首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose:

To extend the parameter restrictions of a silent echo‐planar imaging (sEPI) sequence using sinusoidal readout (RO) gradients, in particular with increased spatial resolution. The sound pressure level (SPL) of the most feasible configurations is compared to conventional EPI having trapezoidal RO gradients.

Materials and Methods:

We enhanced the sEPI sequence by integrating a parallel acquisition technique (PAT) on a 3 T magnetic resonance imaging (MRI) system. The SPL was measured for matrix sizes of 64 × 64 and 128 × 128 pixels, without and with PAT (R = 2). The signal‐to‐noise ratio (SNR) was examined for both sinusoidal and trapezoidal RO gradients.

Results:

Compared to EPI PAT, the SPL could be reduced by up to 11.1 dB and 5.1 dB for matrix sizes of 64 × 64 and 128 × 128 pixels, respectively. The SNR of sinusoidal RO gradients is lower by a factor of 0.96 on average compared to trapezoidal RO gradients.

Conclusion:

The sEPI PAT sequence allows for 1) increased resolution, 2) expanded RO frequency range toward lower frequencies, which is in general beneficial for SPL, or 3) shortened TE, TR, and RO train length. At the same time, it generates lower SPL compared to conventional EPI for a wide range of RO frequencies while having the same imaging parameters. J. Magn. Reson. Imaging 2012;36:581–588. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses.  相似文献   

3.
Functional magnetic resonance imaging (fMRI) has become the method of choice for studying the neural correlates of cognitive tasks. Nevertheless, the scanner produces acoustic noise during the image acquisition process, which is a problem in the study of auditory pathway and language generally. The scanner acoustic noise not only produces activation in brain regions involved in auditory processing, but also interferes with the stimulus presentation. Several strategies can be used to address this problem, including modifications of hardware and software. Although reduction of the source of the acoustic noise would be ideal, substantial hardware modifications to the current base of installed MRI systems would be required. Therefore, the most common strategy employed to minimize the problem involves software modifications. In this work we consider three main types of acquisitions: compressed, partially silent, and silent. For each implementation, paradigms using block and event-related designs are assessed. We also provide new data, using a silent event-related (SER) design, which demonstrate higher blood oxygen level-dependent (BOLD) response to a simple auditory cue when compared to a conventional image acquisition.  相似文献   

4.
In awake animal and human auditory cortices, it is a common experience with electrophysiological and suitable imaging methods for responses to steady stimulation to be strongly state-dependent and to exhibit nonstationarities, even over short periods of observation. If such nonstationary behavior is also reflected by hemodynamic responses in the human auditory cortex, conventional methods of analysis of fMRI data, although applicable for instance to largely stationary responses in visual and other cortices, may be misleading in attempts to parcellate auditory cortex into fields and to demonstrate functional maps. Time-Windows, described in this article as a convenient tool for the detection and analysis of time-variant brain activities, solves some of these problems. Time-Windows demonstrates that activity is evoked reliably in three separate territories of human auditory cortex, parts of which may show nonstationary behavior, depending on the auditory stimuli and tasks.  相似文献   

5.
PURPOSE: To compare the temporal behaviors of perfusion and blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in the detection of timing differences between distinct brain areas, and determine potential latency differences between stimulus onset and measurable fMRI signal in sensory cortices. MATERIALS AND METHODS: Inversion recovery (IR) spin-echo echo-planar imaging (EPI) and T2*-weighted gradient-echo EPI sequences were used for perfusion- and BOLD-weighted experiments, respectively. Simultaneous auditory and visual stimulations were employed in an event-related (ER) paradigm. Signal time courses were averaged across 40 repeated trials to evaluate the onset of activation and to determine potential differences of activation latency between auditory and visual cortices and between these scanning methods. RESULTS: Temporal differences between visual and auditory areas ranged from 90-200 msec (root-mean-square (RMS) = 134 msec) and from -80 to 930 msec (RMS = 604 msec) in perfusion and BOLD measurements, respectively. The temporal variability detected with BOLD sequences was larger between subjects and was significantly greater than that in the perfusion response (P < 0.04). The measured time to half maximum (TTHM) values for perfusion imaging (visual, 3260 +/- 710 msec; auditory, 3130 +/- 700 msec) were earlier than those in BOLD responses (visual, 3770 +/- 430 msec; auditory, 3360 +/- 460 msec). CONCLUSION: The greater temporal variability between brain areas detected with BOLD could result from differences in the venous contributions to the signal. The results suggest that perfusion methods may provide more accurate timing information of neuronal activities than BOLD-based imaging.  相似文献   

