首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capsule of Neisseria meningitidis is the major virulence factor that enables this bacterium to overcome host immunity elicited by complement and phagocytes, rendering it capable of surviving in blood. As such, nonencapsulated N. meningitidis isolates are generally considered nonpathogenic. Here, we consider the inherent virulence of two nonencapsulated N. meningitidis isolates obtained from our national surveillance of infected blood cultures in Canada. Capsule deficiency of both strains was confirmed by serology and PCR for the ctrA to ctrD genes and siaA to siaC genes, as well as siaD genes specific to serogroups B, C, Y, and W135. In both strains, the capsule synthesis genes were replaced by the capsule null locus, cnl-2. In accordance with a lack of capsule, both strains were fully susceptible to killing by both human and baby rabbit complement. However, in the presence of cytidine-5' monophospho-N-acetylneuraminic acid (CMP-NANA), allowing for lipooligosaccharide (LOS) sialylation, a significant increase of resistance to complement killing was observed. Mass spectrometry of purified LOS did not reveal any uncommon modifications that would explain their invasive phenotype. Finally, in a mouse intraperitoneal challenge model, these nonencapsulated isolates displayed enhanced virulence relative to an isogenic mutant of serogroup B strain MC58 lacking capsule (MC58ΔsiaD). Virulence of all nonencapsulated isolates tested was below that of encapsulated serogroup B strains MC58 and B16B6. However, whereas no mortality was observed with MC58ΔsiaD, 5/10 mice succumbed to infection with strain 2275 and 2/11 mice succumbed to strain 2274. Our results suggest the acquisition of a new virulence phenotype by these nonencapsulated strains.  相似文献   

2.
Capsules from a range of pathogenic bacteria are key virulence determinants, and the capsule has been implicated in virulence in Pasteurella multocida. We have previously identified and determined the nucleotide sequence of the P. multocida M1404 (B:2) capsule biosynthetic locus (J. D. Boyce, J. Y. Chung, and B. Adler, Vet. Microbiol. 72:121-134, 2000). The cap locus consists of 15 genes, which can be grouped into three functional regions. Regions 1 and 3 contain genes proposed to encode proteins involved in capsule export, and region 2 contains genes proposed to encode proteins involved in polysaccharide biosynthesis. In order to construct a mutant impaired in capsule export, the final gene of region 1, cexA, was disrupted by insertion of a tetracycline resistance cassette by allelic replacement. The genotype of the tet(M) OmegacexA mutant was confirmed by Southern hybridization and PCR. The acapsular phenotype was confirmed by immunofluorescence, and the strain could be complemented and returned to capsule production by the presence of a cloned uninterrupted copy of cexA. Wild-type, mutant, and complemented strains were tested for virulence by intraperitoneal challenge of mice; the presence of the capsule was shown to be a crucial virulence determinant. Following intraperitoneal challenge of mice, the acapsular bacteria were removed efficiently from the blood, spleen, and liver, while wild-type bacteria multiplied rapidly. Acapsular bacteria were readily taken up by murine peritoneal macrophages, but wild-type bacteria were significantly resistant to phagocytosis. Both wild-type and acapsular bacteria were resistant to complement in bovine and murine serum.  相似文献   

