首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-viral vectors such as liposomes, polycations, and nanoparticles have been used as gene delivery systems. In this study, we prepared and characterized biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) nanoparticles as gene carriers. pCMV/β-gal and pEGFP-C1 were utilized as model plasmid DNAs (pDNA). Nanoparticles were prepared using a double emulsion-solvent evaporation technique, and their pDNA binding capacity was assessed by agarose gel electrophoresis. Transfection was studied in HEK 293 and HeLa cell lines, and the transfection efficiencies were determined by β-galactosidase assay or flow cytometry. Three kinds of PLA/PEI systems were studied by varying the molecular weight of PEI. The PLA/PEI 25K system had a higher transfection efficiency than the PLA/PEI 0.8K or PLA/PEI 750K systems. The transfection efficiency was found to be dependent on the ratio of PLA/PEI nanoparticles to pDNA with an optimum ratio of 60:1 (w/w). The cytotoxicity was dependent on the quantity of PLA/PEI nanoparticles used, but it was comparable to that of commercial Lipofectin™. These results demonstrate the potential of PLA/PEI nanoparticles as gene carriers.  相似文献   

2.
The objective of this study was to investigate the effect of formulation parameters (i.e. polymer molecular weight and homogenization speed) on various physicochemical and biological properties of cationic nanoparticles. Cationic nanoparticles were prepared using different molecular weights of poly(DL-lactide-co-glycolide) (PLGA) and poly(DL-lactic acid) (PLA) by double emulsion solvent evaporation at two different homogenization speeds, and were characterized in terms of size, surface charge, morphology, loading efficiency, plasmid release, plasmid integrity, cytotoxicity, and transfection efficiency. Cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used to provide positive charge on the surface of nanoparticles. Reporter plasmid gWIZ Beta-gal was loaded on the surface of nanoparticles by incubation. Use of higher homogenization speed and lower molecular weight polymer led to a decrease in mean particle size, increase in zeta potential, increase in plasmid loading efficiency, and a decrease in burst release. The nanoparticles displayed good morphology as evident from scanning electron micrographs. In vitro cytotoxicity study by MTT assay showed a low toxicity. Structural integrity of the pDNA released from nanoparticles was maintained. Transfecting human embryonic kidney (HEK293) cells with nanoparticles prepared from low molecular weight PLGA and PLA resulted in an increased expression of beta-galactosidase as compared to those prepared from high molecular weight polymer. Our results demonstrate that the PLGA and PLA cationic nanoparticles can be used to achieve prolonged release of pDNA, and the plasmid release rate and transfection efficiency are dependent on the formulation variables.  相似文献   

3.
A one-step preparation of nanoparticles with poly(lactide-co-glycolide) (PLGA) pre-modified with polyethylenimine (PEI) is better in requirements for DNA delivery compared to those prepared in a two-step process (preformed PLGA nanoparticles and subsequently coated with PEI). The particles were prepared by emulsification of PLGA/ethyl acetate in an aqueous solution of PVA and PEI. DLS, AFM and SEM were used for the size characteristics. The cytotoxicity of PLGA/PEI nanoparticles was detected by MTT assay. The transfection activity of the particles was measured using pEGFP and pβ-gal plasmid DNA. Results showed that the PLGA/PEI nanoparticles were spherical and non-porous with a size of about 0.2 μm and a small size distribution. These particles had a positive zeta potential demonstrating that PEI was attached. Interestingly, the zeta potential of the particles (from one-step procedure) was substantially higher than that of two-step process and is ascribed to the conjugation of PEI to PLGA via aminolysis. The PLGA/PEI nanoparticles were able to bind DNA and the formed complexes had a substantially lower cytotoxicity and a higher transfection activity than PEI polyplexes. In conclusion, given their small size, stability, low cytotoxicity and good transfection activity, PLGA/PEI-DNA complexes are attractive gene delivery systems.  相似文献   