6.
When constructing MR images from acquired spatial frequency data, it can be beneficial to apply a low-pass filter to remove high frequency noise from the resulting images. This amounts to attenuating high spatial frequency fluctuations that can affect detected MR signal. A study is presented of spatially filtering MR data and possible ramifications on detecting regionally specific activation signal. It is shown that absolute activation levels are strongly dependent on the parameters of the filter used in image construction and that significance of an activation signal can be enhanced through appropriate filter selection. A comparison is made between spatially filtering MR image data and applying a Gaussian convolution kernel to statistical parametric maps.  相似文献   

7.
Receiver operating characteristic (ROC) methods are useful tools for evaluating the sensitivity and specificity of various postprocessing algorithms used in fMRI data analysis. New ROC methods using real fMRI data are proposed that improve a previously introduced method by Le and Hu (Le and Hu, NMR Biomed 1997;10:160-164). The proposed methods provide more accurate means of estimating the true ROC curve from real data and thereby aid in the comparative evaluation of a wide range of postprocessing tools in fMRI. The mathematical relationships between different ROC curves are explored for a comparison of different ROC methods. Examples using real and simulated data are provided to illustrate the ideas involved.  相似文献   

8.
Simultaneous recording of electroencephalogram (EEG) and functional MRI (fMRI) or MR spectroscopy (MRS) can provide further insight into our understanding of the underlying mechanisms of neurologic disorders. Current technology for simultaneous EEG and MRI recording is limited by extensive postacquisition processing of the data. Real-time display of artifact-free EEG recording during fMRI/MRS studies is essential in studies that involve epilepsy to ensure that they address specific EEG features such as epileptic spikes or seizures. By optimizing the EEG recording equipment to maximize the common mode rejection ratio of its amplifiers, a unique EEG system was designed and tested that allowed real-time display of the artifact-free EEG during fMRI/MRS in an animal model of epilepsy. Spike recordings were optimized by suppression of the background EEG activity using fast-acting and easily controlled inhalational anesthesia. Artifact suppression efficiency of 70-100% was achieved following direct subtraction of referentially recorded filtered EEG tracings from active electrodes, which were located in close proximity to each other (over homologous occipital cortices) and a reference electrode. Two independent postacquisition processing tools, independent component analysis and direct subtraction of unfiltered digital EEG data in MATLAB, were used to verify the accuracy of real-time EEG display.  相似文献   

9.
Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI.  相似文献   

10.
A saturation-based approach is proposed to image the arterial blood flow signal with temporal resolution of 1 to 2 s and in-plane spatial resolution of a few millimeters. Using a saturation approach to suppress the undesired background stationary signal allows the blood water that enters the slice to be imaged at some specified later time. Since the blood protons that are being imaged are not restricted to the intravascular space, this technique is also sensitive to tissue perfusion signal contributions. The signal uptake characteristics of the saturation method proposed were used to study the different signal contributions as a function of the acquisition parameters. A typical perfusion acquisition (FAIR) was also used for comparison. The proposed method was demonstrated in a functional motor activation experiment and the observed signal changes were smaller than those obtained using the FAIR acquisition. The dynamics of the saturation method and FAIR temporal signal changes were investigated and time constants between 2 and 44 s were estimated. The tissue signal contribution to the saturation method's signal was small over the range of acquisition parameters that sensitized it to the arterial compartment.  相似文献   

11.
12.
PURPOSE: To develop a safe functional magnetic resonance imaging (fMRI) procedure for auditory assessment of deaf subjects. MATERIALS AND METHODS: A gold-plated tungsten electrode has been developed which has zero magnetic susceptibility. Used with carbon leads and a carbon reference pad, it enables safe, distortion-free fMRI studies of deaf subjects following direct electrical stimulation of the acoustic nerve. Minor pickup of the radio frequency (RF) pulses by the electrode assembly is difficult to eliminate, and a SPARSE acquisition sequence is used to avoid any effects of unintentional auditory nerve stimulation. RESULTS: The procedure is demonstrated in a deaf volunteer. Activation is observed in the contralateral but not the ipsilateral primary auditory cortex. This is in sharp contrast to studies of auditory processing in hearing subjects, but consistent with the small number of previous positron emission tomography (PET) and MR studies on adult deaf subjects. CONCLUSION: The fMRI procedure is able to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for preoperative assessment of candidates for cochlear implantation.  相似文献   

13.

