首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Renal bone morphogenetic protein-7 protects against diabetic nephropathy   总被引:10,自引:0,他引:10  
Longstanding diabetes causes renal injury with early dropout of podocytes, albuminuria, glomerular and tubulointerstitial fibrosis, and progressive renal failure. The renal pathology seems to be driven, in part, by TGF-beta and is associated with a loss of renal bone morphogenic protein-7 (BMP-7) expression. Here, the hypothesis that maintenance of renal (especially podocyte) BMP-7 by transgenic expression reduces diabetic renal injury was tested. Diabetic mice that expressed the phosphoenolpyruvate carboxykinase promoter-driven BMP-7 transgene and nondiabetic, transgenic mice as well as diabetic and nondiabetic wild-type controls were studied for up to 1 yr. Transgenic expression of BMP-7 in glomerular podocytes and proximal tubules prevents podocyte dropout and reductions in nephrin levels in diabetic mice. Maintenance of BMP-7 also reduces glomerular fibrosis and interstitial collagen accumulation as well as collagen I and fibronectin expression. Diabetic wild-type mice develop progressive albuminuria, which is substantially reduced in transgenic mice. These effects of the BMP-7 transgene occur without changing renal TGF-beta levels. It is concluded that maintenance of renal BMP-7 during the evolution of diabetic nephropathy reduces diabetic renal injury, especially podocyte dropout. The findings also establish a role for endogenous glomerular BMP-7 as an autocrine regulator of podocyte integrity in vivo.  相似文献   

5.
The Wilms' tumor suppressor gene WT1 encodes a zinc finger protein that is required for urogenital development. In the kidney, WT1 is most highly expressed in glomerular epithelial cells or podocytes, which are an essential component of the filtering system. Human subjects heterozygous for point mutations in the WT1 gene develop renal failure because of the formation of scar tissue within glomeruli. The relationship between WT1 expression in podocytes during development and glomerular scarring is not well understood. In this study, transgenic mice that expressed a mutant form of WT1 in podocytes were derived. The capillaries within transgenic glomeruli were dilated, indicating that WT1 might regulate the expression of growth factors that affect capillary development. Platelet endothelial cell adhesion molecule-1 expression was greatly reduced on glomerular endothelial cells of transgenic kidneys. These results suggest that WT1 controls the expression of growth factors that regulate glomerular capillary development and that abnormal capillary development might lead to glomerular disease.  相似文献   

6.
BACKGROUND: We have recently demonstrated that macrophage migration inhibitory factor (MIF) plays a pathogenic role in experimental glomerulonephritis (GN). The aim of the current study was to investigate MIF expression in human GN. METHODS: MIF expression was examined by in situ hybridization and immunohistochemistry staining in 65 biopsies from a variety of glomerulonephridities. RESULTS: There is constitutive expression of MIF mRNA and protein in normal human kidney that is largely restricted to tubular epithelial cells and to some glomerular epithelial cells. There was little change in the pattern of MIF expression in nonproliferative forms of GN such as minimal change disease and membranous GN. However, there was a marked increase in both glomerular and tubular MIF expression in proliferative forms of GN, including focal segmental glomerulosclerosis (FGS), lupus nephritis, crescentic GN, and mesangiocapillary proliferative GN. The prominent macrophage and T-cell infiltrate in these diseases were largely restricted to areas with marked up-regulation of MIF expression, contributing to glomerular hypercellularity, glomerular focal segmental lesions, crescent formation, tubulitis, and granulomatous lesions. De novo MIF expression was evident in glomerular endothelial cells and mesangial cells in proliferative forms of GN. In addition, many infiltrating macrophages and T cells showed MIF mRNA and protein expression. Quantitative analysis found that increased glomerular and tubular MIF expression gave a highly significant correlation with macrophage and T-cell accumulation, the severity of histologic lesions, and the loss of creatinine clearance. CONCLUSIONS: Renal MIF expression is markedly up-regulated in proliferative forms of human GN, and this correlates with leukocyte infiltration, histologic damage, and renal function impairment. These results suggest that MIF may be an important mediator of renal injury in progressive forms of human GN. Based on these findings, together with the known pathogenic role of MIF in experimental GN, we propose that MIF is an attractive therapeutic target in the treatment of progressive forms of GN.  相似文献   

