首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to investigate the effects of lycopene on cisplatin-induced nephrotoxicity and oxidative stress in rats. Adult male Sprague-Dawley rats were randomly divided into four groups. The control group (group 1) received physiological saline; animals in group 2 received only cisplatin; a 10 days of lycopene pre-treatment was applied to the animals in group 3 before administration of cisplatin; a 5 days of lycopene treatment was performed following administration of cisplatin for the animals in group 4. Cisplatin (7 mg/kg) was intraperitoneally injected as a single dose and lycopene (4 mg/kg) was administered by gavage in corn oil. Biochemical and histopathological methods were utilised for evaluation of the nephrotoxicity. The concentrations of creatinine, urea, Na+ and K+ in plasma and levels of malondialdehyde and reduced glutathione as well as glutathione peroxidase and catalase activities were determined in kidney tissue. Administration of cisplatin to rats induced a marked renal failure, characterized with a significant increase in plasma creatinine and urea concentrations. Na+ and K+ levels of rats received cisplatin alone were not significantly different compared to control group, but they had higher kidney malondialdehyde, and lower reduce glutathione concentrations, glutathione peroxidase and catalase activities. Lycopene administration produced amelioration in biochemical indices of nephrotoxicity in both plasma and kidney tissues when compared to group 2; pre-treatment with lycopene being more effective. Results from this study indicate that the novel natural antioxidant lycopene might have protective effect against cisplatin-induced nephrotoxicity and oxidative stress in rat.  相似文献   

2.
A potential therapeutic approach to protect or reverse gentamicin-induced oxidative stress and nephrotoxicity would have more importance for clinical consequences. Therefore, the present study was designed to investigate the possible protective effects of lycopene against gentamicin-induced renal damage in rats. Male Sprague-Dawley rats were divided into four groups of six rats in each one; first group served as control. The other groups were treated intraperitoneally with gentamicin alone (100 mg kg(-1) per day) for six successive days, gentamicin for 6 days following 10 days of orally lycopene (4 mg kg(-1) per day) pre-treatment and 6-days of simultaneous lycopene and gentamicin. Biochemical and histopathological examinations were utilized for evaluation of the oxidative stress and renal nephrotoxicity. Creatinine, urea, Na(+) and K(+) levels in plasma and malondialdehyde (MDA), reduced glutathione (GSH) levels and glutathione peroxidase (GSH-Px) and catalase (CAT) activities were determined in kidney tissue. Administration of gentamicin to rats induced a marked renal failure, characterized by a significant increase in plasma creatinine and urea concentrations. The animals treated with gentamicin alone showed a significantly higher kidney MDA and lower GSH-Px and CAT activities but unaffected GSH concentrations when compared with the control group. Pre-treatment with lycopene produced amelioration in biochemical indices of nephrotoxicity in plasma. However, little changes were observed in the kidney MDA and GSH levels and GSH-Px and CAT activities when compared with the gentamicin treated group. The histological structures of the renal proximal tubules showed similar patterns. On the other hand, administration of simultaneous lycopene to rats produced amelioration in MDA and GSH levels and GSH-Px and CAT activities when compared with gentamicin group. In addition, simultaneous lycopene was found to reduce the degree of kidney tissue damage in histopathological findings. These results indicate that specially simultaneous treatment of lycopene might have produced amelioration in biochemical indices and oxidative stress parameters against gentamicin-induced nephrotoxicity, but pre-treatments with lycopene had no beneficial effects on these parameters. It was concluded that lycopene as a novel natural antioxidant might have protective effects against gentamicin-induced nephrotoxicity and oxidative stress in rats.  相似文献   

3.
Cyclosporine A-treated transplant recipients develop pronounced cardiovascular disease and have increased oxidative stress and altered antioxidant capacity in erythrocytes and plasma. These experiments investigated the time-course of cyclosporine A-induced changes to redox balance in plasma and erythrocytes. Rats were randomly assigned to either a control or cyclosporine A-treated group. Treatment animals received 25 mg/kg of cyclosporine A via intraperitoneal injection for either 7 days or a single dose. Control rats were injected with the same volume of the vehicle. Three hours after the final injections, plasma was analysed for total antioxidant status, alpha-tocopherol, malondialdehyde, and creatinine. Erythrocytes were analysed for reduced glutathione (GSH), alpha-tocopherol, methaemoglobin, malondialdehyde, and the activities of superoxide dismutase, catalase, GSH peroxidase, and glucose-6-phosphate dehydrogenase (G6PD). Cyclosporine A administration for 7 days resulted in a significant increase (P<0.05) in plasma malondialdehyde, methaemoglobin, and superoxide dismutase and catalase activities. There was a significant decrease (P<0.05) in erythrocyte GSH concentration and G6PD activity in cyclosporine A animals. There were no significant differences (P>0.05) between groups following a single dose of cyclosporine A in any of the measures. In summary, cyclosporine A alters erythrocyte redox balance after 7 days administration, but not after a single dose.  相似文献   

