首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的观察海人酸(KA)诱导的癫持续状态(SE)、大鼠海马CA3区神经元线粒体超微结构的损伤及妥泰(TPM)的保护作用。方法用TPM干预。用KA诱导大鼠SE 2h,并于癫终止后3h制作脑切片,用光镜观察神经元的大体损伤,并用电镜进一步观察线粒体的超微结构。结果KA组和TPM组大鼠均出现了线粒体超微结构的损伤,TPM组大鼠的损伤明显减轻。结论KA诱导的SE可导致海马神经元线粒体损伤,妥泰对此具有保护作用。  相似文献   

2.
目的观察海人酸(KA)诱导的癫疒间持续状态(SE)大鼠海马CA3区神经元线粒体与细胞核超微结构的损伤及caspase-3表达的变化。方法用KA诱导大鼠SE 2 h。分别于SE终止后第3 h、12 h、24 h取海马CA3区制作切片,光镜下观察神经元的变化,电镜下观察线粒体和细胞核的超微结构;免疫组化方法检测相同部位caspase-3的表达变化。结果光镜下SE后24 h神经元出现排列散乱、胞体皱缩、胞浆红染以及胞核固缩。电镜下SE后3 h,可见线粒体嵴肿胀及膜的崩解;SE后24 h细胞核染色质明显边聚。Caspase-3平均阳性细胞数及灰度值于SE后12 h较正常对照组显著增加(均P<0.05);24 h出现极显著增加(均P<0.01)。结论SE后早期海马神经元线粒体损伤可能是神经元损伤的关键环节。  相似文献   

3.
Prior epileptic episodes have been shown to decrease markedly the neuronal damage induced by a second epileptic episode, similar to the tolerance following an episode of mild ischemia. Endogenous neuroprotective effects mediated by various mechanisms have been put forward. This study investigated whether neuroprotection against the excitotoxic damage induced by re-exposure to an epileptic challenge can reflect a change in epileptic susceptibility. Tolerance was elicited in rats by a preconditioning session using intrahippocampal kainic acid (KA) administration followed at 1, 7 and 15-day intervals by a subsequent intraventricular KA injection. The degree of pyramidal cell loss in the vulnerable CA3 subfield contralateral to the KA-injected hippocampus was extensively reduced in animals experiencing KA ventricular administration. This neuroprotection was highly significant 1 and 7 days after injection, but not 15 days after injection. In preconditioned animals, the after-discharge threshold was assessed as an index of epileptic susceptibility. It increased significantly from 1 to 15 days after intrahippocampal KA administration. Finally, an enhancement of neuropeptide Y expression in both non-principal cells and mossy fibers was detected, occurring at the same time as the decrease in epileptic susceptibility. These results provide further evidence of an 'epileptic tolerance' as shown by the substantial neuroprotective effect of a prior episode of epileptic activity upon subsequent epileptic insult and suggest that the prevention of excitotoxic damage after preconditioning results from an endogenous neuroprotective mechanism against hyperexcitability and seizures.  相似文献   

4.
Systemic administration of pilocarpine and kainic acid (KA) has been extensively used to model temporal lobe epilepsy in rats. Here the regional distribution of selectively vulnerable neurons and the temporal evolution of such neuronal injury after status epilepticus (SE) are compared in both models. Using the silver staining technique of Gallyas, argyrophilic neurons were measured on a 0-3 (least-most) scale in 53 different brain areas. Few neurons were silver-stained 2.5 h after kainate-induced SE, but many silver-stained cells could be seen in most neocortical, hippocampal, amygdaloid and hypothalamic structures for pilocarpine group. In general, 8 or 24 h intervals between SE onset and perfusion times yielded the most intense neuronal silver-impregnation. Pilocarpine-induced neuronal silver impregnation was more prominent than that induced by kainate treatment for many areas in cortex, hippocampus, endopiriform nucleus, amygdaloid complex and hypothalamus. On the other hand, in the thalamus, some cortical areas, claustrum, lateral septum and caudoputamen, kainate-induced neuronal silver staining was also prominent, but occurred later than in pilocarpine-treated animals. Neuronal injury was found in almost the same brain areas in both models of SE but with different intensity levels and time course profiles. It was suggested that such differences in the temporal profile of cell damage should be taken into account when searching for neuroprotective agents.  相似文献   

