首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Enzyme activities were determined in pools of type I (slow twitch) and II A and II B (fast twitch) fibres of the thigh muscle from individuals engaged to a high degree in physical training of an endurance character and from non-endurance-trained controls. The endurance-trained (ET) group had significantly higher activity levels of the mitochondrial enzymes citrate synthase, malate dehydrogenase, and 3-OH-acylCoA dehydrogenase both in type I (2.1X, 1.7X, 1.4X) and in type II A (2.3X, 1.8X, 1.4X) and II B fibres (2.0X, 1.5X, 1.5X) than the non-endurance-trained (NET) group. Of the glycolytic enzymes, phosphofructokinase (PFK) in type I fibres was significantly higher (1.8X) in the ET than in the NET group whereas glyceraldehydephosphate dehydrogenase (GAPDH) in type I fibres was similar in the two groups. In type II fibres both PFK and GAPDH levels tended to be higher in the ET group. Lactate dehydrogenase (LDH) of both fibre types were not different in the two groups. Type I fibres differed significantly from type II fibres for all the six enzymes measured in both groups. However, no significant difference between fibres of types II A and II B was found. The results indicate that fibres of types I, II A and II B in human skeletal muscle all possess great adaptability with regard to their oxidative capacity. Furthermore, the data suggest that extensive endurance training may enhance the glycolytic capacity in both type I and type II fibres although the glycolytic capacity of the muscle as a whole generally is low in endurance trained subjects owing to a predominance of type I fibres. It is concluded that further studies are needed to determine whether there is a metabolic distinction between fibres of types II A and II B.  相似文献   

2.
The specificity in location of angiogenesis to either glycolytic or oxidative fibre types, or muscle regions, was examined in the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of rat. Angiogenesis was induced by mechanical means either with (chronic muscle stimulation) or without (muscle stretch by overload) changes in blood flow, treatments which invoked only minor changes in fibre type and fibre size. Proliferation estimated by PCNA labelling of cells co-localised with capillaries was very rare in control muscles, where it occurred mainly in the glycolytic regions, but was increased in both models of angiogenesis. However, when labelled capillaries were scored according to the type of surrounding fibres, only muscle stimulation significantly accentuated proliferation of capillaries surrounded by glycolytic fibres. We conclude that while mechanical stimuli are important for proliferation in glycolytic regions in both models, capillary growth occurs specifically around glycolytic fibres in that region when the angiogenic stimulus includes increased blood flow and/or increased metabolic demand.  相似文献   

3.
Enzyme activities were determined in pools of type I (slow twitch) and IIA and II B (fast twitch) fibres of the thigh muscle from individuals engaged to a high degree in physical training of an endurance character and from non-endurance-trained controls. The endurance-trained (ET) group had significantly higher activity levels of the mitochondrial enzymes citrate synthase, malate dehydrogenase, and 3-OH-acylCoA dehydrogenase both in type I (2.1×, 1.7×, 1.4×) and in type IIA (2.3×, 1.8×, 1.4×) and IIB fibres (2.0×, 1.5 ×, 1.5×) than the non-endurance-trained (NET) group. Of the glycolytic enzymes, phosphofructokinase (PFK) in type I fibres was significantly higher (I.8×) in the ET than in the NET group whereas glyceraldehydephosphate dehydrogenase (GAPDH) in type I fibres was similar in the two groups. In type II fibres both PFK and GAPDH levels tended to be higher in the ET group. Lactate dehydrogenase (LDH) of both fibre types were not different in the two groups. Type 1 fibres differed significantly from type II fibres for all the six enzymes measured in both groups. However, no significant difference between fibres of types IIA and IIB was found. The results indicate that fibres of types I, IIA and IIB in human skeletal muscle all possess great adaptability with regard to their oxidative capacity. Furthermore, the data suggest that extensive endurance training may enhance the glycolytic capacity in both type I and type II fibres although the glycolytic capacity of the muscle as a whole generally is low in endurance trained subjects owing to a predominance of type I fibres. It is concluded that further studies are needed to determine whether there is a metabolic distinction between fibres of types IIA and IIB.  相似文献   