4.
Controlled release of plasmid DNA (pDNA) from biodegradable poly lactic-co-glycolic acid (PLGA) microparticles has the potential to enhance transgene expression. However, barriers to this approach include limited encapsulation efficiency, pDNA damage during fabrication and confinement of the microparticles inside phagolysosomal compartments. Combining PLGA with poly ethyleneimine (PEI) can improve protection of pDNA during fabrication, increase encapsulation efficiencies and impart the PLGA microparticles with the capacity to escape the phagolysosomal compartments. This study compares three promising formulation methods for preparing PLGA PEI pDNA microparticles and evaluates for buffering capacity, cellular uptake, transfection efficiency and toxicity. In the first method, PLGA PEI pDNA microparticles are prepared by entrapping pDNA in blended PLGA/PEI using the double emulsion water-in-oil-in-water solvent evaporation technique (PA). In a second approach, PEI-pDNA polyplexes are prepared and then entrapped in PLGA microparticles using a double emulsion solvent evaporation method (PB). Microparticles prepared using formulation methods PA and PB are then compared against PLGA microparticles with PEI conjugated to the surface using carbodiimide chemistry (PC); 0.5% PVA is identified as the optimum concentration of surfactant for generating the strongest transfection efficiencies. N:P ratios of 5 and 10 are selected for preparation of each group. Gel electrophoresis demonstrates that all PLGA microparticle formulations have strong pDNA binding capacity. An MTT assay shows that in vitro cytotoxicity of PLGA PEI microparticles is significantly lower than PEI alone. PLGA PEI pDNA microparticles mediate higher cellular uptake efficiency and consequently higher transgene expression than unmodified PLGA microparticles in COS7 and HEK293 cells. Preparing PEI-pDNA polyplexes prior to entrapment in PLGA microparticles (PB) results in the highest pDNA loading. This is 2.5-fold higher than pDNA loading in unmodified PLGA microparticles. PLGA PEI pDNA microparticles prepared using method PB generates the strongest transfection efficiencies, which are 500-fold higher than unmodified PLGA pDNA microparticles in HEK293 cells and 1800-fold higher in COS-7 cells. The highest transfection efficiencies generated from microparticles prepared using method PB is achieved using an N:P ratio of 5.  相似文献   

5.
The main objective of this study was to prepare two types of nanoparticles with poly(d,l-lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) polymers. Plasmid DNA (pDNA) was adsorbed either on PLGA/PEI nanoparticles, or as PEI/DNA complex onto the surface of PLGA nanoparticles. Both types of nanoparticles were prepared by the double emulsion method. The nanoparticles were characterized by their size, zeta potential and pDNA or PEI/DNA complex adsorption. The PEI/DNA complex adsorption was confirmed with ethidium bromide assay. pDNA adsorption onto PLGA/PEI nanoparticles (PLGA/PEI-DNA) was studied by electrophoresis on agarose gel. Cytotoxicity and transfection efficiency of both types of nanoparticle and PEI/DNA complexes formulations were studied in head and neck squamous carcinoma cell line (FaDu). To improve endosomal release, photochemical internalization (PCI) was used. The zeta potential increased when the PEI/DNA complex adsorbed onto PLGA nanoparticles (PLGA-PEI/DNA). Optimal pDNA adsorption efficiency was achieved for nitrogen/phosphorous ratio≥20/1. In vitro transfection and cells viability on FaDu cells with or without PCI were found to be variable depending on the type and concentration of nanoparticles. The results showed that transfection efficiency for PLGA/PEI-DNA or PLGA-PEI/DNA nanoparticles ranged between 2 and 80%, respectively. PCI was found to slightly improve the transfection efficiency for all formulations.  相似文献   

6.
Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 approximately 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.  相似文献   

