首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Mutations in the leucine-rich repat kinase 2 (LRRK2) gene have been shown to cause both autosomal dominant and sporadic Parkinson's disease (PD). The common G2019S mutation shows wide geographical distribution while R1441G has been only reported in Northern Spain. The overall frequency of these mutations remains to be established. To determine the prevalence of G2019S and R1441G mutations in our population of Cantabria (Northern Spain), we recruited 105 consecutive PD patients and 310 controls and conducted genetic analysis of these mutations. G2019S was detected in eight late-onset patients (7.6%). Five of them had no relevant family history. R1441G was not detected in any of our study subjects. The prevalence of G2019S mutation in unselected late-onset PD patients might be higher than previously reported: 3/16 (18.7%) of familial PD and 5/82 (6.1%) of sporadic PD.  相似文献   

5.
A common heterozygous leucine-rich repeat kinase 2 (LRRK2) mutation 6055G > A transition (G2019S) accounts for about 3-7% of familial Parkinson's disease (PD) and 1-1.6% sporadic PD in a number of European populations. To determine the prevalence of the G1019S mutation in our Asian population, we conducted genetic analysis of this mutation in 1000 PD and healthy controls. The G2019S mutation was not detected in any of our study subjects. The prevalence of G2019S mutation is rare (< 0.1%) in our population, suggesting that occurrence of this mutation may vary amongst different ethnic races. This has important clinical implication when implementing guidelines for genetic testing.  相似文献   

6.
目的 从分子水平揭示富亮氨酸重复激酶2(LRRK2)基因G2019S突变帕金森病的发病机制,为临床诊断及治疗提供新思路。 方法 在公共基因芯片数据库(GEO)中下载LRRK2基因G2019S突变帕金森病的相关基因芯片数据(GSE22491),其中LRRK2(G2019S)突变帕金森病样本10 例,正常控制组样本8 例,利用Qlucore Omics Explorer(QOE)3.0 软件、DAVID、STRING等在线分析软件对LRRK2基因G2019S突变帕金森病差异基因进行生物信息学分析。结果 QOE3.0分析筛选出1752个LRRK2基因G2019S突变帕金森病差异基因,其中上调191个,下调1561个。对其进行生物信息学分析发现,SKP2、RBX1、SKP1、CUL1、CUL4A 等基因以及核糖体信号通路、氧化磷酸化信号通路、蛋白酶体信号通路、白细胞跨内皮迁移信号通路、磷酸戊糖途径信号通路、枸橼酸信号通路、Fcγ受体(FcγR)介导的吞噬通路等在LRRK2基因G2019S突变帕金森病的发生发展中可能起着重要作用。 结论 通过生物信息学分析LRRK2基因G2019S突变帕金森病相关基因芯片数据,提示LRRK2基因G2019S突变帕金森病发病是多种基因、多种分子机制相互作用的结果,对相关分子机制的进一步分析有利于揭示LRRK2基因G2019S突变帕金森病的发病机制。  相似文献   

7.

Introduction:

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2 or Dardarin) are considered to be a common cause of autosomal dominant and sporadic Parkinson´s disease, but the prevalence of these mutations varies among populations.

Objective:

to analyzed the frequency of the LRRK2 p.G2019S mutation (c.6055 G>A transition) in a sample of Colombian patients.

Methods:

In the present study we have analyzed the frequency of the LRRK2 p.G2019S mutation in 154 patients with familial or sporadic Parkinson Disease, including early and late onset patients, and 162 normal controls.

Results:

Our results show occurrence of this mutation in two cases (2/154, 1.3%) with classical Parkinson´s signs, and one completely asymptomatic control (1/162, 0.6%).

Conclusion:

The p.G2019S mutation is not an important causal factor of Parkinson Disease in Colombia having similar frequencies to those reported in other Latin American populations.  相似文献   

8.
9.
Mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene are known as a common cause of Parkinson's disease (PD) among patients from different geographic origins. In this study, we evaluated the prevalence of LRRK2 mutations in exons 31 and 41 in a cohort of 154 consecutive, unrelated Brazilian patients with familial or sporadic PD, including early and late onset patients. The LRRK2 p.G2019S mutation was present in heterozygous state in three index cases (approximately 2%), and in three additional relatives. No carriers of this mutation were found among 250 control chromosomes. Clinically, all mutation-positive patients presented a typical PD phenotype and a good response to levodopa. Mutation segregation analysis in a large sibling showed incomplete penetrance of the p.G2019S. Our findings suggest that the LRRK2 p.G2019S mutation has a substantial contribution to PD susceptibility among Brazilian population and add new clues to current research of this disease.  相似文献   