3.
The antiphagocytic effect of M protein has been considered a critical element in virulence of the group A streptococcus. The hyaluronic acid capsule also appears to play an important role: studies of an acapsular mutant derived from the mucoid or highly encapsulated M protein type 18 group A streptococcal strain 282 indicated that loss of capsule expression was associated with decreased resistance to phagocytic killing and with reduced virulence in mice. To study directly the relative contributions to virulence of M protein and the hyaluronic acid capsule in strain 282, we inactivated the gene encoding the M protein (emm18) both in wild-type strain 282 and in its acapsular mutant, strain TX72. Inactivation of emm18 was accomplished by integrational plasmid mutagenesis, using the temperature-sensitive shuttle vector pJRS233 harboring a 5' DNA segment of emm18. As reported previously, wild-type strain 282 was resistant to phagocytic killing in vitro, both in whole human blood and in 10% serum. The capsule mutant TX72 was highly susceptible to phagocytic killing in 10% serum and moderately sensitive in whole blood. The M protein mutant 282KZ was highly susceptible to phagocytic killing in blood but only moderately sensitive in 10% serum. The double mutant TX74 was sensitive to killing in both conditions. In a mouse infection model, the 50% lethal dose was increased by 60- and 80-fold for the capsule and double mutants, respectively, compared with that of strain 282, but only by 6-fold for the M protein mutant. Integration of the strain 282 capsule genes into the chromosome of a nonmucoid M1 strain resulted in high-level capsule production and rendered the transformed strain resistant to phagocytic killing in 10% serum. These results provide further evidence that the hyaluronic acid capsule confers resistance to phagocytosis and enhances group A streptococcal virulence. The results suggest also that assessment of in vitro resistance to phagocytosis in 10% serum rather than in whole blood may be a more accurate reflection of virulence in vivo of group A streptococci.  相似文献   

4.
Three avirulent insertional mutants of Erysipelothrix rhusiopathiae were obtained by the technique of transposon mutagenesis with the self-conjugative transposon Tn916. The interactions between murine polymorphonuclear leukocytes and parent and mutant strains were studied in vitro. In the presence of normal serum, the virulent parent strain was resistant to phagocytosis, whereas the avirulent mutant strains were efficiently phagocytosed. In the presence of immune serum, the parent and the mutant strains were both efficiently phagocytosed. Electron microscopic examination of the parent strain demonstrated the presence of a structure resembling a capsule which was absent on the mutant strains, suggesting that a capsule may be involved in virulence. This was confirmed in studies in which an avirulent mutant strain reverted to virulence following acquisition of a capsule when the transposon was lost by spontaneous excision. These results strongly suggest that virulence of E. rhusiopathiae is associated, at least in part, with resistance to phagocytosis by polymorphonuclear leukocytes and that this antiphagocytic ability of the bacterium results from its possession of a capsule.  相似文献   

5.
Antibody to the polysaccharide capsule of type III group B streptococci (GBS) and complement are essential to host defense against systemic infection in neonates. Interactions between C3 degradation products and specific neutrophil receptors mediate the attachment and ingestion of these organisms. To evaluate the influence of capsule on C3 disposition, we compared the C3 fragments released from a highly encapsulated clinical isolate (M861) with those from an unencapsulated mutant (COH 31-15) and an asialo mutant (COH 31-21) of type III GBS after opsonization with hypogammaglobulinemic serum. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, the three strains displayed similar patterns of C3 degradation; both C3b and iC3b were detectable. However, as the duration of opsonization increased, C3 fragment bands became more prominent on the encapsulated strain. The capsule, and specifically sialylation of the capsular polysaccharide of type III GBS, promotes C3 fragment deposition. However, C3 was deposited and degraded to iC3b in the absence of capsule. Opsonization of strain M861 with serum containing antibody specific for the polysaccharide capsule facilitated C3 fragment deposition in the early phases of opsonization. Because iC3b is one of the C3 fragments on an encapsulated strain of type III GBS, the relative deficiency of neonatal neutrophil receptors for this ligand may contribute to the virulence of this organism. Sufficient concentrations of antibody may enhance opsonization by facilitating C3 deposition as well as by interacting with Fc receptors on neutrophils.  相似文献   