7.
Gene silencing using small interfering RNA (siRNA) has several potential therapeutic applications. In the present study, we investigated nanoparticles (NS) formulated using the biodegradable polymer, poly(D,L-lactide-co-glycolide) (PLGA) for plasmid DNA (pDNA) delivery. A cationic polymer, Chitosan (CHS), was incorporated in the PLGA matrix to improve pDNA loading efficiency and cellular uptake ability. PLGA-CHS NS were prepared by a spontaneous emulsion diffusion (SED) method, and various formulation factors were investigated. Spherical nanoparticles with particle size of around 60 nm were obtained under optimum formulation condition. The effectiveness of pDNA-loaded PLGA-CHS nanoparticles in expressing the indicative enhanced Green Fluorescent Protein (eGFP) and in slicing Hepatitis B virus (HBV) gene were examined in HepG2.2.15 cells. CHS-modified PLGA NS exhibited much higher loading efficiency than unmodified PLGA NS. CHS-PLGA NS showed a positive zeta potential, while plain-PLGA NS were negatively charged. EGFP expression studies by observation with confocal leaser scanning microscopy (CLSM) indicated that pDNA-loaded CHS-PLGA NS were more effectively taken up by the cells than plain-PLGA NS. The corresponding results showed that the HBV gene-silencing efficiency of CHS-PLGA NS was higher than those of plain-PLGA NS and naked pDNA. Thus, CHS-PLGA NS containing pDNA could provide an effective pDNA delivery system in vitro, showing that such an approach could be useful in the treatment of viral diseases in vivo.  相似文献   

8.
Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 ~ 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.  相似文献   

9.
Zeng P  Peng ML  Xu Y 《药学学报》2010,45(11):1346-1353
Biodegradable nano/microparticles of poly(D, L-lactide-co-glycolide) (PLGA) is a novel non-viral gene vector, which has many advantages, such as safety, non-immunogenicity, easy of large-scale preparation and well load-capability. Therefore, more and more attentions and researches have been paid on its application. Especially, PLGA has shown enormous potential application value and space in the field of plasmid DNA (pDNA) delivery system. On the basis of the current situation of PLGA nano/microparticles for pDNA delivery, this paper focused on summarizing the current preparation approaches and surface modified methods of PLGA particle, furthermore showing its application in gene therapy and genetic vaccine delivery. These showed that PLGA nano/microparticles have extensive prospect in the development of controlled gene delivery system.  相似文献   

10.
Our previous studies demonstrated that cationic nanoparticles composed of well-defined poly(methyl methacrylate) (PMMA) cores surrounded by a hairly poly(ethyleneimine) (PEI) shells have comparative advantages over the PEI system for gene delivery. In this study, we focused on the intracellular uptake and release of PEI-PMMA nanoparticle/pDNA complexes. The behavior of the nanoparticle/pDNA complexes in recipient cells was monitored by using confocal laser scanning microscopy. We found that the nanoparticle/pDNA complexes were internalized very effectively by endocytosis. In the recipient cells the nanoparticles were found localized in the cytoplasm. At the same time, the pDNA carried by the nanoparticles successfully detached from the nanoparticles and localized in the nucleus of the HeLa cells.  相似文献   

11.
Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.  相似文献   

12.
Effective delivery of DNA encoding antigen into the dendritic cells (DCs), which are non-dividing cells, is very important for the development of DNA vaccines. In a previous study, we developed the PLGA nanospheres that contained a cationic nanomaterial and showed high transfection efficiency in COS7 cells, which divide. In the present study, to produce an effective vector for the DNA vaccines, the gene expression and intracellular trafficking of pDNA complexed with PLGA/PEI nanospheres, in combination with an NF-κB analog as a nuclear localization signal (NLS) and electroporation were evaluated in human monocyte-derived DCs (hMoDCs). Cellular uptake of pDNA both in COS7 cells and hMoDCs was enhanced using the PLGA/PEI nanospheres. On the other hand, the PLGA/PEI nanospheres significantly promoted the transfection in COS7 cells, but had almost no effect on transfection in hMoDCs. The intranuclear transport of pDNA by PLGA/PEI nanospheres in COS7 cells was significantly higher than that in hMoDCs. These results indicate that pDNA complexed with PLGA/PEI nanospheres cannot enter into the nuclei of non-dividing cells. However, PLGA/PEI nanospheres combinated with NLS and electroporation (experimental permeation enhancer) greatly elevated the transfection efficiency by improvement of not only intracellular uptake but also intranuclear transport of pDNA in the hMoDCs. Thus, this delivery system using nanospheres combined with synthesized NLS might be applicable to DC-based gene vaccines when much non-invasive application such as needle-free injector should be required.  相似文献   