10.
11.
Pathogenic mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant and certain cases of sporadic Parkinson's disease (PD). The G2019S substitution in LRRK2 is the most common genetic determinant of PD identified so far, and maps to a specific region of the kinase domain called the activation segment. Here, we show that autophosphorylation of LRRK2 is an intermolecular reaction and targets two residues within the activation segment. The prominent pathogenic G2019S mutation in LRRK2 results in altered autophosphorylation, and increased autophosphorylation and substrate phosphorylation, through a process that seems to involve reorganization of the activation segment. Our results suggest a molecular mechanistic explanation for how the G2019S mutation enhances the catalytic activity of LRRK2, thereby leading to pathogenicity. These findings have important implications for therapeutic strategies in PD.  相似文献   

12.
Alteration G2019S in the leucine-rich repeat kinase 2 gene (LRRK2) has been identified in several populations of patients with parkinsonism, including Ashkenazi Jewish subjects with Parkinson disease. Mutations in glucocerebrosidase (GBA), the enzyme deficient in Gaucher disease, are also identified at an increased frequency among Parkinson probands, including those of Ashkenazi Jewish ancestry. A Taqman Assay-by-Design SNP genotyping strategy was utilized to establish whether G2019S was found in association with GBA mutations. Among 37 subjects with parkinsonism who were heterozygous for a GBA mutation, none carried G2019S. Furthermore, G2019S was not found in 18 patients with Gaucher disease who developed parkinsonian manifestations and 11 other Gaucher probands with parkinsonism in a first degree relative. Among 45 patients with Gaucher disease without a history of parkinsonism, one G2019S carrier was found. These findings suggest that GBA and LRRK2 mutations are discrete risk factors for parkinsonism in both Ashkenazi Jewish and non-Jewish subjects.  相似文献   

13.
Pathogenic mutations in leucine-rich repeat kinase 2 (LRRK2; PARK8) have been implicated in autosomal dominant, late-onset Parkinson's disease (PD). The LRRK2 4321C>G (R1441G) mutation was originally identified in Spanish families originating from the Basque region. Within this ethnicity, Lrrk2 R1441G substitutions have been suggested as a frequent cause of disease. Herein we have assessed another referral-based series of 225 patients with PD from the neighboring region of Asturias, Northern Spain. The LRRK2 4321C>G mutation was found in 5 (2.7%) of sporadic, late-onset patients and was not present in control subjects. Although patients with a Lrrk2 R1441G substitution are apparently unrelated, they share a chromosome 12q12 haplotype not found in controls and indicative of a common founder.  相似文献   

14.
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) have been recently identified in families with autosomal dominant late-onset Parkinson disease (PD). The LRRK2 protein consists of multiple domains and belongs to the Roco family, a novel group of the Ras/GTPase superfamily. Besides the GTPase (Roc) domain, it contains a predicted kinase domain, with homology to MAP kinase kinase kinases. Using cell fractionation and immunofluorescence microscopy, we show that LRRK2 is localized in the cytoplasm and is associated with cellular membrane structures. The purified LRRK2 protein demonstrates autokinase activity. The disease-associated I2020T mutant shows a significant increase in autophosphorylation of approximately 40% in comparison to wild-type protein in vitro. This suggests that the pathology of PD caused by the I2020T mutation is associated with an increase rather than a loss in LRRK2 kinase activity.  相似文献   