5.
Summary: Purpose : To determine definitively the morphology of neuronal death from lithium-pilocarpine (LPC)-and kainic acid (KA)-induced status epilepticus (SE), and to correlate this with markers of DNA fragmentation that have been associated with cellular apoptosis. Endogenous glutamate release is probably responsible for neuronal death in both seizure models, because neuronal death in both is N -methyl-D-aspartate receptor-mediated.
Methods : SE was induced for 3 hours in adult male Wistar rats with either LPC or KA, and 24 or 72 hours later the rats were killed. One group of rats had brain sections, stained with hematoxylin and eosin and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) technique, examined by light microscopy and by electron microscopy. A separate group of rats had DNA extracted from the same brain regions examined by electron microscopy in the first group. The extracted DNA was electrophoresed on an agarose gel with ethidium bromide and was examined for the presence or absence of internucleosomal DNA cleavage (DNA "laddering").
Results : Twenty-four and 72 hours after 3 hours of LPC- or KA-induced SE, neuronal death in the hippocampus, amygdala, and piriform, entorhinal, and frontal cortices was morphologically necrotic, in spite of DNA laddering in these regions 24 and 72 hours after SE and positive TUNEL staining in some of the regions 72 hours after SE. Ultrastructurally, necrotic neurons were dark and shrunken, with cytoplasmic vacuoles and pyknotic nuclei with small, irregular, dispersed chromatin clumps.
Conclusions : Our results, together with those of other reports, suggest that programmed cell death-promoting mechanisms are activated by SE in neurons that become necrotic rather than apoptotic and point to the possibility that such mechanisms may contribute to SE-induced neuronal necrosis.  相似文献   

6.
Kainic acid (KA)-induced status epilepticus (SE) produces hippocampal neuronal death, which varies from necrosis to apoptosis or programmed cell death (PCD). We examined whether the type of neuronal death was dependent on KA dose. Adult rats were induced SE by intraperitoneal injection of KA at 9 mg/kg (K9) or 12 mg/kg (K12). Hippocampal neuronal death was assessed by TUNEL staining, electron microscopy, and Western blotting of caspase-3 on days 1, 3 and 7 after SE induction. K12 rats showed higher a mortality rate and shorter latency to the onset of SE when compared with K9 rats. In both groups, acidophilic and pyknotic neurons were evident in CA1 at 24h after SE and neuronal loss developed from day 3. The degenerated neurons became TUNEL-positive on days 3 and 7 in K9 rats but not in K12 rats. Caspase-3 activation was detected on days 3 and 7 in K9 rats but was undetectable in K12 rats. Ultrastructural study revealed shrunken neurons exhibiting pyknotic nuclei containing small and dispersed chromatin clumps 24h after SE in CA1. No cells exhibited apoptosis. On days 3 and 7, the degenerated neurons were necrotic with high electron density and small chromatin clumps. There were no ultrastructural differences between the K9 and K12 groups. These results revealed that differences in KA dose affected the delayed cell death (3 and 7 days after SE); however, no effect was seen on the early cell death (24h after SE). Moderate-dose KA induced necrosis, while low-dose KA induced PCD.  相似文献   