6.
Strains of type III group B streptococci isolated from patients with neonatal sepsis are generally resistant to complement-mediated phagocytic killing in the absence of specific antibody. It has been suggested that the resistance of type III group B streptococci to phagocytosis results from inhibition of alternative-complement-pathway activation by sialic acid residues of the type III polysaccharide. To better define the relationship between structural features of the type III capsule and resistance of type III group B streptococci to complement-mediated phagocytic killing, we measured deposition of human C3 on group B streptococcal strains with altered capsule phenotypes. C3 binding was quantified by incubating bacteria with purified human 125I-C3 in 10% serum. Wild-type group B Streptococcus sp. strain COH1 bound eightfold fewer C3 molecules than did either of two isogenic mutant strains, one expressing a sialic acid-deficient capsule and the other lacking capsule completely. Similar results were obtained when the incubation with 125I-C3 was performed in serum chelated with Mg-ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'- tetraacetic acid (MgEGTA), suggesting that the majority of C3 deposition occurred via the alternative pathway. In contrast to the wild-type strain, which was relatively resistant, both mutant strains were killed by human leukocytes in 10% serum with or without MgEGTA. We also measured C3 binding to 14 wild-type strains of type III group B streptococci expressing various amounts of capsule. Comparison of degree of encapsulation with C3 binding revealed a significant inverse correlation (r = -0.72; P less than 0.01). C3 fragments released by methylamine treatment of wild-type strain COH1 were predominantly in the form of C3bi, while those released from the acapsular mutant were predominantly C3b and those from the asialo mutant represented approximately equal amounts of C3b and C3bi. We conclude from these studies that the sialylated type III capsular polysaccharide inhibits alternative-pathway activation, prevents C3 deposition on group B streptococci, and protects the organisms from phagocytic killing.  相似文献   

7.
The pathogenic fungus Cryptococcus neoformans has a polysaccharide capsule that is essential for virulence in vivo. Capsule size is known to increase during animal infection, and this phenomenon was recently associated with virulence. Although various conditions have been implicated in promoting capsule growth, including CO(2) concentration, osmolarity, and phenotypic switching, it is difficult to reproduce the capsule enlargement effect in the laboratory. In this study, we report that serum can induce capsule growth, and we describe the conditions that induce this effect, not only by serum but also by CO(2). Capsule enlargement was dependent on the medium used, and this determined whether the strain responded to serum or CO(2) efficiently. Serum was most effective in inducing capsule growth under nutrient-limited conditions. There was considerable variability between strains in their response to either serum or CO(2), with some strains requiring both stimuli. Sera from several animal sources were each highly efficient in inducing capsule growth. The cyclic AMP (cAMP) pathway and Ras1 were both necessary for serum-induced capsule growth. The lack of induction in the ras1 mutant was not complemented by exogenous cAMP, indicating that these pathways act in parallel. However, both cAMP and Ras1 were dispensable for inducing a partial capsule growth by CO(2), suggesting that multiple pathways participate in this process. The ability of serum to induce capsule growth suggests a mechanism for the capsular enlargement observed during animal infection.  相似文献   

8.
A mutation in the msbB gene of Escherichia coli results in the synthesis of E. coli lipopolysaccharide (LPS) that lacks the myristic acid moiety of lipid A. Although such mutant E. coli cells and their purified LPS have a greatly reduced ability to stimulate human immune cells, a minor reduction in the mouse inflammatory response is observed. When the msbB mutation is transferred into a clinical isolate of E. coli, there is a significant loss in virulence, as assessed by lethality in BALB/c mice. When a cloned msbB gene is provided to functionally complement the msbB mutant, virulence returns, providing direct evidence that the msbB gene product is an important virulence factor in a murine model of E. coli pathogenicity. In the genetic background of the clinical E. coli isolate, the msbB mutation also results in filamentation of the cells at 37 degrees C but not at 30 degrees C, a reduction in the level of the K1 capsule, an increase in the level of complement C3 deposition, and an increase in both opsonic and nonopsonic phagocytosis of the msbB mutant, phenotypes that can help to explain the loss in virulence. The demonstration that the inhibition of msbB gene function reduces the virulence of E. coli in a mouse infection model warrants further investigation of the msbB gene product as a novel target for antibiotic therapy.  相似文献   