15.
Background: Mutations in the gene Leucine-Rich Repeat Kinase 2 (LRRK2) were recently identified as the cause of PARK8 linked autosomal dominant Parkinson''s disease. Objective: To study recurrent LRRK2 mutations in a large sample of patients from Italy, including early (<50 years) and late onset familial and sporadic Parkinson''s disease. Results: Among 629 probands, 13 (2.1%) were heterozygous carriers of the G2019S mutation. The mutation frequency was higher among familial (5.1%, 9/177) than among sporadic probands (0.9%, 4/452) (p<0.002), and highest among probands with one affected parent (8.7%, 6/69) (p<0.001). There was no difference in the frequency of the G2019S mutation in probands with early v late onset disease. Among 600 probands, one heterozygous R1441C but no R1441G or Y1699C mutations were detected. None of the four mutations was found in Italian controls. Haplotype analysis in families from five countries suggested that the G2019S mutation originated from a single ancient founder. The G2019S mutation was associated with the classical Parkinson''s disease phenotype and a broad range of onset age (34 to 73 years). Conclusions: G2019S is the most common genetic determinant of Parkinson''s disease identified so far. It is especially frequent among cases with familial Parkinson''s disease of both early and late onset, but less common among sporadic cases. These findings have important implications for diagnosis and genetic counselling in Parkinson''s disease.  相似文献   

16.
Recent discovery of pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene in Parkinson's disease (PD) patients in different ethnic groups have raised a hope of diagnostic screening and genetic counseling. We investigated the six most commonly reported mutations in LRRK2 gene among Indian PD patients, using PCR-RFLP method. Mutations G2019S, R1441C, R1441G, and R1441H were screened in 1012 individuals (PD, 800; controls, 212) while mutations I2012T and I2020T were screened in 748 PD patients. We did not observe any of these six mutations in this study sample except in a single female young onset PD patient who showed a heterozygous G2019S mutation. The absence of mutations was reconfirmed by sequencing of probands from several autosomal dominant PD families. Our observations suggest that these mutations may be a rare cause of PD among Indians and therefore of little help for diagnostic screening and genetic counseling for Indian PD patients.  相似文献   

17.
18.
Parkinson disease is a progressive neurodegenerative disease for which leucine-rich repeat kinase 2 (LRRK2 carriers) p.G2019S confers substantial genotypic and population attributable risk. With informed consent, we have recruited clinical data from 778 patients from Tunisia (of which 266 have LRRK2 parkinsonism) and 580 unaffected subjects. Motor, autonomic, and cognitive assessments in idiopathic Parkinson disease and LRRK2 patients were compared with regression models. The age-associated cumulative incidence of LRRK2 parkinsonism was also estimated using case-control and family-based designs. LRRK2 parkinsonism patients had slightly less gastrointestinal dysfunction and rapid eye movement sleep disorder. Overall, disease penetrance in LRRK2 carriers was 80% by 70 years but women become affected a median 5 years younger than men. Idiopathic Parkinson disease patients with younger age at diagnosis have slower disease progression. However, age at diagnoses does not predict progression in LRRK2 parkinsonism. LRRK2 p.G2019S mutation is a useful aid to diagnosis and modifiers of disease in LRRK2 parkinsonism may aid in developing therapeutic targets.  相似文献   

19.
The development of common age-related neurodegenerative disorders as Parkinson's disease and Alzheimer's disease (AD) are influenced by genetic factors. Recently, pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified in familial Parkinsonism. Individuals in some of these families developed symptoms of dementia with Lewy-bodies and AD. The LRRK2 gene is also located within a locus on chromosome 12 reported in late-onset AD, and is therefore a good candidate gene for dementia. A series of 242 patients from Norway diagnosed clinically with dementia were included in the study, the majority were diagnosed with AD. Individuals were screened for the presence of seven known pathogenic mutations previously reported in the LRRK2 gene. We did not identify LRRK2 mutations in our series of dementia patients, indicating that known pathogenic mutations are not common in patients clinically diagnosed with AD. However, these results do not exclude a possible role of other genetic variants within the LRRK2 gene in AD or other forms of dementia.  相似文献   

20.
Mutations in the gene Leucine-Rich Repeat Kinase 2 (LRRK2) have been identified in both dominant and sporadic cases affected by Parkinson's disease (PD). The LRRK2 G2019S mutation (c.6055G>A) is the most frequent substitution in Caucasians, accounting for approximately 5–6% of familial and 0.5–2.0% of apparently sporadic PD cases. We investigated the frequency of the LRRK2 G2019S mutation in 98 unrelated Italian PD patients, including 12 probands belonging to families compatible with autosomal dominant inheritance (12%) and 86 sporadic cases (88%). We detected the G2019S mutation in one sporadic female patient (1.2%). These results confirm that the G2019S mutation is a relevant cause of sporadic PD cases in the Italian population and stress the importance of performing this genetic test, which has important implications for genetic counselling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号