7.
To determine whether maintained estrogen or progesterone levels affect kainic acid (KA) seizure patterns or the susceptibility of hippocampal neurons to death from seizures, ovariectomized Sprague-Dawley rats were implanted with estrogen pellets, 0.1 or 0.5 mg, that generated serum levels of 42.4 +/- 6.6 (mean +/- SEM) and 242.4 +/- 32.6 pg/ml or one to six capsules of progesterone that generated serum levels of 11.00 +/-.72 to 48.62 +/- 9.4 ng/ml. Seven days later, the rats were administered KA (8.5mg/kg, ip) and scored for seizure activity; 96 h later, the rats were killed and their brains processed for localization of neuron nuclear antigen (NeuN), a general neuronal marker. The hippocampus was scored for spread (the number of separate regions showing cell loss), and the area within the CA fields occupied by NeuN immunoreactivity was measured (indicating surviving neurons). Administration of estrogen or progesterone (independent of dose) significantly reduced mortality from KA seizures. Progesterone reduced seizure severity in animals that received one to four implants; compared with controls, no difference in seizure severity was noted for animals with six progesterone implants. The reduced seizures in progesterone-treated animals were accompanied by a reduction in the spread of hippocampal damage (r(2) = 0.87; P < 0.05). Likewise, in progesterone-treated rats, neuron survival and reduction in seizure scores were correlated (r(2) = 0.76; P < 0.0001). Estrogen had no effect on seizure severity (P > 0.05), but reduced both the spread (P < 0.05) and degree of neuronal loss (P < 0.05). Indeed, in the estrogen-treated rats, neuronal death was significantly lower than that observed in progesterone-treated animals with equally severe seizures (P < 0.05). These data are consistent with the hypothesis that progesterone produces its effects by reducing seizures, whereas estrogen has little beneficial effect on seizure behavior but protects the hippocampus from the damage seizures produce.  相似文献   

8.
Previous studies suggest that reducing the numbers of adult‐born neurons in the dentate gyrus (DG) of the mouse increases susceptibility to severe continuous seizures (status epilepticus; SE) evoked by systemic injection of the convulsant kainic acid (KA). However, it was not clear if the results would be the same for other ways to induce seizures, or if SE‐induced damage would be affected. Therefore, we used pilocarpine, which induces seizures by a different mechanism than KA. Also, we quantified hippocampal damage after SE. In addition, we used both loss‐of‐function and gain‐of‐function methods in adult mice. We hypothesized that after loss‐of‐function, mice would be more susceptible to pilocarpine‐induced SE and SE‐associated hippocampal damage, and after gain‐of‐function, mice would be more protected from SE and hippocampal damage after SE. For loss‐of‐function, adult neurogenesis was suppressed by pharmacogenetic deletion of dividing radial glial precursors. For gain‐of‐function, adult neurogenesis was increased by conditional deletion of pro‐apoptotic gene Bax in Nestin‐expressing progenitors. Fluoro‐Jade C (FJ‐C) was used to quantify neuronal injury and video‐electroencephalography (video‐EEG) was used to quantify SE. Pilocarpine‐induced SE was longer in mice with reduced adult neurogenesis, SE had more power and neuronal damage was greater. Conversely, mice with increased adult‐born neurons had shorter SE, SE had less power, and there was less neuronal damage. The results suggest that adult‐born neurons exert protective effects against SE and SE‐induced neuronal injury.  相似文献   

9.
Although heat shock protein 70 (HSP70) has been suggested to be a stress marker or to play a protective role in brain injury, the relevance of its pathological expression in epilepsy is unclear. We investigated the expression of HSP70 in brain tissue from human temporal lobe epilepsy (TLE) patients and from kainic acid (KA)-induced seizure-related neuronal damage in vivo and in vitro. The human TLE tissue showed severe neuronal loss and gliosis in hippocampal CA3 area. The KA-induced neuronal damage was similar to pathological changes of the TLE hippocampus. An increased number of TUNEL-positive cells were observed at day 5 when compared with day 2 after seizure induction. Intense HSP70 immunofluorescence was observed in hippocampal CA3 pyramidal neurons of rat, 2 days following KA administration, which then declined in labeling by day 5. No HSP70 expression was found in Fluoro-Jade B positive dying neurons by double staining. Western blot analysis showed an increased level of p53 and Bax expression following KA treatment. In vitro, there was no apparent difference in the degree of apoptosis between HSP70 siRNA- and control empty vector-transfected primary neurons following KA treatment. Our results revealed that HSP70 was a useful indicator of stressed neurons in acute phase of epilepsy, but not associated with neuronal death, thereby suggesting that HSP70 played no role in neuroprotection during an epileptogenic state.  相似文献   