7.
Podocytes are highly specialized epithelial cells that line the urinary surface of the glomerular capillary tuft. To maintain kidney filtration, podocytes oppose the high intraglomerular hydrostatic pressure, form a molecular sieve, secrete soluble factors to regulate other glomerular cell types, and provide synthesis and maintenance of the glomerular basement membrane. Impairment of any of these functions after podocyte injury results in proteinuria and possibly renal failure. Loss of glomerular podocytes is a key feature for the progression of renal diseases, and detached podocytes can be retrieved in the urine of patients with progressive glomerular diseases. Thus, the concept of podocyte loss as a hallmark of progressive glomerular disease has been widely accepted. However, the nature of events that promote podocyte detachment and whether detachment is preceded by any kind of podocyte cell death, such as apoptosis, necroptosis, or necrosis, still remains unclear and is discussed in this review.  相似文献   

8.
BACKGROUND: In human glomerulonephritis, including immunoglobulin-A nephropathy (IgAN), glomerular expression of macrophage migration inhibitory factor (MIF) is found to correlate with progressive renal injury. We have shown previously that polymeric IgA is capable of inducing MIF production in cultured human mesangial cells, suggesting a role in inducing inflammatory injury in IgAN. Herein, we examined whether IgA deposition and the subsequent renal injury can be ameliorated with anti-MIF treatment in an experimental murine model of IgAN. METHODS: Glomerular IgA deposition was induced in 4-week-old BALB/c mice by intravenous injection of immune complexes consisting of dinitrophenyl-conjugated bovine serum albumin (DNP-BSA) and IgA MOPC-315 myeloma anti-DNP antibodies. To determine the therapeutic effect of anti-MIF, mice were given anti-MIF (5 mg/kg) or isotypic control antibody intravenously 2 h before the immune complexes administration. The mice were sacrificed 48 h after injection of DNP-IgA. Proteinuria and haematuria were determined and the kidneys were removed for histopathology, immunostaining and immunoblotting. The effect of exogenous MIF on production of TGF-beta 1 by cultured mesangial cells was also examined. RESULTS: IgA deposits were detected in glomeruli of all mice receiving the immune complexes while no glomerular deposit was detected in the control mice. Microscopic haematuria and mesangial hypercellularity were present in mice of the three experimental groups and were absent in the control group. Proteinuria was absent in all groups. Anti-MIF treatment also resulted in decreased renal expression of TGF-beta 1. Moreover, the reduction in TGF-beta 1 expression was confined mainly to glomerular mesangium. An in vitro culture experiment demonstrated that MIF increased TGF-beta 1 production in a time- and dose-dependent fashion. MIF-induced TGF-beta 1 synthesis was abolished by incubating cells with neutralizing antibody against MIF. CONCLUSIONS: Our finding shows that anti-MIF treatment can ameliorate kidney injury and reduce glomerular TGF-beta 1 expression in an experimental model of IgAN.  相似文献   

9.
BACKGROUND: Significance of podocyte injury in the progression of diabetic nephropathy is not well-understood. In this study, we examined whether alteration of gap junction protein connexin43 (Cx43) expression in podocytes is associated with the progression of overt diabetic nephropathy. METHODS: We recruited 29 type 2 diabetic patients with overt nephropathy who underwent renal biopsy. Nephrectomized kidney samples obtained from seven subjects with localized neoplasm and biopsy specimens from five patients diagnosed as minor glomerular abnormalities were used as controls. Cx43 staining on paraffin-embedded kidney sections were studied by immunohistochemistry. RESULTS: In controls, Cx43 was expressed at podocytes in a linear pattern along the glomerular basement membrane. In contrast, downregulation and loss of uniformly linear staining of Cx43 (Cx43 heterogeneity) in podocytes were observed in diabetic nephropathy. Cx43 intensity correlated with current renal function (R = 0.647, P < 0.005), whereas the magnitude of Cx43 heterogeneity correlated well with the degree of future decline in renal function (R = -0.705, P < 0.001). CONCLUSIONS: Alteration of Cx43 expression in podocytes was closely associated with the progression of overt diabetic nephropathy. These results indicate that change in Cx43 expression at podocytes represents a progressive stage in overt diabetic nephropathy and that it may be a convenient way to predict future decline in renal function.  相似文献   