Purpose:

To present online scanner noise cancellation for speech acquired in functional magnetic resonance imaging (fMRI) studies.

Materials and Methods:

An online active noise cancellation method for speech acquired in fMRI studies was developed. The approach consists of two automated steps: 1) creation of an MR noise template in a short “test” fMRI scan; 2) application of the template for automatic recognition and subtraction of the MR noise from the acquired microphone signal during an fMRI study. The method was applied in an experimental paradigm where a subject and an investigator communicated in an interactive verbal generation task during fMRI.

Results:

By applying online active noise cancellation, the quality of the subject's speech was substantially improved. The present approach was found to be flexible, reliable, and easy to implement, providing a method for fMRI studies that investigate the neural correlates of interactive speech communication.

Conclusion:

Using online noise cancellation it is possible to improve the quality of acquired speech in fMRI. This approach may be recommended for interactive fMRI studies. J. Magn. Reson. Imaging 2010;32:705–713. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
A multislice spin echo EPI sequence was used to obtain functional MR images of the entire rat brain with blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) contrast at 11.7 T. Maps of activation incidence were created by warping each image to the Paxinos rat brain atlas and marking the extent of the activated area. Incidence maps for BOLD and CBV were similar, but activation in draining veins was more prominent in the BOLD images than in the CBV images. Cerebellar activation was observed along the surface in BOLD images, but in deeper regions in the CBV images. Both effects may be explained by increased signal dropout and distortion in the EPI images after administration of the ferumoxtran-10 contrast agent for CBV fMRI. CBV-weighted incidence maps were also created for 10, 20, and 30 mg Fe/kg doses of ferumoxtran-10. The magnitude of the average percentage change during stimulation increased from 4.9% with the 10 mg Fe/kg dose to 8.7% with the 30-mg Fe/kg dose. Incidence of activation followed a similar trend.  相似文献   

15.
A major source of noise in functional magnetic resonance imaging (fMRI) arises from modulations in the local magnetic field in the head due to motion of the subject's chest through the respiratory cycle, and this physiologic noise can nullify the gains in statistical power expected by the use of higher magnetic fields for fMRI. In particular, fMRI data acquired using echo-planar imaging (EPI) are very sensitive to these spatially and temporally varying respiration-induced frequency offsets. In this study, accurate 3D magnetic field maps in the head were measured and used to determine the frequency offsets at the two extremes of the respiratory cycle. From these maps, spatially dependent frequency variations from about -1.0 Hz to +1.5 Hz were measured in the brain through the respiratory cycle. Simulations of a typical axial EPI fMRI experiment acquired in the presence of this measured field variation were performed, demonstrating regional image intensity variations between 1 and 5% in single pixel time series. The inadequacy of either global or 1D navigator echo corrections to measure and suppress respiratory-induced noise in fMRI time series is demonstrated. The nature of the spatial variations observed suggests that 2D approaches should be considered.  相似文献   

16.
目的通过优化成像参数,获得一种较高质量的利用血管外质子信号增强的颈髓功能成像。方法采用GRE-echoplan序列中的一种新的血管外质子信号增强(SEEP)磁共振功能成像技术,按TR、TE时间的相关关系,通过固定TR改变TE,同时通过选择使用呼吸门控或心电门控,是否加饱和带等不同参数下获得颈髓功能成像,比较上述不同参数下颈髓fMRI成像的影像质量,包括信噪比、显示激活区部位是否清晰、确定,是否可重复。结果采用SEEP成像技术能实现颈髓功能成像,TR 1065s与TE 45s时能获得较高质量的颈髓功能成像,使用心电门控较不使用心电门控图像质量明显提高,加前饱和带可减少呼吸与吞咽所致的伪影,呼吸门控对图像质量无明显影响。结论 GRE-echo plan序列的SEEP成像技术经优化技术参数后能获得较高质量的颈髓功能成像。  相似文献   