4.
The quadriceps muscles from 20- 30- and 70-year-old clinically healthy men and women were studied regarding maximal isometric and isokinetic muscle torque in Newton metres (Nm), morphology and enzyme activity. Biopsy specimens were taken from the vastus lateralis muscle and freeze-dried, and individual fibres were dissected out and identified as type I or type II. The activities of citrate synthase (CS), 3-OHacyl-coA dehydrogenase (HAD), lactate dehydrogenase (LDH), myokinase (MK) and creatine phosphokinase (CPK) were determined in pools of type I and type II fibres. In both age groups a higher oxidative (CS, HAD, 1.3-1.5 x) and a lower glycolytic (LDH, 0.7 x) capacity was found in type I than in type II fibres. The myokinase activity was higher in type II (2 x) than in type I, whereas CPK activity was similar. The young men showed higher CS activity in both type I and type II fibres (1.5 x) and higher CPK activity in type I fibres (1.4 x) than the young women. There were only minor changes in oxidative or glycolytic capacities in relation to age. Myokinase was the only enzyme that decreased markedly with age in both pools of fibre types. Type II fibre area and mean fibre area correlated significantly to muscle torque in both sexes. In men, myokinase activity in type II fibres was significantly correlated to type II fibre area and to maximal muscle torque.  相似文献   

5.
Combined cytophotometric and morphometric analysis of muscle fibre properties and myosin heavy chain electrophoresis were performed on extensor digitorum longus and soleus muscles from healthy rats and rats with streptozotocin-induced diabetes. Moreover, the protective effect of Ginkgo biloba extract, a potent oxygen radical scavenger, on diabetic muscles was investigated. Changes in fibre type-related enzyme activities, fibre type distribution, fibre cross areas and myosin isoforms were found. In muscles of diabetic rats, a metabolic shift was measured mainly in fibres with oxidative metabolism. Fast-oxidative glycolytic fibres showed a shift to more glycolytic metabolism and about a third transformed into fast-glycolytic fibres. Slow-oxidative fibres became more oxidative. Fibre atrophy was measured in diabetic muscles dependent on fibre type and muscle. Different fibre types atrophied to a different degree. Therefore, a decreased area percentage of slow fibres and an increased area percentage of fast fibres of the whole muscle cross section in both muscles were found. This is supported by reduced slow and increased fast myosin heavy chain isoforms. These alterations of diabetic muscle fibres could be due to less motion of diabetic rats and diabetic neuropathy. After treatment with Ginkgo biloba extract, enzyme activities were increased mainly in oxidative fibres of diabetic muscles, which was interpreted as protective effect. Generally, the soleus muscle with predominant oxidative metabolism was more vulnerable to diabetic alterations and Ginkgo biloba extract treatment than the extensor digitorum longus muscle with predominant glycolytic metabolism.  相似文献   

6.
This study primarily examined how intermittent versus continuous endurance training, using similar or dissimilar volumes, affected muscle fibre enzyme activities in the triceps brachii muscle. Thirty-two subjects performed either intermittent (60% of 1RM) or continuous (30% of 1RM) elbow extensions 3 times week−1 in a training apparatus. Training was performed until either a low (five) or a high volume (8 weeks) was accumulated. Muscle biopsies from the m. triceps brachii were taken pre- and post training and following 8 weeks of detraining. Marker enzymes for muscle fibre oxidative (succinate dehydrogenase SDH) and glycolytic (glycerophosphate dehydrogenase; α-GPDH) capacity was assessed by histochemistry, and the resulting enzyme activities measured by image analysis. The type of training affected enzyme activities differently. In type 1 fibres, continuous and intermittent training was equally effective in increasing SDH activity, while intermittent training increased SDH activity more than continuous training in type 2 fibres (P < 0.05). Intermittent training increased α-GPDH activity more than continuous training both in type 1 (P < 0.001) and type 2 fibres (P < 0.05), but the increase in glycolytic capacity following intermittent training was larger in type 1 (54%) than in type 2 fibres (23%). There was no effect of training volume on oxidative or glycolytic capacity in either fibre type. Thus, when training intensity is sufficient to stimulate to increases in oxidative and glycolytic capacity, the SDH and α-GPDH response seems to be volume independent. Detraining reduced Post-T enzyme activities to baseline (all; P < 0.01).  相似文献   