10.
BACKGROUND/AIM: The kd/kd mouse spontaneously develops severe and progressive nephritis leading to renal failure, characterized by cellular infiltration, tubular destruction and glomerular sclerosis. Recent identification of the mutant gene and the observation that podocytes are affected, led to the hypothesis that there are primary renal epithelial cell defects in this strain. METHODS: Clinical and pathological signs of disease in a large cohort of kd/kd mice were studied by light microscopy, electron microscopy, and biochemical analyses of serum and urine at early stages of disease. Special attention was paid to mice under 140 days of age that had normal blood urea nitrogen (BUN) levels, but had developed albuminuria. RESULTS: Although overt glomerular abnormalities are commonly observed either coincident with or after tubulointerstitial nephritis, we now report that albuminuria and visceral epithelial abnormalities, including hyperplasia and podocyte effacement may occur before the onset of either elevated BUN levels or severe interstitial nephritis, and this is accompanied by biochemical perturbations in serum typical of the nephrotic syndrome. CONCLUSIONS: The results suggest that the defect in kd/kd mice primarily affects both the tubular and glomerular visceral epithelium. The tubular epithelial defect triggers autoimmune interstitial nephritis, whereas a defect in podocytes leads to proteinuria and glomerulosclerosis. Thus, a single mitochondrial abnormality may result in differences in disease expression that vary with the type of epithelial cells. It is likely that the mitochrondrial perturbations in glomerular and tubular epithelia act in concert, through activation of different pathologic pathways, to accelerate disease progression leading to renal failure.  相似文献   

11.
BACKGROUND: Macrophage-mediated renal injury has been implicated in progressive forms of glomerulonephritis; however, a role for macrophages in type 2 diabetic nephropathy, the major cause of end-stage renal failure, has not been established. Therefore, we examined whether macrophages may promote the progression of type 2 diabetic nephropathy in db/db mice. METHODS: The incidence of renal injury was examined in db/db mice with varying blood sugar and lipid levels at 8 months of age. The association of renal injury with the accumulation of kidney macrophages was analyzed in normal db/+ and diabetic db/db mice at 2, 4, 6, and 8 months of age. RESULTS: In db/db mice, albuminuria and increased plasma creatinine correlated with elevated blood glucose and hemoglobin A1c (HbA1c) levels but not with obesity or hyperlipidemia. Progressive diabetic nephropathy in db/db mice was associated with increased kidney macrophages. Macrophage accumulation and macrophage activation in db/db mice correlated with hyperglycemia, HbA1c levels, albuminuria, elevated plasma creatinine, glomerular and tubular damage, renal fibrosis, and kidney expression of macrophage chemokines [monocyte chemoattractant protein-1 (MCP-1), osteopontin, migration inhibitory factor (MIF), monocyte-colony-stimulating factor (M-CSF)]. The accrual and activation of glomerular macrophages also correlated with increased glomerular IgG and C3 deposition, which was itself dependent on hyperglycemia. CONCLUSION: Kidney macrophage accumulation is associated with the progression of type 2 diabetic nephropathy in db/db mice. Macrophage accumulation and activation in diabetic db/db kidneys is associated with prolonged hyperglycemia, glomerular immune complex deposition, and increased kidney chemokine production, and raises the possibility of specific therapies for targeting macrophage-mediated injury in diabetic nephropathy.  相似文献   

12.
Alterations in glomerular podocyte cell-cell and cell-matrix contacts are key events in progressive glomerular failure. Integrin-linked kinase (ILK) has been implicated in podocyte cell-matrix interaction and is induced in proteinuria. For evaluation of ILK function in vivo, mice with a Cre-mediated podocyte-specific ILK inactivation were generated. These mice seemed normal at birth but developed progressive focal segmental glomerulosclerosis and died in terminal renal failure. The first ultrastructural lesions that are seen at onset of albuminuria are glomerular basement membrane (GBM) alterations with a significant increase in true harmonic mean GBM thickness. Podocyte foot process effacement and loss of slit diaphragm followed with progression to unselective proteinuria. No significant reduction of slit membrane molecules (podocin and nephrin), key GBM components (fibronectin, laminins, and collagen IV isoforms), or podocyte integrins could be observed at onset of proteinuria. However, alpha3-integrins were relocalized into a granular pattern along the GBM, consistent with altered integrin-mediated matrix assembly in ILK-deficient podocytes. As the increased GBM thickness precedes structural podocyte lesions and key components of the GBM were expressed at comparable levels to controls, these data suggest an essential role of ILK for the close interconnection of GBM structure and podocyte function.  相似文献   

