoptic area, nucleus of Darkschewitsch, ventral peri(third)ventricular gray, nu-cleus reticularis pontis oralis and caudalis, medial and lateral vestibular nuclei, and a subdivision of the hypoglossal nucleus. Confirmational an-terograde autoradiographic studies were performed by injecting tritiated leucine into two of the principal sources of afferents to NRM: NPfPr, and dSC/NC. The results are compared with control HRP gel implants in the inferior olive, spinal cord, nucleus reticularis paragigantocellularis, and medial fa-cial nucleus. Comments are also made concerning the parcellation of the ventromedial medulla and the possible role of both NRM and its afferents in central analgesic mechanisms.  相似文献   

19.
The subthalamic nucleus (STN) receives cholinergic and non-cholinergic projections from the mesopontine tegmentum. This study investigated the numbers and distributions of neurons involved in these projections in rats using Fluorogold retrograde tracing combined with immunostaining of choline acetyltransferase and a neuron-specific nuclear protein. The results suggest that a small population of cholinergic neurons mainly in the caudoventral part of the pedunculopontine tegmental nucleus (PPN), approximately 360 neurons (≈ 10% of the total) in the homolateral and 80 neurons (≈ 2%) in the contralateral PPN, projects to the STN. In contrast, the number of non-cholinergic neurons projecting to the STN was estimated to be nine times as much, with approximately 3300 in the homolateral side and 1300 in the contralateral side. A large gathering of the Fluorogold-labeled non-cholinergic neurons was found rostrodorsomedial to the caudolateral PPN. The biotinylated dextran amine (BDA) anterograde tracing method was used to substantiate the mesopontine-STN projections. Injection of BDA into the caudoventral PPN labeled numerous thin fibers with small en-passant varicosities in the STN. Injection of BDA into the non-cholinergic neuron-rich area labeled a moderate number of thicker fibers with patches of aggregates of larger boutons. The densities of labeled fibers and the number of retrogradely labeled cells in the mesopontine tegmentum suggested that the terminal field formed in the STN by each cholinergic neuron is more extensive than that formed by each non-cholinergic neuron. The findings suggest that cholinergic and non-cholinergic mesopontine afferents may carry different information to the STN.  相似文献   

20.
Effects of the bilateral electrolytic lesioning of the basal forebrain (BF), including the ventral globus pallidus, on passive or active avoidance tasks, were studied in male Wistar rats. A severe deficit in acquisition of passive avoidance response was produced by the lesioning in the posterior level of BF. The retention of the passive avoidance response was markedly disrupted with post-training lesioning. Time-dependent but only slight recovery from the memory impairments was observed in the passive avoidance task given 4,8 or 16 weeks after BF lesions. The acquisition of active avoidance response using a two-way shuttle ☐ was also disturbed by BF lesioning. Retention of active avoidance response was clearly impaired by post-training lesions of the BF. The BF lesioned rats gradually acquired the passive avoidance performance when trained repeatedly at 24- or 48-h intervals, by giving a foot shock in case of avoidance failure. Extinction of the acquired passive avoidance response rapidly occurred in the BF lesioned rats. Furthermore, neurotoxic lesions of BF with kainic acid produced a significant impairment in acquisition of passive avoidance response.These results suggest that bilateral BF lesions impair the acquisition and retention of passive or active avoidance response, and that these impaired rats may be useful as an experimental model for Alzheimer's disease and senile dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号