7.
Simvastatin and cerivastatin have been used to investigate the development of statin-induced muscle necrosis in the rat. This was similar for both statins and was treatment-duration dependent, only occurring after 10 days had elapsed even if the dose was increased, and still occurring after this time when dosing was terminated earlier as a result of morbidity. It was then widespread and affected all areas of the muscular system. However, even when myotoxicity was severe, particular individual muscles and some types of fibres within affected muscles were spared consistently. Fibre typing of spared muscles and of acutely necrotic fibres within affected muscles indicated a differential fibre sensitivity to statin-induced muscle necrosis. The fibres showed a necrotic response to statin administration that matched their oxidative/glycolytic metabolic nature: Least sensitive --> I < - > IIA < - > IID < - > IIB <-- most sensitive. Type I and IIB fibres represent metabolic extremes of a continuum of metabolic properties through the fibre types with type I fibres most oxidative in metabolism and type IIB fibres most glycolytic. In addition, in some (nonnecrotic) glycolytic fibres from muscles showing early multifocal single fibre necrosis the only subcellular alterations present in isolation of any other changes were mitochondrial. These changes were characterised by an increased incidence of vacuolation and the formation of myelinoid vesicular bodies that accumulated in the subsarcolemmal areas. These findings suggest an important early involvement of mitochondria in selective glycolytic muscle fibre necrosis following inhibition of the enzyme HMG-CoA reductase.  相似文献   

8.
The expression of the Na+/H+ exchanger isoform NHE1 was quantified in homogenates of various rat skeletal muscles by means of immunoblotting, and the effect of 3 weeks of treadmill training on NHE1 expression was determined in a red (oxidative) as well as a white (glycolytic)‐muscle preparation. The NHE1 antibodies recognized a glycosylated protein at 101–111 kDa. There was a positive correlation between the NHE1 expression in the muscle and percent type IIB fibres and percent type IID/X fibres, whereas the NHE1 expressions were negatively correlated to percent type I fibres and percent type I + IIA fibres. Thus the highest NHE1 expression was evident in the most glycolytic fibres. Treadmill training increased (P < 0.05) the NHE1 content by 29 and 36% in oxidative and glycolytic fibres, respectively, suggesting that training enhanced the NHE1 content of all muscle‐fibre types. Therefore training may improve the capacity for pH regulation in skeletal muscle.  相似文献   

9.
Vastus medialis muscles of patients with chronic anterior instability of the knee after anterior cruciate ligament rupture were analysed to investigate changes in defined muscle fibres of the diseased leg in comparison to the healthy leg of the same patient. Metabolic and morphological parameters were obtained by cytophotometrical measurements of the activities of succinate dehydrogenase (a marker of oxidative metabolism) and glycerol-3-phosphate dehydrogenase (a marker of glycolytic metabolism) of slow-oxidative (SO), fast-oxidative glycolytic (FOG) and fast-glycolytic (FG) fibre types in serial sections and by measuring the minimal fibre diameters of type I (slow) and type II (fast) fibres. We found decreased glycolytic activity and a shift to more oxidative metabolism in each fibre type suggesting diminished fast force and shift to endurance force development. The latter was interpreted as a sign of active compensation for the knee instability. Significantly decreased minimal fibre diameters to 85.9% in type I fibres, and to 88.7% in type II fibres of the diseased muscle were measured, indicating the fibre atrophy. Our findings suggest that the atrophied muscle fibres of the affected vastus medialis muscle adapt to the altered conditions by changing their metabolic profile. Muscle fibres of different types were found to be affected similarly.  相似文献   

10.
Summary Twenty 4-week-old Wistar rats exercised voluntarily in running wheels each day for 45 days. Fibre type composition, fibre cross-sectional area and the number of capillaries around a fibre of the slow-twitch soleus and fast-twitch plantaris muscles were examined and compared with animals which had no access to running wheels. The exercise group had a higher percentage of fast-twitch oxidative glycolytic (FOG) fibres and a lower percentage of fast-twitch glycolytic (FG) fibres in the deep portion of the plantaris muscle. The area of FOG fibres in the surface portion of the plantaris muscle was also greater in the exercise group. In the exercised animals, there was a positive relationship between the running distance and the area of FOG fibres in both the deep and surface portions of the plantaris muscle. In addition, the running distance correlated positively with the percentage of FOG fibres and negatively with that of FG fibres in the deep portion of the plantaris muscle. There were no relationships between the running distance and fibre type composition, or fibre area and capillary supply in the soleus muscle. These results suggested that the increase in the percentage and area of FOG fibres in the fast-twitch muscle was closely related to voluntary running.  相似文献   