13.
Biodegradable poly(lactide-co-glycolide) (PLGA) particles have shown significant potential for sustained and targeted delivery of several pharmaceutical agents, including plasmid DNA (pDNA). Here, we survey current approaches to PLGA particle preparation for pDNA delivery and discuss recent progress on optimizing formulation development.  相似文献   

14.
A novel method for preparing the PLGA nanospheres with hydrophilic surface has been designed and characterized. Because of good solubility of tetraglycol in water, PLGA (poly(lactide-co-glycolide)) nanospheres were formed by spraying the PLGA/tetraglycol solution into water. The size of PLGA nanospheres was manipulated by changing the concentration of PLGA/tetraglycol solution. Based on the hydrophobic interaction between PLGA and poly(propylene oxide) domain of F-127 (one of Pluronics, poly(ethylene oxide)-poly(propylene oxide)poly(ethylene oxide) triblock copolymer, F-127-coated PLGA nanospheres was prepared to enhance the stability of PLGA nanospheres in the aqueous media. For the application as a drug delivery vehicle, it was characterized by measuring the loading amount, the encapsulation efficiency and the release pattern of drug. Paclitaxel used as a potent anti-cancer drug was selected as a model drug.  相似文献   

15.
A novel method for preparing the PLGA nanospheres with hydrophilic surface has been designed and characterized. Because of good solubility of tetraglycol in water, PLGA (poly(lactide-co-glycolide)) nanospheres were formed by spraying the PLGA/tetraglycol solution into water. The size of PLGA nanospheres was manipulated by changing the concentration of PLGA/tetraglycol solution. Based on the hydrophobic interaction between PLGA and poly(propylene oxide) domain of F-127 (one of Pluronics, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127-coated PLGA nanospheres was prepared to enhance the stability of PLGA nanospheres in the aqueous media. For the application as a drug delivery vehicle, it was characterized by measuring the loading amount, the encapsulation efficiency and the release pattern of drug. Paclitaxel used as a potent anti-cancer drug was selected as a model drug.  相似文献   

16.
Hydrogels are widely used in drug delivery systems because they can control the release and thereby enhance the efficiency of locally delivered bioactive molecules such as therapeutic drugs, proteins, or genes. For gene delivery, localized release of plasmid DNA or polymer/DNA complexes can transfect cells and produce sustained protein production. We tested the galactosylated chitosan-graft-polyethylenimine (GC-g-PEI)/DNA complexes-loaded poly(organophosphazene) thermosensitive biodegradable hydrogel as a hepatocyte targeting gene delivery system. The poly(organophosphazene) hydrogel loaded with GC-g-PEI/DNA complexes showed low cytotoxicity and higher transfection efficiency than PEI/DNA complexes, as well as good hepatocyte specificity in vitro and in vivo. Our results indicate that poly(organophosphazene) hydrogels loaded with GC-g-PEI/DNA complexes may be a safe and efficient hepatocyte targeting gene delivery system.  相似文献   