4.
Nephrotoxicity is the most common and clinically important side effect of cyclosporine (CsA). Recent evidence suggests that reactive oxygen species (ROS) play an important role in CsA nephrotoxicity. This study was designed to demonstrate the role of oxidative stress and its relation to renal dysfunction and to investigate the effects of quercetin, a bioflavonoid with antioxidant properties, in CsA-induced nephrotoxicity. Quercetin (0.5 and 2.0 mg/kg i.p.) was administered 24 h before and concurrently with CsA (20 mg/kg s.c.) for 21 days. Tissue lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS). Renal function was assessed by estimating plasma creatinine, blood urea nitrogen (BUN), creatinine and urea clearance. Renal morphological alterations were assessed histopathologically. Pretreatment with CsA (20 mg/kg s.c.) for 21 days produced elevated levels of TBARS and deteriorated renal function as assessed by increased plasma creatinine, BUN and decreased creatinine and urea clearance as compared to vehicle-treated rats. The kidneys of CsA-treated rats showed severe striped interstitial fibrosis, arteriopathy, glomerular basement thickening, tubular vacuolization and hyaline casts. Quercetin (2 mg/kg) markedly reduced elevated levels of TBARS and significantly attenuated renal dysfunction and morphological changes in CsA-treated rats. It is likely that quercetin, due to its antioxidant properties, prevented CsA-induced ROS and consequently CsA nephrotoxicity. These results clearly demonstrate the pivotal role of oxidative stress and its relation to renal dysfunction, and also point to the therapeutic potential of the natural antioxidant quercetin in CsA-induced nephrotoxicity.  相似文献   

5.
Intraperitoneal injection of ferric nitrilotriacetate (Fe-NTA) to rats and mice results in iron-induced free radical injury and cancer in kidneys. This study was designed to investigate the effect of catechin, a bioflavonoid with antioxidant potential, on Fe-NTA-induced nephrotoxicity in rats. Four groups were employed in the present study. Group I served as control group, Group II animals received Fe-NTA (8 mg iron/kg body weight i.p.), Group III animals were given 40 mg/kg catechin p.o. twice a day for 4 days and on the 5th day Fe-NTA was challenged, and Group IV animals received catechin alone for 4 days. Renal function was assessed by measuring plasma creatinine and blood urea nitrogen. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, glutathione reductase and superoxide dismutase. One hour after a single intraperitoneal (i.p.) injection of Fe-NTA (8 mg iron/kg), a marked deterioration of renal architecture, renal function and severe oxidative stress was observed. Pretreatment of animals with catechin markedly attenuated renal dysfunction, reduced elevated thiobarbituric acid reacting substances (TBARS), restored the depleted renal antioxidant enzymes and normalized the renal morphological alterations. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of catechin on Fe-NTA-induced nephrotoxicity in rats.  相似文献   