11.
The expression of the Na(+)/H(+) exchanger isoform NHE1 was quantified in homogenates of various rat skeletal muscles by means of immunoblotting, and the effect of 3 weeks of treadmill training on NHE1 expression was determined in a red (oxidative) as well as a white (glycolytic)-muscle preparation. The NHE1 antibodies recognized a glycosylated protein at 101-111 kDa. There was a positive correlation between the NHE1 expression in the muscle and percent type IIB fibres and percent type IID/X fibres, whereas the NHE1 expressions were negatively correlated to percent type I fibres and percent type I + IIA fibres. Thus the highest NHE1 expression was evident in the most glycolytic fibres. Treadmill training increased (P < 0.05) the NHE1 content by 29 and 36% in oxidative and glycolytic fibres, respectively, suggesting that training enhanced the NHE1 content of all muscle-fibre types. Therefore training may improve the capacity for pH regulation in skeletal muscle.  相似文献   

12.
Adult male Sprague-Dawley rats were randomly assigned to two groups: control and anaemic. Anaemia was induced by periodical blood withdrawal. Extensor digitorum longus and soleus muscles were excised under pentobarbital sodium total anaesthesia and processed for transmission electron microscopy, histochemical and biochemical analyses. Mitochondrial volume was determined by transmission electron microscopy in three different regions of each muscle fibre: pericapillary, sarcolemmal and sarcoplasmatic. Muscle samples sections were also stained with histochemical methods (SDH and m-ATPase) to reveal the oxidative capacity and shortening velocity of each muscle fibre. Determinations of fibre and capillary densities and fibre type composition were made from micrographs of different fixed fields selected in the equatorial region of each rat muscle. Determination of metabolites (ATP, inorganic phosphate, creatine, creatine phosphate and lactate) was done using established enzymatic methods and spectrophotometric detection. Significant differences in mitochondrial volumes were found between pericapillary, sarcolemmal and sarcoplasmic regions when data from animal groups were tested independently. Moreover, it was verified that anaemic rats had significantly lower values than control animals in all the sampled regions of both muscles. These changes were associated with a significantly higher proportion of fast fibres in anaemic rat soleus muscles (slow oxidative group = 63.8%; fast glycolytic group = 8.2%; fast oxidative glycolytic group = 27.4%) than in the controls (slow oxidative group = 79.0%; fast glycolytic group = 3.9%; fast oxidative glycolytic group = 17.1%). No significant changes were detected in the extensor digitorum longus muscle. A significant increase was found in metabolite concentration in both the extensor digitorum longus and soleus muscles of the anaemic animals as compared to the control group. In conclusion, hypoxaemic hypoxia causes a reduction in mitochondrial volumes of pericapillary, sarcolemmal, and sarcoplasmic regions. However, a common proportional pattern of the zonal distribution of mitochondria was maintained within the fibres. A significant increment was found in the concentration of some metabolites and in the proportion of fast fibres in the more oxidative soleus muscle in contrast to the predominantly anaerobic extensor digitorum longus.  相似文献   

13.
Approximately 50 per cent of all chronic alcohol misusers have alcoholic muscle disease. Chronic alcoholic skeletal muscle myopathy is characterized by a selective atrophy of type II fibres, so that up to 20 per cent of the entire skeletal musculature is lost. The pathogenetic mechanism for the myopathy is currently unknown but a model has been described in which various anatomically-distinct skeletal muscles are employed to reflect type I and II fibres, i.e. the soleus and plantaris, respectively. In chronic studies, rats were fed nutritionally complete liquid diets containing either ethanol or glucose (controls) for up to 6 weeks. In acute studies, rats were given single boluses of ethanol and rates of protein synthesis were examined at 2.5 h. The results show that the myopathy is due to defective skeletal muscle protein synthesis. The information gained from these studies enhances our understanding of skeletal muscle diseases characterized by preferential effects on anaerobic fibres and should be applicable to disease processes in other toxic or metabolic myopathies.  相似文献   

14.
Summary The aim of this report is to elucidate the effects of exercise training on metabolic properties of different muscle fibre types of the rat hindlimb. Single muscle fibres were dissected from soleus (SOL) or extensor digitorum longus (EDL) muscles of Wistar strain male rats trained on a treadmill for 16 weeks. Each fibre was typed histochemically (SO, slow-twitch oxidative; FOG, fast-twitch oxidative glycolytic; FG, fast-twitch glycolytic). Then glycolytic and oxidative enzymes (CK, LDH, PFK, PK, SDH, and MDH) activities were measured biochemically. Slow,-type fibres (SO) were hypertrophied following endurance training and fast-twitch fibres (FOG and FG) were hypertrophied following sprint training. In EDL muscles the distribution of the slow-type fibres was reduced following the sprint training. The activity of glycolytic enzymes increased significantly in the fast-type fibres (FOG and FG) following sprint training, while oxidative enzymes activities increased in both fast (FOG and FG) and slow (SO) muscle fibres following the endurance training. Neither glycolytic nor oxidative enzymes' activities always increased equally in all types of fibre following exercise training. Consequently, the metabolic profiles in each type of single muscle fibre were affected differently by different intensities of exercise training. These results suggest that the functional (enzymes activity) and structural (muscle fibre hypertrophy) changes of skeletal muscle fibre following exercise training appeared gradually, and would be controlled by different factors.  相似文献   