9.
Escape from the intravascular compartment is likely a critical step in the development of hematogenously disseminated cryptococcal infections, such as meningitis. The capsule of Cryptococcus neoformans is considered to be a virulence factor because of its antiphagocytic properties. To further investigate the role of the capsule in escape from the intravascular compartment, we used isogenic strain pairs, an acapsular mutant, and an encapsulated clinical isolate to determine the effects of the capsule of C. neoformans on adherence to, phagocytosis by, and damage of endothelial cells in vitro. Acapsular C. neoformans adhered significantly more to endothelial cells and caused greater endothelial cell injury than did encapsulated organisms. Coating of an acapsular strain with cryptococcal glucuronoxylomannan decreased both adherence to and damage of endothelial cells by 61.7% +/- 9.1% and 76.6% +/- 10.2%, respectively. Transmission electron microscopy demonstrated internalization of acapsular, but not encapsulated, organisms by endothelial cells. Internalization of an acapsular strain occurred through endothelial cell phagocytosis and was inhibited by cytochalasin D. Phagocytosis required a heat-labile serum factor, probably complement. These results suggest that acapsular or poorly encapsulated C. neoformans may be the form(s) that escapes from the vasculature during initiation of hematogenously disseminated disease.  相似文献   

10.
Controversy persists over the role that the capsular polysaccharide plays in the pathogenesis of Staphylococcus aureus infections. To address this issue, we compared the mouse virulence of S. aureus Reynolds and capsule-defective mutant strains cultivated under conditions of high or low capsule expression. Strain Reynolds cells cultivated on Columbia salt agar plates expressed ~100-fold more type 5 capsular polysaccharide than did cells cultivated in Columbia salt broth. The relative virulence of strain Reynolds and its capsule-defective mutants after growth on either solid or liquid medium was examined in mice challenged intraperitoneally or intravenously. The results indicated that agar-grown Reynolds cells were cleared from the bloodstream of mice less readily than broth-grown Reynolds cells. When the parental and mutant strains were cultivated on solid medium, strain Reynolds sustained a higher level of bacteremia than did the capsular mutants. We performed in vitro opsonophagocytic killing assays to determine whether staphylococcal virulence for mice correlated with resistance to phagocytosis. S. aureus Reynolds cultivated on solid medium was susceptible to phagocytic killing only in the presence of specific capsular antibodies and complement. Strain Reynolds grown in broth showed opsonic requirements for phagocytic killing that were similar to those of the capsular mutants (grown in broth or on agar); i.e., the bacteria were opsonized for phagocytosis by nonimmune serum with complement activity. These studies indicate that optimal expression of capsule enhances bacterial virulence in the mouse model of bacteremia, probably by rendering the organisms resistant to opsonophagocytic killing by leukocytes.  相似文献   

11.
The capsular polysaccharide of type III group B streptococci contributes substantially to the virulence of this organism. We explored the extent to which capsular polysaccharide influences neutrophil complement receptor interactions by using a poorly encapsulated strain (COH 31r/s), two well-encapsulated strains (M732 and M912), and strains produced from COH 31r/s by transposon mutagenesis that lacked capsule (COH 31-15) or had capsular polysaccharide lacking terminal sialic acid residues (COH 31-21). When tested with normal human serum, each strain had initially high bactericidal indices (85 to 96%). Monoclonal antibody blockade of neutrophil complement receptor 3 (CD11b/CD18) inhibited opsonophagocytosis to a significantly greater extent for the well-encapsulated strain than for the poorly encapsulated, asialo, or unencapsulated mutant strain. The addition of antibody with specificity for capsular polysaccharide reduced the inhibitory effect significantly for the encapsulated but not for the mutant strains. Blockade of neutrophil complement receptor 1 (CD35) effected only low-level inhibition. However, simultaneous blockade of complement receptors 1 and 3 augmented the inhibitory effect. When hypogammaglobulinemic serum was used as an antibody-free complement source, the initial bactericidal index was low (30% +/- 15%) for an encapsulated strain and was not affected for the mutant strains. Blockade of either neutrophil complement receptor 1 or 3 or the combination fully inhibited killing of the encapsulated strain. These results demonstrate that the type III group B streptococcal capsular polysaccharide regulates interactions with neutrophil complement receptors. We conclude that efficient phagocytic killing of encapsulated group streptococci in nonimmune serum requires ligation of complement receptors 1 and 3.  相似文献   