6.
Treatment with cyclosporine A has significantly improved long-term survival after organ transplantations. Cyclosporine A also causes a dose-related decrease in body functions in experimental animals and human beings. The generation of reactive oxygen species has been implicated in cyclosporine A-induced dysfunctions. The aim of this study was to determine the effects of ellagic acid on cyclosporine A-induced alterations in the kidney, liver and heart oxidant/antioxidant system. The control group was treated with placebo and subcutaneous injection of 0.5 ml isotonic saline + 0.5 ml slightly alkaline solution for 21 days. The cyclosporine A group received a subcutaneous injection of cyclosporine A (15 mg/kg) + 0.5 ml slightly alkaline solution for 21 days. The ellagic acid group was treated with a subcutaneous injection of 0.5 ml isotonic saline + ellagic acid (10 mg/kg) for 21 days. The cyclosporine A plus ellagic acid group received a subcutaneous injection of cyclosporine A + ellagic acid for 21 days. Ellagic acid and slightly alkaline solution were administered by gavage. The rats were killed at the end of the treatment period. Malondialdehyde (MDA) and reduced glutathione (GSH) levels, glutathione peroxidase (GSH-Px) and catalase (CAT) activities were determined in kidney, liver and heart tissues. While administration of cyclosporine A increased the MDA levels in kidney, liver and heart tissues, it decreased the GSH, GSH-Px and CAT in these samples when compared to the control group. However, the simultaneously administration of ellagic acid markedly normalized the cyclosporine A-induced liver and heart MDA levels, liver CAT activities and GSH-Px activities of all samples. Cyclosporine A caused marked damages in the histopathological status of kidney, liver and heart tissues, which were partially ameliorated by ellagic acid administration. In conclusion, ellagic acid may be used in combination with cyclosporine A in transplantation treatment to improve the cyclosporine A-induced oxidative stress parameters and other adverse effects.  相似文献   

7.
Chander V  Chopra K 《Toxicology》2005,207(3):463-474
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. To determine if the renal alterations are mediated directly by cyclosporine or by secondary homodynamic alterations induced by cyclosporine, we evaluated if L-arginine and a nitric oxide donor, molsidomine could prevent these alterations. Eight groups of rats were employed in this study, group 1 served as control, group 2 rats were treated with CsA (20 mg/kg, s.c. for 21 days), group 3 received CsA along with L-arginine (125 mg/kg in drinking water concurrently with CsA), groups 4 and 5 received CsA along with molsidomine (5 and 10 mg/kg, p.o. 24 h before and 21 days concurrently with CsA), group 6 received CsA along with L-arginine (125 mg/l in drinking water concurrently with CsA) and L-NAME (10 mg/kg), groups 7 and 8 received L-NAME (10 mg/kg) along with CsA and molsidomine (5 and 10 mg/kg), respectively. Renal function was assessed by measuring serum creatinine, blood urea nitrogen, creatinine and urea clearance. Tissue and urine nitrite and nitrate levels were measured to estimate the total nitric oxide levels. The renal oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase and superoxide dismutase. Renal morphological alterations were assessed by histopathological examination. CsA administration for 21 days resulted in a marked renal oxidative stress, significantly deranged the renal functions as well as renal morphology. Treatment with L-arginine as well as with molsidomine significantly improved the renal dysfunction; tissue and urine total nitric oxide levels, renal oxidative stress and prevented the alterations in renal morphology. This protection against CsA nephrotoxicity was attenuated by treatment with L-NAME, clearly indicating that NO plays a pivotal role in renoprotective effect of L-arginine and molsidomine against cyclosporine nephrotoxicity.  相似文献   

8.
Nephrotoxicity associated with cyclosporine A (CsA) administration is characterized by marked renal vasoconstriction, interstitial fibrosis and arteriolar hypertrophy. The molecular mechanisms of CsA nephrotoxicity are not well characterized, but previous studies have demonstrated that angiotensin II (Ang II), the primary mediator of renin-angiotensin system (RAS) cascade plays a role in its pathogenesis. Recent studies also suggest an involvement of reactive oxygen species (ROS) in CsA nephrotoxicity. There is emerging evidence that Ang II induces oxidative stress in vitro and in vivo. The aims of this study were to investigate the role of Ang II-induced oxidative stress in CsA nephrotoxicity, and to examine the effects of the insurmountable Ang II type 1 (AT (1)) receptor antagonist, candesartan on CsA-induced nephrotoxicity in rats. Candesartan cilexetil (1.0 mg kg (-1), perorally (p.o.), once a day) was administered 24 h before and 21 days concurrently with CsA (20 mg kg(-1), subcutaneously (s.c.)). Tissue lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS). Renal function was assessed by estimating serum creatinine, blood urea nitrogen (BUN), creatinine and urea clearance. Renal morphological alterations were assessed by histopathological examination of Haematoxylin-Eosin, PAS and Mason's trichome stained sections of the kidneys. CsA (20 mg kg (-1), s.c.) administration for 21 days produced elevated levels of TBARS and deteriorated the renal function as assessed by increased serum creatinine, BUN and decreased creatinine and urea clearance as compared to vehicle treated rats. The kidneys of CsA-treated rats showed severe striped interstitial fibrosis, arteriolopathy, glomerular basement thickening, tubular vacuolisation and hyaline casts. Candesartan cilexetil (1.0 mg kg (-1)) markedly reduced elevated levels of TBARS, significantly attenuated renal dysfunction and morphological changes in CsA-treated rats. These results clearly demonstrate the pivotal role of Ang II-induced oxidative stress and the therapeutic potential of AT (1)receptor antagonists in ameliorating CsA-induced nephrotoxicity.  相似文献   