10.
The central histaminergic neuron system is an important regulator of activity stages such as arousal and sleep. In several epilepsy models, histamine has been shown to modulate epileptic activity and histamine 1 (H1) receptors seem to play a key role in this process. However, little is known about the H1 receptor-mediated seizure regulation during the early postnatal development, and therefore we examined differences in severity of kainic acid (KA)-induced status epilepticus (SE) and consequent neuronal damage in H1 receptor knock out (KO) and wild type (WT) mice at postnatal days 14, 21, and 60 (P14, P21, and P60). Our results show that in P14 H1 receptor KO mice, SE severity and neuronal damage were comparable to those of WT mice, whereas P21 KO mice had significantly decreased survival, more severe seizures, and enhanced neuronal damage in various brain regions, which were observed only in males. In P60 mice, SE severity did not differ between the genotypes, but in KO group, neuronal damage was significantly increased. Our results suggest that H1 receptors could contribute to regulation of seizures and neuronal damage age-dependently thus making the histaminergic system as a challenging target for novel drug design in epilepsy.  相似文献   

11.
Epileptic seizure has been reported to enhance adult neurogenesis and induce aberrant synaptic reorganization in the human dentate gyrus in the hippocampal formation. However, adult neurogenesis in the extrahippocampal regions has not been well studied. To investigate seizure‐enhanced neurogenesis in the extrahippocampal regions, we performed histological and immunohistochemical as well as western blot analyses on the cerebrum of Sprague–Dawley rats (n = 51, male, 7 weeks old, body weight 250–300 g) treated with intraperitoneal injection of kainic acid (KA, 10 mg/kg) to induce status epilepticus (SE) (n = 36) or normal saline solution (n = 15) followed by 5′‐bromo‐2‐deoxyuridine (BrdU) injection to label newborn cells. Even though severe neuronal damage was found in the piriform cortex of rats having SE, immunohistochemistry for double cortin (DCX) revealed an increase in the number of immature neurons in the piriform cortex. Double immunofluorescence staining demonstrated that DCX‐positive cells in the piriform cortex were positive for both BrdU and neuronal nuclear antigen. Immunohistochemistry and western blotting revealed increased expressions of synaptophysin and postsynaptic density protein 95 in the piriform cortex of rat having SE. These results suggested the enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of the KA‐treated rat.  相似文献   

12.
PURPOSE: Epileptic seizures lead to age-dependent neuronal damage in the developing brain, particularly in the hippocampus, but the mechanisms involved have remained poorly elucidated. In this study, we investigated the contribution of apoptosis and inflammatory processes to neuronal damage after status epilepticus (SE) in postnatal rats. METHODS: SE was induced by an intraperitoneal injection of kainic acid (KA) in 21- and 9-day-old (P21 and P9) rats. The expression of Bax, Bcl-2 and caspase-3, markers for apoptosis, and cyclooxygenase-2 (COX-2), an indicator for activation of inflammatory processes, were studied from 6 h up to 1 week after SE by Western blotting and immunocytochemistry. Neuronal damage was verified by Fluoro-Jade B staining. RESULTS: In P21 rats, SE resulted in neuronal damage in the CA1 neurons of the hippocampus. COX-2 expression was extensively, but transiently, increased and its immunoreactivity pronouncedly enhanced in several hippocampal subregions, amygdala, and piriform cortex by 24 h after SE. The expression of Bax and caspase-3 remained unchanged, whereas the antiapoptotic factor Bcl-2 transiently decreased by 24 h. Single caspase-3 positive neurons appeared in the CA1 region of both control and KA-treated rats. In P9 rats, no neuronal death was detected, and COX-2 expression and immunoreactivity remained at the control level. DISCUSSION: Our results suggest that SE provokes age-specific effects on COX-2 expression. This together with the activation of putative inflammatory processes may contribute to neuronal cell death in the hippocampus of postnatal rats, whereas caspase-dependent apoptosis seems not to be involved in the death process.  相似文献   