15.
Summary Creatine kinase (CK) isoenzyme compositions of different types of single muscle fibres dissected from soleus (SOL) and extensor digitorum longus (EDL) muscles from rats were examined. CK isoenzymes were separated into cytoplasmic (CK-MM, CK-MB, CK-BB) (muscle, brain and hybrid types, respectively) and mitochondrial (m-CK) isoenzymes. Total CK and CK-MM activities showed the highest activities in fast-twitch glycolytic fibres (FG), lower in fast-twitch oxidative glycolytic (FOG) and the lowest in slow-twitch oxidative (SO) fibres. Conversely, the activity of m-CK was highest in SO, lowest in FG and intermediate in FOG fibres. The activity of CK-MB was highest in SO and lower in FOG and FG fibres. However, the activities of total CK and CK isoenzymes in a single muscle fibre type were not distinguishable from those of another type, and the profiles of CK isoenzyme compositions from the same type of single muscle fibres overlapped over a considerable range. The relationships between the four CK isoenzymes activities in single muscle fibres of different types were not similar. These results suggest that CK isoenzymes of single muscle fibres of different types play different roles in intracellular energy metabolism. Therefore, it is supposed that the CK isoenzyme compositions of single muscle fibres are suitable for their contractive and metabolic properties.  相似文献   

16.
We have analysed the fibre type composition of soleus and extensor digitorum longus (EDL) muscles of normal female 4-6-month-old inbred Lewis rats. This rat strain is used in our ongoing study of the effects of thyroid hormone on myosin heavy chain (MyHC) isoform expression. On the basis of the mATPase reaction, soleus muscles contained 96.1 +/- 2.9% of type 1 fibres supplemented by 2A fibres. EDL muscles contained type 1 (5.5 +/- 1.0%), type 2A (18.8 +/- 1.7%) and type 2B (75.7 +/- 2.2%) fibres. Immunohistochemical analysis and SDS gel electrophoresis confirmed that most fibres in the soleus muscle expressed the type 1 (slow) MyHC isoform and that only a small proportion of fibres expressed the fast 2a MyHC isoform. Immunohistochemical analysis and SDS gel electrophoresis demonstrated that almost half of the 2B fibres of EDL muscles expressed the 2x/d MyHC isoform. In both muscle types, many fibres expressed more than one MyHC isoform. The content of slow fibres in the soleus muscle of female inbred Lewis rats was slightly higher than that reported for Wistar rats, but was considerably higher than that of Sprague-Dawley rats, whereas substantial differences were not found in the proportion of slow and fast fibre types in EDL muscles in these strains.  相似文献   

17.
Muscle fibre type composition and distribution in the biceps brachii (long head) and triceps brachii (long head) of the rat and rabbit were investigated using the following histochemical techniques: myosin ATPase, with preincubation at pH 10.4 and 4.35; succinate dehydrogenase (SDH) and glycogen phosphorylase. The muscle fibres were classified into slow-twitch (SO), fast-twitch glycolytic (FG), fast-twitch oxidative glycolytic (FOG and FOg) and fast-twitch oxidative fibres (FO). Significant differences in the regional distribution of muscle fibre types have been observed between the rat and the rabbit. In the rat, SO fibres were restricted to the deep regions of both biceps and triceps brachii, whereas FG fibres were located in the intermediate and superficial regions (the superficial regions contained the highest percentages of FG fibres). In the rabbit, SO and FG fibres were spread over the entire muscle, although SO and FG fibres were most abundant in the deep and superficial regions respectively. These findings indicate that the biceps and triceps brachii are more regionalised in the rat than in the rabbit.  相似文献   