9.
1. The present study investigated the possible protective effects of thymoquinone (TQ), a compound derived from Nigella sativa with strong anti-oxidant properties, against gentamicin (GM)-induced nephrotoxicity. 2. A total of 40 adult male Wistar albino rats was divided into four groups. Rats in the first group were injected daily with normal saline (2.5 mL/kg, i.p.) for 8 consecutive days, whereas rats in the second group received TQ (50 mg/L in drinking water) for 8 consecutive days. Animals in the third group were injected daily with GM (80 mg/kg, i.p.) for 8 consecutive days, whereas animals in the fourth group received a combination of GM (80 mg/kg, i.p.) and TQ (50 mg/L in drinking water) for 8 consecutive days. 3. Gentamicin resulted in a significant increase in serum creatinine, blood urea nitrogen (BUN), thiobarbituric acid-reactive substances (TBARS) and total nitrate/nitrite (NOx) and a significant decrease in reduced glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) and ATP levels in kidney tissues. 4. Interestingly, TQ supplementation resulted in a complete reversal of the GM-induced increase in BUN, creatinine, TBARS and NOx and decrease in GSH, GPx, CAT and ATP to control values. Moreover, histopathological examination of kidney tissues confirmed the biochemical data, wherein TQ supplementation prevents GM-induced degenerative changes in kidney tissues. 5. Data from the present study suggest that TQ supplementation prevents the development of GM-induced acute renal failure by a mechanism related, at least in part, to its ability to decrease oxidative stress and to preserve the activity of the anti-oxidant enzymes, as well as it ability to prevent the energy decline in kidney tissues.  相似文献   

10.
Singh D  Chander V  Chopra K 《Toxicology》2003,191(2-3):143-151
Intraperitoneal (i.p.) injection of ferric nitrilotriacetate (Fe-NTA) induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage, which eventually leads to high incidence of renal adenocarcinoma in rodents. This study was designed to investigate the effect of carvedilol, an antihypertensive and trimetazidine, an antiischemic, both the drugs with additional antioxidative potentials, on Fe-NTA induced nephrotoxicity in rats. One hour after a single i.p. injection of Fe-NTA (8 mg iron per kg), a marked deterioration of renal architecture and renal function as evidenced by a sharp increase in blood urea nitrogen (BUN) and serum creatinine was observed. Fe-NTA induced a significant renal oxidative stress demonstrated by elevated thiobarbituric acid reacting substances (TBARS) and reduction in activities of renal catalase, superoxide dismutase (SOD) and glutathione reductase (GR). Pretreatment of animals with carvedilol (2 mg/kg, i.p.) as well as with trimetazidine (3 mg/kg, i.p.), 30 min before Fe-NTA administration markedly attenuated renal dysfunction, reduced elevated TBARS, restored the depleted renal antioxidant enzymes and normalised the renal morphological alterations. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of carvedilol and trimetazidine on Fe-NTA-induced nephrotoxicity in rats.  相似文献   

11.
The clinical use of an immunosuppressive cyclosporine A (CsA) is limited by its serious nephrotoxic effect. Evidences have suggested the role of oxidative stress in its pathogenesis. Shallot (Allium ascalonicum L.) has recently been shown to possess antioxidative and free radical scavenging abilities. The present study was undertaken to investigate the possible beneficial effect of shallot extract on renal injury caused by CsA. Male Wistar rats were treated orally with vehicle, CsA (25 mg/kg), shallot extract (1 g/kg), and CsA plus shallot extract for 21 days. Renal function, histopathology, tissue malondialdehyde (MDA) and glutathione (GSH) levels were evaluated 24 h after the last treatment. CsA-induced nephrotoxicity was evidenced by increased blood urea nitrogen and serum creatinine, but decreased urea and creatinine clearance. The kidney of CsA treated rats exhibited severe vacuolations and tubular necrosis. CsA also induced oxidative stress, as indicated by increased renal MDA and reduced GSH concentrations. Administration of shallot extract along with CsA counteracted the deleterious effects of CsA on renal dysfunction, oxidative stress markers, and morphological changes. These data indicate the protective potential of shallot extract against CsA nephrotoxicity and suggest a significant contribution of its antioxidant property to this beneficial effect.  相似文献   