13.
We investigated the anticonvulsant and neurobiological effects of a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, N w‐propyl‐l ‐arginine (L‐NPA), on kainic acid (KA)‐induced status epilepticus (SE) and early epileptogenesis in C57BL/6J mice. SE was induced with 20 mg/kg KA (i.p.) and seizures terminated after 2 h with diazepam (10 mg/kg, i.p). L‐NPA (20 mg/kg, i.p.) or vehicle was administered 30 min before KA. Behavioural seizure severity was scored using a modified Racine score and electrographic seizure was recorded using an implantable telemetry device. Neuronal activity, activity‐dependent synaptogenesis and reactive gliosis were quantified immunohistochemically, using c‐Fos, synaptophysin and microglial and astrocytic markers. L‐NPA treatment reduced the severity and duration of convulsive motor seizures, the power of electroencephalogram in the gamma band, and the frequency of epileptiform spikes during SE. It also reduced c‐Fos expression in dentate granule cells at 2 h post‐KA, and reduced the overall rate of epileptiform spiking (by 2‐ to 2.5‐fold) in the first 7 days after KA administration. Furthermore, treatment with L‐NPA suppressed both hippocampal gliosis and activity‐dependent synaptogenesis in the outer and middle molecular layers of the dentate gyrus in the early phase of epileptogenesis (72 h post‐KA). These results suggest that nNOS facilitates seizure generation during SE and may be important for the neurobiological changes associated with the development of chronic epilepsy, especially in the early stages of epileptogenesis. As such, it might represent a novel target for disease modification in epilepsy.  相似文献   

14.
Kainic acid (KA)‐induced status epilepticus (SE) is a well‐characterized model of excitotoxic neuronal injury. Excitotoxicity results from activation of specific glutamate receptors, with resultant elevation of intracellular Ca2+. The CA1 and CA3 subregions of the hippocampus are especially vulnerable to KA, and this pattern of neuronal injury resembles that occurring in patients with temporal lobe epilepsy. Calcium plays an essential role in excitotoxicity, and accordingly calcium channel inhibitors have been shown to have protective effects in various experimental models of epilepsy and brain injury. Moreover, they also potentiate the antiseizure efficacy of conventional antiepileptic drugs. This study was undertaken to determine whether NP04634, a novel compound, reported as a non‐L‐type voltage‐sensitive calcium channel (VSCC) inhibitor, could prevent the entrance in SE and the neuronal loss evoked by intraperitoneal injection of KA. Our results show that intragastrical administration of NP04634 reduced the percentage of rats that entered SE after KA injection, increased the latency of SE entry, and significantly reduced the mortality of rats that entered SE. Also, NP04634 prevented the loss of hippocampal CA1 and CA3 pyramidal neurons and reduced the gliosis induced by KA. These results point to a potential anticonvulsant and neuroprotective role for NP04634. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
《Brain research》1996,725(1):11-22
The temporal evolution of irreversible neuronal damage from pilocarpine-induced seizures was studied by light microscopy. Neuronal cell death was judged on a 0–3 scale by estimating the percentage of acidophilic neurons in each of 23 brain regions. In addition, in the dorsal dentate hilus (CA4), quantitative cell counts of normal and acidophilic neurons were also performed. A few dead neurons (grade 0.5 damage) appeared in ventral hippocampal CA1 and CA3 regions after 20-min status epilepticus (SE). Slight-to-mild damage (grades 0.5–1.5) occurred in 14 and 12 brain regions after 40-min and 1-h SE respectively, and slight-to-moderate damage (grades 0.5–2.0) was found in 15 regions after 3-h SE. Twenty-four h and 72 h after 3-h SE, there was slight-to-severe damage (grade 0.5–3.0) in 22 and 21 regions respectively. Three-h SE produced more severe damage to 7 brain regions compared to 1-h SE, and 16 regions had more pronounced neuronal injury 24 h after rather than 0–4 h after 3-h SE. Eight brain regions had less damage 72 h compared to 24 h after SE, probably because of progressive neuronal lysis and dropout, but in mediodorsal and lateroposterior thalamic nuclei damage worsened from 24 to 72 h after SE. Neuronal cell counting revealed 20% acidophilic neurons in dorsal dentate hilus after 40-min SE and no difference between the 1-h and 3-h seizure groups (31% vs. 43% acidophilic neurons respectively). Among the 3 groups of rats with 3-h SE and varying recovery periods, the 24-h and 72-h recovery groups had higher percentages of acidophilic neurons (65% and 54% respectively) than the 0–4-h group (43%). Finally, the hippocampal CA2 region and dentate granule cell layer and the caudate-putamen, considered resistant to seizure-induced cell injury, were all damaged from SE lasting 40 min or more.  相似文献   