17.
Phantom-based evaluation of geometric distortions in functional MRI and diffusion tensor imaging (DTI) was investigated. An acrylic water-filled phantom with a grid structure was designed and manufactured to provide accurate geometric information over the volume measured in human brain imaging. The grid structures were well detected in data acquired using a 3-T MRI scanner with echo-planar imaging (EPI) sequences commonly applied in functional MRI and DTI. A method for quantifying distortions in the phantom data was presented and applied for the images. The validity of the phantom for EPI was evaluated by quantitatively comparing the distortions present in and induced by the phantom and a human brain when imaged under identical conditions. The results suggest that the new phantom can reveal geometric distortions easily undermined by standard MRI phantoms. For example, prominent variability in the distortions was found as a function of the orientation of the diffusion-sensitizing gradient. Possible future applications for this type of phantom include quality assurance and calibration of the hardware and software used in EPI-based functional MRI and DTI.  相似文献   

18.
In past decades, much effort has been invested in developing therapies for spinal injuries. Lack of standardization of clinical read-out measures, however, makes direct comparison of experimental therapies difficult. Damage and therapeutic effects in vivo are routinely evaluated using rather subjective behavioral tests. Here we show that manganese-enhanced magnetic resonance imaging (MEMRI) can be used to examine the extent of damage following spinal cord injury (SCI) in mice in vivo. Injection of MnCl2 solution into the cerebrospinal fluid leads to manganese uptake into the spinal cord. Furthermore, after injury MEMRI-derived quantitative measures correlate closely with clinical locomotor scores. Improved locomotion due to treating the detrimental effects of SCI with an established therapy (neutralization of CD95Ligand) is reflected in an increase of manganese uptake into the injured spinal cord. Therefore, we demonstrate that MEMRI is a sensitive and objective tool for in vivo visualization and quantification of damage and functional improvement after SCI. Thus, MEMRI can serve as a reproducible surrogate measure of the clinical status of the spinal cord in mice, potentially becoming a standard approach for evaluating experimental therapies.  相似文献   

19.
The effect of off-resonance irradiation on the water proton NMR signal intensity has been investigated as follows: (a) in the presence of a paramagnetic probe like manganese(II); (b) in the presence of bovine serum albumin (BSA) and two gadolinium(III) complexes, Gd-DTPA and Gd-BOPTA; (c) in the presence of cross-linked BSA and the two above-mentioned gadolinium(III) complexes. The experimental data have been rationalized on the basis of the available theoretical models. The effectiveness of the two complexes as contrast agents for MRI has been predicted. It is shown that contrast agents providing comparable longitudinal and transverse relaxation rate enhancements are those of general interest for off-resonance magnetization transfer-MRI.  相似文献   

20.
《Radiography》2020,26(2):110-116
IntroductionMagnetic resonance imaging in closed-bore scanners sometimes provokes anxiety but closed-bore designs have gradually become wider and shorter. Open scanners may be easier to tolerate. The aim was to compare patient anxiety during MRI between bore diameters of 60 cm and 70 cm, and to determine the current level of patient anxiety and experience in open scanners in a clinical setrting.MethodsConsecutive patients referred for examination of the spine in 60 cm and 70 cm bores and one open scanner participated. Four established/validated questionnaires, answered before, directly after (N = 155) and one week after (N = 109) the MRI-examination were used, measuring anxiety, fear and depression.ResultsNo difference was found in the patient scores of anxiety between the 60 cm and the 70 cm scanners on the examination day. At follow-up, patients in the 70 cm bore rated their examination experience better (p < 0.025), compared to patients in the 60 cm bore. Patients in the open scanner rated higher levels of anxiety (p < 0.001) before, directly after and one week after the examination, compared to the closed bore scanners.ConclusionScanners with a 70 cm diameter bore seem more tolerable than those with a 60 cm bore. Patients referred to the open scanner had on average a higher tendency to express anxiety. Still, patient anxiety in MRI is challenging and further research required.Implications for practicePatients prefer to be examined in 70 cm bore scanners compared with 60 cm. If open scanners aren't available extended support may be necessary for the most anxious patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号