13.
Injection of amniotic fluid stem cells ameliorates the acute phase of acute tubular necrosis in animals by promoting proliferation of injured tubular cells and decreasing apoptosis, but whether these stem cells could be of benefit in CKD is unknown. Here, we used a mouse model of Alport syndrome, Col4a5(-/-) mice, to determine whether amniotic fluid stem cells could modify the course of progressive renal fibrosis. Intracardiac administration of amniotic fluid stem cells before the onset of proteinuria delayed interstitial fibrosis and progression of glomerular sclerosis, prolonged animal survival, and ameliorated the decline in kidney function. Treated animals exhibited decreased recruitment and activation of M1-type macrophages and a higher proportion of M2-type macrophages, which promote tissue remodeling. Amniotic fluid stem cells did not differentiate into podocyte-like cells and did not stimulate production of the collagen IVa5 needed for normal formation and function of the glomerular basement membrane. Instead, the mechanism of renal protection was probably the paracrine/endocrine modulation of both profibrotic cytokine expression and recruitment of macrophages to the interstitial space. Furthermore, injected mice retained a normal number of podocytes and had better integrity of the glomerular basement membrane compared with untreated Col4a5(-/-) mice. Inhibition of the renin-angiotensin system by amniotic fluid stem cells may contribute to these beneficial effects. In conclusion, treatment with amniotic fluid stem cells may be beneficial in kidney diseases characterized by progressive renal fibrosis.  相似文献   

14.
Bone morphogenetic protein (BMP) 4 exerts multiple biological effects on kidney and ureter development. To examine the role of BMP4 in glomerular morphogenesis, we generated transgenic mice with altered BMP4 function in podocytes by conferring tissue-specificity with the nephrin (Nphs1) promoter. At birth, Tg(Nphs1-Nog) mice, which had loss of BMP4 function in podocytes, were found to have glomerular microaneurysms, collapsed glomerular capillary tufts, enlarged Bowman's capsules, and fewer normal proximal tubules. Conversely, Tg(Nphs1-Bmp4) mice, which had increased BMP4 function in podocytes, demonstrated defects in glomerular capillary formation, but podocytes were not appreciably affected. The Tg(Nphs1-Nog) and Tg(Nphs1-Bmp4) mice shared morphological characteristics with the previously reported podocyte-specific Vegf-A over-expressing and knockout mice, respectively. Consistent with the morphological similarity, in situ hybridization revealed an intense signal for podocyte expression of Vegf in Tg(Nphs1-Nog) mice, whereas the signal was markedly suppressed in Tg(Nphs1-Bmp4) mice. However, in vitro studies with metanephroi failed to demonstrate a direct interaction between BMP4 or Noggin and VEGF in podocytes. Instead, immunostaining showed that phosphorylated Smads, the mediators of BMP signaling, are present in endothelial and/or mesangial cells, but not in podocytes, within the developing glomeruli. Therefore, this study suggests that podocyte-derived BMP plays an important role in glomerular capillary formation, perhaps by acting on non-podocyte glomerular cells in a paracrine fashion.  相似文献   

15.
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN.  相似文献   

16.
Podocyte depletion leads to glomerulosclerosis, but whether an impaired capacity of podocytes to respond to hypertrophic stress also causes glomerulosclerosis is unknown. We generated transgenic Fischer 344 rats that express a dominant negative AA-4E-BP1 transgene driven by the podocin promoter; a member of the mammalian target of rapamycin complex 1 (mTORC1) pathway, 4E-BP1 modulates cap-dependent translation, which is a key determinant of a cell's hypertrophic response to nutrients and growth factors. AA-4E-BP1 rat podocytes expressed the transgene and had normal kidney histology and protein excretion at 100 g of body weight but developed ESRD by 12 months. Proteinuria and glomerulosclerosis were linearly related to both increasing body weight and transgene dose. Uni-nephrectomy reduced the body weight at which proteinuria first developed by 40%-50%. The initial histologic manifestation of disease was the appearance of bare areas of glomerular basement membrane from the pulling apart of podocyte foot processes, followed by adhesions to the Bowman capsule. Morphometric analysis confirmed the mismatch between glomerular tuft volume and total podocyte volume (number × size) per tuft in relation to weight gain and nephrectomy. Proteinuria and glomerulosclerosis did not develop if dietary calorie restriction prevented weight gain and glomerular enlargement. In summary, failure of podocytes to match glomerular tuft growth in response to growth signaling through the mTORC1 pathway can trigger proteinuria, glomerulosclerosis, and progression to ESRD. Reducing body weight and glomerular growth may be useful adjunctive therapies to slow or prevent progression to ESRD.  相似文献   

