共查询到18条相似文献,搜索用时 62 毫秒
1.
基于图像内容的检索 (Content basedimageretrieval,CBIR) ,是当前比较热门也是比较难的研究课题。针对基于内容的医学图象检索 ,我们提出几个对于图像旋转、伸缩、位移不变的几何矩不变量集 ,对于图像数据库的初检效果较好。 相似文献
2.
几何矩不变量在基于内容医学图像检索中的应用 总被引:3,自引:0,他引:3
基于图像内容的检索(Content-based image retrieval,CBIR),是当前比较热门也是比较难的研究课题。针对基于内容的医学图像检索,我们提出几个对于图像旋转、伸缩、位移不变的几何矩不变量集,对于图像数据库的初检效果较好。 相似文献
3.
4.
5.
如何构建有效的图像库结构,提高图像检索速度是基于内容的图像检索所需要解决的关键问题之一。论文采用了一种基于改进的模糊C均值算法来聚类图像。实验表明该方法应用于图像检索,在准确性和实时性方面均能达到较好的效果。另外,系统利用基于分阶段显示和评价反馈的权重调整方法进一步提高检索性能。 相似文献
6.
介绍了一个基于图像内容检索的医学图像数据库系统。分别讨论了用于图像内容检索的颜色、纹理和形状特征以及在此特征集下的图像相似性度量 ;介绍了数据库的组织及该系统的界面 相似文献
7.
建立一个高效、准确的医学图像检索系统是目前具有挑战性的任务.由于相关反馈(RF)技术有效地解决了"语义鸿沟",成为基于内容的医学图像检索系统中提高检索性能的关键技术.文中根据RF算法采用的检索模型, 从基于距离度量的模型、基于概率统计分类模型和基于机器学习模型三个方面,对有代表性的算法进行了分析与评价,并重点分析了基于机器学习的RF算法.最后对医学图像检索中RF技术的发展进行了展望. 相似文献
8.
9.
10.
11.
12.
Thomas M. Deserno Mark O. Güld Bartosz Plodowski Klaus Spitzer Berthold B. Wein Henning Schubert Hermann Ney Thomas Seidl 《Journal of digital imaging》2008,21(3):280-289
The impact of image pattern recognition on accessing large databases of medical images has recently been explored, and content-based
image retrieval (CBIR) in medical applications (IRMA) is researched. At the present, however, the impact of image retrieval
on diagnosis is limited, and practical applications are scarce. One reason is the lack of suitable mechanisms for query refinement,
in particular, the ability to (1) restore previous session states, (2) combine individual queries by Boolean operators, and
(3) provide continuous-valued query refinement. This paper presents a powerful user interface for CBIR that provides all three
mechanisms for extended query refinement. The various mechanisms of man–machine interaction during a retrieval session are
grouped into four classes: (1) output modules, (2) parameter modules, (3) transaction modules, and (4) process modules, all
of which are controlled by a detailed query logging. The query logging is linked to a relational database. Nested loops for
interaction provide a maximum of flexibility within a minimum of complexity, as the entire data flow is still controlled within
a single Web page. Our approach is implemented to support various modalities, orientations, and body regions using global
features that model gray scale, texture, structure, and global shape characteristics. The resulting extended query refinement
has a significant impact for medical CBIR applications. 相似文献
13.
Image retrieval at the semantic level mostly depends on image annotation or image classification. Image annotation performance
largely depends on three issues: (1) automatic image feature extraction; (2) a semantic image concept modeling; (3) algorithm
for semantic image annotation. To address first issue, multilevel features are extracted to construct the feature vector,
which represents the contents of the image. To address second issue, domain-dependent concept hierarchy is constructed for
interpretation of image semantic concepts. To address third issue, automatic multilevel code generation is proposed for image
classification and multilevel image annotation. We make use of the existing image annotation to address second and third issues.
Our experiments on a specific domain of X-ray images have given encouraging results. 相似文献
14.
提出使用多尺度复杂性方法和多尺度分维数方法提取医学图像纹理特征并将之用于图像检索.使用的复杂性方法包括用于一维时间序列分析的排列熵方法和用于二维信号分析的二维C0复杂度.将所提出的方法和其他文献中的方法进行了比较实验研究,结果表明该方法可以有效地描述医学图像的纹理信息,并取得较好的图像检索结果. 相似文献
15.
William Hersh MD Henning Müller Jayashree Kalpathy-Cramer 《Journal of digital imaging》2009,22(6):648-655
A growing number of clinicians, educators, researchers, and others use digital images in their work and search for them via
image retrieval systems. Yet, this area of information retrieval is much less understood and developed than searching for
text-based content, such as biomedical literature and its derivations. The goal of the ImageCLEF medical image retrieval task
(ImageCLEFmed) is to improve understanding and system capability in search for medical images. In this paper, we describe
the development and use of a medical image test collection designed to facilitate research with image retrieval systems and
their users. We also provide baseline results with the new collection and describe them in the context of past research with
portions of the collection. 相似文献
16.
提出了一种基于特征选择的医学图像检索方法。考虑到医学图像的多类别特性,将分类与检索结合,采用AdaBoost方法对样本进行多次抽样,并将分类精度作为判据对特征进行选择,选取少量有利于分类的特征,同时将单特征弱分类器增强为强分类器。在检索阶段,本方法在选择后的特征子集以及类别子空间中进行检索。实验结果表明,与传统方法相比,本方法能达到较高的查准率,计算量也明显降低。 相似文献
17.
乳腺癌是女性中高发的恶性肿瘤疾病.近年来,其发病率呈增高趋势.早期发现、早期诊断和早期治疗是降低乳腺癌患者死亡率的关键.计算机辅助诊断(CAD)技术能够有效提高早期诊断的准确性,而基于内容医学图像检索(CBMIR)技术的引入,为乳腺癌的诊断提供了有效的决策支持.文中就近年来基于医学图像内容检索的计算机辅助乳腺X线影像诊断关键技术进行了较为详尽的综述,包括微钙化和肿块检测、特征提取、相似性测度和相关反馈技术等,同时对该领域的发展趋势进行了展望. 相似文献