12.
The effect of meningococcal cell-associated sialic acid on activation of the human alternative complement pathway was examined by using a quantitative fluorescence immunoassay to assess alternative pathway-mediated C3 binding to a group B strain of Neisseria meningitidis from which graded amounts of sialic acid had been removed with neuraminidase. Using human serum absorbed with strain B16B6 (B:2a:L2,3) and chelated with 10 mM MgCl2 and 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, we found an increase in the amount of C3 bound by enzymatically desialylated B16B6 organisms over the amount bound by fully sialylated organisms. This increase was proportional to the amount of sialic acid cleaved from the bacteria. Enhanced C3 binding was accompanied by an increase in factor B deposition. A sialic acid-deficient mutant of strain B16B6, designated 2T4-1, bound C3 via the alternative pathway at a level equivalent to that bound by wild-type meningococci from which 88% of the sialic acid had been removed. Strain B16B6 was resistant to the alternative pathway-mediated bactericidal activity of both absorbed and hypogammaglobulinemic human sera, whereas noncapsular variant 2T4-1 was sensitive to these sera. The addition of purified immune immunoglobulin M (IgM) and IgG significantly increased the alternative pathway-mediated killing of strain B16B6 organisms. IgM mediated increased bactericidal activity without an increase in C3 or factor B deposition. In contrast, the IgG-mediated killing was associated with increased binding of C3 and factor B to the organisms. Absorption studies showed that the IgM bound to the sialic acid capsule, whereas the IgG bound to noncapsular surface antigens. We conclude from these results that the group B meningococcal sialic acid capsule inhibits activation of the alternative pathway in the nonimmune host and that both IgM and IgG, although specific for different surface antigens, are capable of augmenting the alternative pathway-mediated killing of group B meningococci.  相似文献   

13.
The type III capsular polysaccharide of group B streptococci (GBS) consists of a linear backbone with short side chains ending in residues of N-acetylneuraminic acid, or sialic acid. The presence of sialic acid on the surface of the organism inhibits activation of the alternative pathway of complement and is thought to be an important element in the virulence function of the capsule. We showed previously that a mutant strain of GBS that expressed a sialic acid-deficient, or asialo, form of the type III polysaccharide was avirulent, supporting a virulence function for capsular sialic acid. We now report the derivation of an asialo capsule mutant from a highly encapsulated wild-type strain of type III GBS, strain COH1, by insertional mutagenesis with transposon Tn916 delta E. In contrast to the wild-type strain, the asialo mutant strain COH1-11 was sensitive to phagocytic killing by human leukocytes in vitro and was relatively avirulent in a neonatal rat model of GBS infection. The asialo mutant accumulated free intracellular sialic acid, suggesting a defect subsequent to sialic acid synthesis in the biosynthetic pathway leading to capsule sialylation. The specific biosynthetic defect in mutant strain COH1-11 was found to be in the activation of free sialic acid to CMP-sialic acid: CMP-sialic acid synthetase activity was present in the wild-type strain COH1 but was not detected in the asialo mutant strain COH1-11. One of the two transposon insertions in the asialo mutant COH1-11 mapped to the same chromosomal location as one of the two Tn916 insertions in the previously reported asialo mutant COH31-21, identifying this site as a genetic locus necessary for expression of CMP-sialic acid synthetase activity. These studies demonstrate that the enzymatic synthesis of CMP-sialic acid by GBS is an essential step in sialylation of the type III capsular polysaccharide.  相似文献   