12.
Singh D  Chander V  Chopra K 《Toxicology》2004,201(1-3):143-151
Rhabdomyolysis-induced myoglobinuric acute renal failure accounts for about 10-40% of all cases of acute renal failure (ARF). Reactive oxygen intermediates have been demonstrated to play an etiological role in myoglobinuric renal failure. This study was designed to investigate the effect of naringin, a bioflavonoid with antioxidant potential, in glycerol-induced ARF in rats. Five groups of rats were employed in this study, group I served as control, group II was given 50% glycerol (8 ml/kg, intramuscularly), group III, IV, and V were given glycerol plus naringin 100, 200, and 400mg/kg p.o. route, respectively) 60 min prior to the glycerol injection. Renal injury was assessed by measuring plasma creatinine, blood urea nitrogen, creatinine, and urea clearance. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels, and by enzymatic activity of catalase, glutathione reductase, and superoxide dismutase. Glycerol treatment resulted in a marked renal oxidative stress and significantly deranged the renal functions. Pretreatment of animals with naringin 60 min prior to glycerol injection markedly attenuated renal dysfunction, morphological alterations, reduced elevated thiobarbituric acid reacting substances (TBARS), and restored the depleted renal antioxidant enzymes. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of naringin in glycerol-induced renal failure in rats.  相似文献   

13.
《Pharmacological research》2003,48(6):637-642
The aim of this study was to investigate the effects of manganese chloride on gentamicin-induced nephrotoxicity in rats. Thirty-six adult Wistar Albino rats were divided into six equal groups. They were injected with gentamicin sulfate (100 mg kg−1per day i.p.) and manganese chloride (2 or 20 mg kg−1 per day i.p.) and gentamicin together with manganese chloride for 6 days. The animals were killed 24 h after the last injection. Nephrotoxicity was biochemically and histopathologically evaluated. The concentrations of creatinine, urea, sodium and potassium in plasma, malondialdehyde (MDA) and reduced glutathione (GSH) levels, glutathione peroxidase (GSH-Px) and catalase (CAT) activities in kidney tissue were determined. Administration of gentamicin to rats induced a marked renal failure, characterized with a significant increase in plasma creatinine and urea concentrations. A significant increase in kidney MDA and a decrease in GSH concentrations were observed in gentamicin-treated rats. No change was observed in the activities of GSH-Px and CAT in rats treated with gentamicin alone. Administration of the low dose of manganese (Mn2+) produced amelioration in biochemical indices of nephrotoxicity in plasma and kidney tissue when compared to gentamicin group. The histological signs of renal proximal tubules followed a similar pattern. The high dose of Mn2+ (20 mg kg−1) caused an opposite effect on nephrotoxicity induced by gentamicin, causing exacerbation in the tubular necrosis. The results suggest that low dose of Mn2+ may have an antioxidant effect in kidneys of gentamicin administrated rats, but its high doses had no beneficial effect.  相似文献   

14.
Cadmium (Cd) is an environmental and industrial pollutant that can induce a broad spectrum of toxicological effects that affect various organs in humans and experimental animals. This study aims to investigate the effect of betaine supplementation on cadmium-induced oxidative impairment in rat kidney. The animals were divided into four groups (n = 10 per group): control, cadmium, betaine and betaine + cadmium (1) saline control group; (2) cadmium group in which cadmium chloride (CdCl2) was given orally at a daily dose of 5 mg/kg body weight for four weeks; (3) betaine group, in which betaine was given to rats at a dose of 250 mg/kg/day, orally via gavage for six weeks; (4) cadmium + betaine group in which betaine was given at a dose of 250 mg/kg/day, orally via gavage for two weeks prior to cadmium administration and concurrently during cadmium administration for four weeks. Cadmium nephrotoxicity was indicated by elevated blood urea nitrogen (BUN) and serum creatinine levels. Kidneys from cadmium-treated rats showed an increase in lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) concentration and reductions in total antioxidant status (TAS), reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px) activity, superoxide dismutase concentration (SOD) and catalase activity. Caspase-3 activity, a marker of DNA damage was also elevated in renal tissues of cadmium-treated rats. Pre-treatment of rats with betaine substantially attenuated the increase in BUN and serum creatinine levels. Betaine also inhibited the increase in TBARS concentration and reversed the cadmium-induced depletion in total antioxidant status, GSH, GSH-Px, SOD and catalase concentrations in renal tissues. Renal caspase-3 activity was also reduced with betaine supplementation. These data emphasize the importance of oxidative stress and caspase signaling cascade in cadmium nephrotoxicity and suggest that betaine pretreatment reduces severity of cadmium nephrotoxicity probably via antioxidant action and suppression of apoptosis.  相似文献   