16.
The status epilepticus (SE) induced in rats by lithium-pilocarpine (Li-pilo) shares many common features with soman-induced SE including a glutamatergic phase that is inhibited by NMDA antagonists. The present study determined whether 1-aminocyclopropanecarboxylic acid (ACPC) or D-cycloserine (DCS), both partial agonists of the strychnine-insensitive glycine site on the NMDA receptor ionophore complex, exerted anticonvulsant or neuroprotectant activity in Li-pilo SE. ACPC or DCS were administered either immediately following pilocarpine (exposure treatment) or 5 min after the onset of SE as determined by ECoG activity. SE was allowed to proceed for 3 h before termination with propofol. The rats were sacrificed 24 h following pilocarpine administration. Neither drug had an effect on the latency to seizure onset or the duration of seizure activity. ACPC administered 5 min after SE onset produced significant neuroprotection in cortical regions, amygdala and CA1 of the hippocampus. In contrast, when administered as exposure treatment ACPC enhanced the neural damage in the thalamus and CA3 of the hippocampus suggesting the neuropathology in those regions is mediated by a different subset of NMDA receptors. DCS had no neuroprotectant activity in Li-pilo SE but exacerbated neuronal damage in the thalamus. Neither drug affected the cholinergic convulsions but both had differential effects on neural damage. This suggests that the SE-induced seizure activity and subsequent neuronal damage involve independent mechanisms.  相似文献   

17.
p53 plays an essential role in mediating apoptotic responses to cellular stress, especially DNA damage. In a kainic acid (KA)-induced seizure model in mice, hippocampal CA1 pyramidal cells undergo delayed neuronal death at day 3-4 following systemic KA administration. We previously demonstrated that CA1 neurons in p53(-/-) animals are protected from such apoptotic neuronal loss. However, extensive morphological damage associated with DNA strand breaks in CA1 neurons was found in a fraction of p53(-/-) animals at earlier time points (8?h to 2?days). No comparable acute damage was observed in wild-type animals. Stereological counting confirmed that there was no significant loss of CA1 pyramidal cells in p53(-/-) animals at 7?days post-KA injection. These results suggest that seizure-induced DNA strand breaks are accumulated to a greater extent but do not lead to apoptosis in the absence of p53. In wild-type animals, therefore, p53 appears to stimulate DNA repair and also mediate apoptosis in CA1 neurons in this excitotoxicity model. These results also reflect remarkable plasticity of neurons in recovery from injury.  相似文献   

18.
Chuang YC  Chang AY  Lin JW  Hsu SP  Chan SH 《Epilepsia》2004,45(10):1202-1209
PURPOSE: Prolonged and continuous epileptic seizure (status epilepticus) results in cellular changes that lead to neuronal damage. We investigated whether these cellular changes entail mitochondrial dysfunction and ultrastructural damage in the hippocampus, by using a kainic acid (KA)-induced experimental status epilepticus model. METHODS: In Sprague-Dawley rats maintained under chloral hydrate anesthesia, KA (0.5 nmol) was microinjected unilaterally into the CA3 subfield of the hippocampus to induce seizure-like hippocampal EEG activity. The activity of key mitochondrial respiratory chain enzymes in the dentate gyrus (DG), or CA1 or CA3 subfield of the hippocampus was measured 30 or 180 min after application of KA. Ultrastructure of mitochondria in those three hippocampal subfields during KA-induced status epilepticus also was examined with electron microscopy. RESULTS: Microinjection of KA into the CA3 subfield of the hippocampus elicited progressive build-up of seizure-like hippocampal EEG activity. Enzyme assay revealed significant depression of the activity of nicotinamide adenine dinucleotide cytochrome c reductase (marker for Complexes I+III) in the DG, or CA1 or CA3 subfields 180 min after KA-elicited temporal lobe status epilepticus. Conversely, the activities of succinate cytochrome c reductase (marker for Complexes II+III) and cytochrome c oxidase (marker for Complex IV) remained unaltered. Discernible mitochondrial ultrastructural damage, varying from swelling to disruption of membrane integrity, also was observed in the hippocampus 180 min after hippocampal application of KA. CONCLUSIONS: Our results demonstrated that dysfunction of Complex I respiratory chain enzyme and mitochondrial ultrastructural damage in the hippocampus are associated with prolonged seizure during experimental temporal lobe status epilepticus.  相似文献   