14.
Burkholderia pseudomallei is a Gram-negative soil bacterium and the causative agent of melioidosis, a disease of humans and animals. It is also listed as a category B bioterrorism threat agent by the U.S. Centers for Disease Control and Prevention, and there is currently no melioidosis vaccine available. Small modified nucleotides such as the hyperphosphorylated guanosine molecules ppGpp and pppGpp play an important role as signaling molecules in prokaryotes. They mediate a global stress response under starvation conditions and have been implicated in the regulation of virulence and survival factors in many bacterial species. In this study, we created a relA spoT double mutant in B. pseudomallei strain K96243, which lacks (p)ppGpp-synthesizing enzymes, and investigated its phenotype in vitro and in vivo. The B. pseudomallei ΔrelA ΔspoT mutant displayed a defect in stationary-phase survival and intracellular replication in murine macrophages. Moreover, the mutant was attenuated in the Galleria mellonella insect model and in both acute and chronic mouse models of melioidosis. Vaccination of mice with the ΔrelA ΔspoT mutant resulted in partial protection against infection with wild-type B. pseudomallei. In summary, (p)ppGpp signaling appears to represent an essential component of the regulatory network governing virulence gene expression and stress adaptation in B. pseudomallei, and the ΔrelA ΔspoT mutant may be a promising live-attenuated vaccine candidate.  相似文献   

15.
Pneumococcal surface protein A (PspA), a virulence factor of Streptococcus pneumoniae, is exceptionally diverse, being classified into two major families which are over 50% divergent by sequence analysis. A family 1 PspA from strain WU2 was previously shown to impede the clearance of pneumococci from mouse blood and to interfere with complement deposition on the bacterial surface. To determine whether a family 2 PspA can perform the same role as family 1 PspA, the family 1 PspA (from strain WU2) was replaced with a family 2 PspA (from strain TIGR4) by molecular genetic methods to make an isogenic pair of strains expressing different PspA proteins. Surface binding of lactoferrin and interference with C3 deposition by the two types of PspA proteins were determined by flow cytometry, and virulence was assessed in a mouse bacteremia model. Although the family 2 PspA appeared to bind less human lactoferrin than did the family 1 PspA, both PspA proteins could interfere with complement deposition on the pneumococcal surface and could provide full virulence in the mouse infection model. A mutant form of the family 2 PspA with a deletion within the choline-binding region was also produced. Pneumococci with this mutant PspA failed to bind human lactoferrin even though the PspA was present on the pneumococcal surface. The mutant PspA only partially interfered with complement deposition and moderately attenuated virulence. These results suggest that family 1 and family 2 PspA proteins play similar roles in virulence and that surface accessibility of PspA is important for their function.  相似文献   

16.
The polysaccharide capsule is a major virulence mechanism of Streptococcus pneumoniae, shielding the bacterium from phagocytes. Capsule types may differ in their abilities to resist immune defense. Antibody-mediated complement activation and opsonophagocytosis are crucial in protection against pneumococcus. Conjugate vaccine trials suggest imperfect protection against 19F. We have previously shown that significantly more anti-19F than anti-6B antibody is needed for killing in the opsonophagocytic assay (OPA). In this study, we explored whether the amount of C3 deposited on serotype 6B and 19F pneumococcal strains reflects their sensitivity to opsonophagocytosis. We compared clinical 6B and 19F nasopharyngeal, middle ear, and blood isolates as well as reference OPA strains (n = 16) for their sensitivity to opsonophagocytosis and C3 deposition. Sixfold anticapsular antibody concentrations were required for 50% opsonophagocytic killing of 19F compared to that of 6B strains. Serotype 19F was more resistant to C3 deposition than 6B. Complement deposition and opsonophagocytosis were dependent on the concentration of anticapsular antibodies. Differences between pneumococcal serotypes in antibody-mediated protection may partly be explained by the abilities of the capsules to resist complement deposition. These findings support previous studies suggesting that higher antibody concentrations to the capsular polysaccharide are needed for protection against disease caused by serotype 19F than that caused by 6B.  相似文献   