15.
An iron chelate, ferric nitrilotriacetate (Fe-NTA), induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage, that eventually leads to high incidence of renal adenocarcinomas in rodents. This study was designed to investigate the effect of quercetin, a bioflavonoid with antioxidant potential, on Fe-NTA-induced nephrotoxicity in rats. One hour after a single intraperitoneal (i.p.) injection of Fe-NTA (8 mg iron/kg), a marked deterioration of renal architecture and renal function was observed. Fe-NTA induced a significant renal oxidative stress demonstrated by elevated thiobarbituric acid reacting substances (TBARS) and reduction in activities of renal catalase, superoxide dismutase and glutathione reductase. Pretreatment of animals with quercetin (2 mg/kg, i.p.) 30 minutes before Fe-NTA administration markedly attenuated renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of quercetin on Fe-NTA-induced nephrotoxicity in rats.  相似文献   

16.
Cyclosporine A (CsA) nephrotoxicity underweighs the therapeutic benefits of such a powerful immunosuppressant. Whether oxidative stress plays a role in such toxicity is not well delineated. We investigated the potential of green tea extract (GTE) to attenuate CsA-induced renal dysfunction in rats. Three main groups of Sprague-Dawley rats were used: CsA, GTE, and GTE plus CsA-receiving animals. Corresponding control groups were also used. CsA was administered in a dose of 20mg kg(-1) day(-1), i.p., for 21 days. In the GTE/CsA groups, the rats received different concentrations of GTE (0.5, 1.0 and 1.5%), as their sole source of drinking water, 4 days before and 21 days concurrently with CsA. The GTE group was treated with 1.5% concentration of GTE only for 25 days. A concomitant administration of GTE, to CsA receiving rats, markedly prevented the generation of thiobarbituric acid-reacting substances (TBARS) and significantly attenuated CsA-induced renal dysfunction as assessed by estimating serum creatinine, blood urea nitrogen, uric acid and urinary excretion of glucose. A considerable improvement in terms of reduced glutathione content and activity of antioxidant enzymes in the kidney homogenate of the GTE/CsA-receiving rats was observed. The activity of lysosomal enzymes, N-acetyl-beta-glucosaminidase, beta-glucuronidase and acid phosphatase was significantly inhibited following GTE co-administration. Our data prove the role of oxidative stress in the pathogenesis of CsA-induced kidney dysfunction. Supplementation of GTE could be useful in reducing CsA nephrotoxicity in rats. However, clinical studies are warranted to investigate such an effect in human subjects.  相似文献   

17.
Carboplatin, a second-generation platinum-containing anti-cancer drug, is currently being used against human cancers. High-dose carboplatin chemotherapy can cause renal tubular injury in cancer patients. We have shown a dose-dependent nephrotoxicity of carboplatin in a rat model. However, the time response of carboplatin-induced renal injury has not been explored. This study investigated the time response of carboplatin-induced nephrotoxicity in rat. Male Wistar rats (250-300 g) were divided into two groups of 30 animals each and treated as follows: (1) control (saline, intraperitoneally) and (2) carboplatin (256 mg kg(-1), intraperitoneally). The animals (n = 6) from each group were sacrificed 1-5 days after treatment. The blood and kidneys were isolated and analyzed. Plasma creatinine, blood urea nitrogen (BUN), and blood urea levels were increased significantly in response to carboplatin in a time-dependent manner, indicating potential nephrotoxicity. Carboplatin time-dependently increased the renal platinum concentration, renal xanthine oxidase activity, increased membrane lipid peroxidation (MDA) concentration, while ratio of reduced-to-oxidized glutathione (GSH/GSSG) depleted significantly, indicating oxidative renal injury. Renal anti-oxidant enzymes, such as cytosolic copper/zinc-superoxide dismutase (CuZn-SOD) and mitochondrial manganese (Mn)-SOD, catalase (CAT), and glutathione peroxidase (GSH-Px) activities were decreased significantly due to carboplatin 3-5 days post-treatment. The protein expressions of renal CuZn-SOD and Mn-SOD significantly depleted 3-5 days after carboplatin administration, indicating decline in de novo synthesis of enzyme proteins. The data suggested that carboplatin caused time-dependent oxidative renal injury, as evidenced by renal anti-oxidant depletion, enhanced lipid peroxidation, platinum content, plasma creatinine BUN, and blood urea levels in rats.  相似文献   