19.
Noh HS  Kim YS  Lee HP  Chung KM  Kim DW  Kang SS  Cho GJ  Choi WS 《Epilepsy research》2003,53(1-2):119-128
This study was designed to evaluate the antiapoptotic effects of a ketogenic diet (KD) through histological (cresyl violet staining, TUNEL staining and immunohistochemistry) and behavioral studies using kainic acid (KA, 25mg/kg i.p.)-induced seizures in male ICR mice. KA-induced seizure in rodents is widely used as an experimental model for human temporal lobe epilepsy because of their behavioral and pathological similarities. A KA-induced seizure causes neuronal damage in hippocampal pyramidal neurons and involves a caspase-3-mediated apoptotic pathway. In this study, the seizure onset time of the KD-fed group was delayed compared to that of the group fed a normal diet (ND) after a systemic KA injection. Histological studies revealed that KA caused pyknosis in most of the hippocampal areas in the ND-fed group, however, well-preserved pyramidal neurons were detected in the hippocampus of mice that had been on KD for 1 month, which began on postnatal day 21. The number of TUNEL-positive cells and caspase-3-positive cells in the hippocampus of the KD-fed group was lower than that of the ND-fed group. These findings indicate that KD has an antiepileptic effect via a neuroprotective action that involves the inhibition of caspase-3-mediated apoptosis of hippocampal neurons.  相似文献   

20.
《Journal of epilepsy》1998,11(3):168-176
Propofol (2,6-diisopropylphenol) is an intravenous (i.v.) short-acting agent frequently used in neuroanesthesia and recently successfully used to treat refractory status epilepticus (SE). Conversely, there are over 50 reported cases of epileptic seizures following propofol-induced anesthesia, suggesting that propofol may aggravate seizures, especially in seizure-prone patients. The aim of this study is to assess the clinical and histologic effects of propofol on experimental SE. Status epilepticus was induced in adult rats by kainic acid [KA, 20 mg/kg, intraperitoneal (i.p.)]; in this model there is a time interval between KA administration and SE onset. To assess the effects of propofol on seizure-prone rats, propofol was given 15 minutes after the injection of KA before onset of seizures (group I, N = 12; 15 mg/kg i.v.). To assess the effects of propofol as an anticonvulsant, it was given 15 minutes after onset of SE to other rats (group II, N = 8; 15 mg/kg/i.v.). Control rats were injected with saline in both groups (group I N = 5; group II N = 5). Histology and immunohistochemistry were used to assess seizure-induced hippocampal cellular damage 2 weeks after SE. In group I rats, seizure latency was not different from controls. Furthermore, SE occurred less frequently in propofol pretreated rats than controls (p < .05). In group II rats, propofol broke SE in all treated rats. Furthermore, it reduced SE-induced mortality rate (p < .05). Finally, propofol had neuronal protective effects on hippocampal neurons. This resulted in decreased seizure-induced neuronal loss and astrocytosis in propofol-treated animals compared to controls. This study shows that propofol is not proconvulsant. Furthermore, propofol aborts kainate-induced SE and offers protection from seizure-induced hippocampal neuronal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号