18.
Histochemical studies and quantitative assays were undertaken on bovine cardiac muscle, chewing muscles, muscles involved partly in chewing or partly in respiration, muscles of the trunk and the extremities and smooth muscles. Activities of total lactate dehydrogenase, creatine phosphokinase and 1,6-diphosphate-aldolase, as well as lactate dehydrogenase isoenzyme determinations were carried out.Bovine cardiac muscle showed a well-developed oxidative enzyme system and very low glycolytic enzyme activities. Histochemically it demonstrated a uniform distribution of the enzymes. Similar findings were obtained in bovine chewing muscles and it was suggested that these muscles are composed of βR fibres only.The group of muscles involved partly in chewing or partly in respiration showed high oxidative enzyme activities and a moderately developed glycolytic enzyme system. These muscles seem to be composed of αR fibres or of a mixture of αR and βR fibres.The muscles of the trunk and the extremities have a highly developed glycolytic enzyme system and appear to be composed mainly of αR and αW fibres.The smooth muscles appeared to have a less developed oxidative enzyme system than cardiac muscle or chewing muscles, but a glycolytic enzyme activity close to that of muscles partly involved in chewing or respiration. Thus the aerobic and glycolytic metabolism of the smooth muscles appears to be specially adapted to their physical activity.  相似文献   

19.
Summary Single muscle fibres from soleus (SOL) as well as extensor digitorum longus (EDL) muscles from Wistar male rats in relaxing solution were divided into three types by their histochemical features — slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), or fast-twitch glycolytic (FG) fibres. The relationship between ultrastructural profiles (mitochondrial volume, number, and Z-line width) and metabolic profiles (glycolytic and oxidative enzymes' activity) were analysed using the same types of fibres dissected from different SOL and EDL muscles using stereological and biochemical techniques. The Z-line width is specialized in different fibre types. Fast-twitch (FG and FOG) fibres have narrow Z-line width compared to slow-twitch (SO) fibre in SOL and EDL muscles. A significant difference was observed between SOL muscle SO and FOG fibres and EDL muscle SO and FOG fibres. All glycolytic (lactate dehydrogenase (LDH), phosphofructokinase (PFK), pyruvate kinase (PK) and creatine kinase (CK) activities in FOG fibres from EDL muscles were significantly higher (p<0.01) than those dissected from SOL muscles. The oxidative enzyme (succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) activity in SO and FOG fibres dissected from SOL muscle were significantly higher (p<0.01) than those dissected from EDL muscles. Mitochondrial volume and number in SO fibres dissected from SOL muscle were significantly higher (volume,p<0.01, number,p<0.01) than those dissected from EDL muscles. A significant difference was not observed in mitochondrial volume of FOG fibres between SOL and EDL muscles. Significant positive correlation was observed in FOG (p<0.05) and FG (p<0.01) fibres between mitochondrial volume and number dissected from EDL muscle.The results suggest that the same type of single muscle fibres in different muscles have different ultrastructural and metabolic profiles, and these profiles resembled those of the fibre types primarily constituting those muscles.  相似文献   

20.
This study investigates early adaptive responses of fast-twitch muscle to increased contractile activity by low-frequency stimulation. Changes in metabolite levels and activities of regulatory enzymes of carbohydrate metabolism were investigated in rabbit tibialis anterior muscle after 24 h of stimulation. In addition, changes elicited during a 5-min lasting acute stimulation experiment were compared between 24-hprestimulated and contralateral control muscles. Stimulation for 5 min reduced energy-rich phosphates and glycogen, and increased lactate in the control muscle. A transient elevation of fructose 2,6-bisphosphate demonstrated that activation of phosphofructokinase 2 was an immediate response to contractile activity. Prestimulated muscles displayed nearly normal values for ATP, phosphocreatine and glycogen, and did not augment lactate. Increased activities of hexokinase and phosphofructokinase 2 and permanently elevated levels of fructose 2,6-bisphosphate pointed to enhanced glycolysis with glucose as the main fuel in the prestimulated muscle. Isometric tension of the control muscle decreased rapidly a few minutes after the onset of stimulation. In the prestimulated muscles, tension was almost stable, but amounted to only 30%–40% of the initial tension of the control muscle. In view of the fibre type distribution of rabbit tibialis anterior, these findings suggested that a large fibre fraction of the prestimulated muscle, possibly the glycolytic type IID fibres, did not contract. Therefore, the possibility must be considered that the metabolite pattern of the 24-h-stimulated muscle primarily reflected metabolic activities of the contracting, less fatigable fibres, most likely type IIA and type I fibres. The suggestion that a large fibre fraction did not produce force, in spite of metabolic recovery, points to factors responsible of their refractoriness to low-frequency stimulation other than metabolic exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号