18.
Singh D  Chander V  Chopra K 《Toxicology》2004,201(1-3):1-8
An iron chelate, ferric nitrilotriacetate (Fe-NTA), induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage that eventually leads to high incidence of renal adenocarcinomas in rodents. This study was designed to investigate the effect of Naringin, a bioflavonoid with anti-oxidant potential, on Fe-NTA-induced nephrotoxicity in rats. One hour after a single intra-peritoneal (i.p.) injection of Fe-NTA (8 mg iron/kg body weight), a marked deterioration of renal architecture and renal function was observed. Fe-NTA induced a significant renal oxidative stress, demonstrated by elevated thiobarbituric acid reacting substances (TBARS) and reduction in activities of renal catalase, superoxide dismutase, and glutathione reductase. Pre-treatment of animals with Naringin, 60 min before Fe-NTA administration, markedly attenuated renal dysfunction, morphological alterations, reduced elevated TBARS, and restored the depleted renal anti-oxidant enzymes. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction and suggest a protective effect of Naringin on Fe-NTA-induced nephrotoxicity in rats.  相似文献   

19.
Adriamycin is a potent anticancer agent, its clinical use is limited for its marked cardiotoxicity and nephrotoxicity. The present study aimed to investigate the possible protective role of the natural antioxidant silymarin on ADR-induced heart and kidney toxicity. Studies were performed on four groups of rats. 1--control group, 2--silymarin group (50 mg/kg), 3--adriamycin group (10 mg/kg), 4--adriamycin+silymarin group. On the third day after ADR injection, plasma was separated for determination of LDH, CPK, cholesterol and total lipids. 30 days after ADR injection, plasma was separated for determination of creatinine and urea levels. Frozen heart specimens (72 h) and frozen kidney specimens (30days) were used for estimation of lipid peroxides and GSH contents. Histopathological examinations of heart and kidney sections were also done. Pretreatment of ADR-treated rats with silymarin resulted in a significant decrease in the plasma CPK, LDH, creatinine and urea. On the other hand silymarin pretreatment did not change ADR-induced hyperlipidemia. Silymarin pretreatment significantly decreased the myocardial MDA contents. In addition, silymarin pretreatment normalized renal tissue contents of MDA and GSH. Histopathological examination of heart and kidney sections revealed that ADR caused only mild myocardial injury in silymarin pretreated rats. Also, silymarin pretreatment inhibited ADR-induced renal tubular damage in rats. These results have suggested that, silymarin ameliorated ADR-induced cardiotoxicity and protected against ADR-induced nephrotoxicity in male albino rats. The mechanisms of silymarin induced protection against ADR-induced toxicities were proved to be due to inhibition of lipid peroxidation and protection against GSH depletion.  相似文献   

20.
The aim of the present investigation was to evaluate the protective effect of a 70% methanolic leaf extract of Cyclea peltata Lam on cisplatin-induced renal toxicity. The concentration of creatinine, urea, sodium, and potassium in serum and levels of malonyldyaldehyde (MDA), glutathione (GSH), as well as gluathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities were determined in kidney tissue. The marked cisplatin-induced renal damage, characterized by a significant increase in creatinine and urea levels, decreased in extract-treated group, whereas sodium and potassium levels did not change significantly. C. peltata Lam extract significantly changed the increased MDA level and decreased GSH levels found in rats treated with cisplatin alone. The reduced activities of GSH-Px, SOD, and CAT in groups treated with cisplatin alone were significantly increased by the extract. The protective effect was greater in the post-treated than in the pre-treated group of animals. The results indicate that the post-treatment of C. peltata Lam extract might effectively ameliorate the oxidative stress parameters observed in cisplatin induced renal toxicity and could be used as a natural antioxidant against cisplatin-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号