17.
Both endothelial cells and podocytes are sources for laminin alpha1 at the inception of glomerulogenesis and then for laminin alpha5 during glomerular maturation. Why glomerular basement membranes (GBM) undergo laminin transitions is unknown, but this may dictate glomerular morphogenesis. In mice that genetically lack laminin alpha5, laminin alpha5beta2gamma1 is not assembled, vascularized glomeruli fail to form, and animals die at midgestation with neural tube closure and placental deficits. It was previously shown that renal cortices of newborn mice contain endothelial progenitors (angioblasts) and that when embryonic day 12 kidneys are transplanted into newborn kidney, hybrid glomeruli (host-derived endothelium and donor-derived podocytes) result. Reasoning that host endothelium may correct the glomerular phenotype that is seen in laminin alpha5 mutants, alpha5 null embryonic day 12 metanephroi were grafted into wild-type newborn kidney. Hybrid glomeruli were identified in grafts by expression of a host-specific LacZ lineage marker. Labeling of glomerular hybrid GBM with chain-specific antibodies showed a markedly stratified distribution of laminins: alpha5 was found only on the inner endothelial half of GBM, whereas alpha1 located to outer layers beneath mutant podocytes. For measurement of the contribution of host endothelium to hybrid GBM, immunofluorescent signals for laminin alpha5 were quantified: Hybrid GBM contained approximately 50% the normal alpha5 complement as wild-type GBM. Electron microscopy of glomerular hybrids showed vascularization, but podocyte foot processes were absent. It was concluded that (1) endothelial and podocyte-derived laminins remain tethered to their cellular origin, (2) developing endothelial cells contribute large amounts of GBM laminins, and (3) podocyte foot process differentiation may require direct exposure to laminin alpha5.  相似文献   

18.
Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-β1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.  相似文献   

19.
Transgenic manipulation of the glomerular visceral epithelial cell offers a powerful approach for studying the biology of this morphologically complex cell type. It has been previously demonstrated that an 8.3-kb and a 5.4-kb fragment of the murine Nphs1 (nephrin) promoter-enhancer drives lacZ expression in podocytes, brain, and pancreas of transgenic mice, recapitulating the expression pattern of the endogenous nephrin gene. In this present study, two truly podocyte-specific promoters were identified that drive transgene expression in podocytes without expression in extrarenal tissues in adult or embryonic mice. A 1.25-kb fragment driving a lacZ reporter gene (p1.25N-nlacF) was derived from murine Nphs1 promoter similar to a human NPHS1 promoter fragment previously reported. Transgenic mice were generated and beta-galactosidase (beta-gal) expression was analyzed. Four of twelve founder mice were found to express beta-gal in podocytes (33% penetrance). Expression in brain and pancreas was absent in all animals, suggesting that nephrin expression in these organs might be driven by distinct cis-regulatory elements that can be removed to obtain podocyte-specific expression. A 2.5-kb fragment derived from the human NPHS2 (podocin) gene was designed in a similar fashion to drive lacZ expression in transgenic mice (p2.5P-nlacF). Twelve of twlve NPHS2 mouse founder lines expressed beta-gal exclusively in podocytes (100% penetrance). Beta-gal activity was not observed extrinsic to the kidney in p1.25N-nlacF or p2.5P-nlacF mouse embryos at gestational time points between 8.5 d post coitus and birth. In conclusion, the 2.5-kb NPHS2 promoter fragment may be useful for podocyte-specific transgenic expression when extrarenal expression of a transgene is problematic.  相似文献   

20.
Estradiol reverses renal injury in Alb/TGF-beta1 transgenic mice   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号