17.
Capsular polysaccharides are important virulence factors of invasive bacterial pathogens. Here we studied the role of the virulence (Vi) capsular polysaccharide of Salmonella enterica serotype Typhi (S. Typhi) in preventing innate immune recognition by complement. Comparison of capsulated S. Typhi with a noncapsulated mutant (ΔtviBCDE vexABCDE mutant) revealed that the Vi capsule interfered with complement component 3 (C3) deposition. Decreased complement fixation resulted in reduced bacterial binding to complement receptor 3 (CR3) on the surface of murine macrophages in vitro and decreased CR3-dependent clearance of Vi capsulated S. Typhi from the livers and spleens of mice. Opsonization of bacteria with immune serum prior to intraperitoneal infection increased clearance of capsulated S. Typhi from the liver. Our data suggest that the Vi capsule prevents CR3-dependent clearance, which can be overcome in part by a specific antibody response.  相似文献   

18.
Pneumococcal surface protein A (PspA) is a surface-exposed protein virulence factor for Streptococcus pneumoniae. In this study, no significant depletion of serum complement was observed for the serum of mice infected with pneumococci that express PspA. In contrast, in mice infected with an isogenic strain of pneumococci lacking PspA, significant activation of serum complement was detected within 30 min after infection. Also, the PspA-deficient strain but not the PspA-expressing strain was cleared from the blood within 6 h. The contribution of PspA to pneumococcal virulence was further investigated by using mice deficient for C5, C3, or factor B. In mice deficient for C3 or factor B, PspA-negative pneumococci became fully virulent. In contrast, in C5-deficient mice as in wild-type mice, PspA-deficient pneumococci were avirulent. These in vivo data suggest that, in nonimmune mice infected with pneumococci, PspA interferes with complement-dependent host defense mechanisms mediated by factor B. Immunoblots of pneumococci opsonized in vitro suggested that more C3b was deposited on PspA-negative than on PspA-positive pneumococci. This was observed with and without anticapsular antibody. Furthermore, processing of the alpha chain of C3b was reduced in the presence of PspA. We propose that PspA exerts its virulence function by interfering with deposition of C3b onto pneumococci and/or by inhibiting formation of a fully functional alternative pathway C3 convertase. By blocking recruitment of the alternative pathway, PspA reduces the amount of C3b deposited onto pneumococci, thereby reducing the effectiveness of complement receptor-mediated pathways of clearance.  相似文献   

19.
Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts.  相似文献   

20.
The mechanism by which Burkholderia pseudomallei is resistant to lysis by human serum is unknown but may include interference with complement activation, effective opsonization, or complement-mediated lysis. We investigated the interaction of B. pseudomallei with complement in the presence and absence of specific antibody to determine potential mechanisms of serum resistance. We demonstrated rapid activation and consumption of complement by B. pseudomallei which, in the absence of specific antibody, occurred predominantly via the alternative pathway. Complement activation was associated with deposition of the opsonically active C3b and iC3b fragments on the bacterial surface. C5b-9, detected on the bacterial surface after opsonic periods of 1 to 60 min, was susceptible to elution by 1 M NaCl, indicating that resistance to complement-mediated lysis may result from deposition of the membrane attack complex in a nonmicrobicidal location. To define the role of opsonins, we investigated the ability of polymorphonuclear leukocytes (PMNL) to phagocytose B. pseudomallei. Phagocytosis of bacteria by PMNL, and the observed oxidative response, was significantly increased by opsonization of organisms with complement and/or specific antibody. Despite opsonophagocytosis by PMNL and the production of an oxidative response, no significant bacterial killing was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号