17.
Gene silencing using small interfering RNA (siRNA) has several potential therapeutic applications. In the present study, we investigated nanoparticles formulated using the biodegradable polymer, poly(d,l-lactide-co-glycolide) (PLGA) for siRNA delivery. A cationic polymer, polyethylenimine (PEI), was incorporated in the PLGA matrix to improve siRNA encapsulation in PLGA nanoparticles. PLGA-PEI nanoparticles were formulated using double emulsion-solvent evaporation technique and characterized for siRNA encapsulation and in vitro release. The effectiveness of siRNA-loaded PLGA-PEI nanoparticles in silencing a model gene, fire-fly luciferase, was investigated in cell culture. Presence of PEI in PLGA nanoparticle matrix increased siRNA encapsulation by about 2-fold and also improved the siRNA release profile. PLGA-PEI nanoparticles carrying luciferase-targeted siRNA enabled effective silencing of the gene in cells stably expressing luciferase as well as in cells that could be induced to overexpress the gene. Quantitative studies indicated that presence of PEI in PLGA nanoparticles resulted in 2-fold higher cellular uptake of nanoparticles while fluorescence microscopy studies showed that PLGA-PEI nanoparticles delivered the encapsulated siRNA in the cellular cytoplasm; both higher uptake and greater cytosolic delivery could have contributed to the gene silencing effectiveness of PLGA-PEI nanoparticles. Serum stability and lack of cytotoxicity further add to the potential of PLGA-PEI nanoparticles in gene silencing-based therapeutic applications.  相似文献   

18.
In the purpose of increasing incorporation efficiency and improving the release kinetics of plasmid DNA (pDNA) from poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles, a facile method for the fabrication of calcium phosphate (CaPi) embedded PLGA nanoparticles (CaPi-pDNA-PLGA-NPs) was developed. The effect of several preparation factors on the particle size, incorporation efficiency, pDNA release and transfection efficiency in vitro was studied by Single Factor Screening Method. These preparation factors included the molecular weight (MW), hydrolysis degree (HD) of polyvinyl alcohol (PVA), sonication power and time, composition of organic phase, initial concentration of calcium phosphate and calcium (Ca) to phosphate ion (P) ratio (Ca/P ratio), etc. The CaPi-pDNA-PLGA-NPs made according to the optimal formulation were spherical in shape observed by transmission electron microscopy (TEM) with a mean particle size of 207±5 nm and an entrapment efficiency of 95.7±0.8%. Differential scanning calorimetry (DSC) suggested that there existed interaction between the DNA-calcium-phosphate (CaPi-pDNA) complexes and the polymeric matrices of PLGA. X-ray diffractometry (XRD) further proved the conclusion and indicated that the CaPi-pDNA was in weak crystallization form inside the nanoparticles. The Brunauer-Emmett-Teller (BET) surface area measurement demonstrated that the CaPi-pDNA-PLGA-NPs are mesoporous with specific surface area of 57.5m(2)/g and an average pore size of 96.5 ?. The transfection efficiency of the CaPi-pDNA-PLGA-NPs on human embryonic kidney 293 (HEK 293) cells in vitro was 22.4±1.2%, which was much higher than those of both the pDNA loaded PLGA nanoparticles (pDNA-PLGA-NPs) and the CaPi-pDNA embedded PLGA microparticles (CaPi-pDNA-PLGA-MPs). The CaPi-pDNA-PLGA-NPs are promising vectors for gene delivery.  相似文献   

19.
The purpose of this research is to test the possibility of localized intravascular infusion of didodecyldimethylammonium bromide (DMAB)-modified paclitaxel-loaded poly(epsilon-caprolactone)/Pluronic F68 (PCL/F68) nanoparticles to achieve long-term inhibition of hyperplasia in a balloon-injured rabbit carotid artery model. Paclitaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial poly(lactide-co-glycolide) (PLGA) and self-synthesized PCL/F68, respectively. DMAB was adsorbed on the nanoparticle surface by electrostatic attraction between positive and negative charges to enhance arterial retention. Nanoparticles were found to be of spherical shape with a mean size of around 300 nm and polydispersity of less than 0.150. The surface charge was changed to positive values after the DMAB modification. The in vitro drug release profile of all nanoparticle formulation showed a biphasic release pattern. Drug release from DMAB-modified PCL/F68 nanoparticles (DPNP) was significantly slower than DMAB-modified PLGA nanoparticles (PGNP). After 90 days, DPNP group showed very significant inhibition of neointimal proliferation (p < 0.01), and PGNP group yielded significant inhibition of neointimal proliferation (p < 0.05), when compared with drug-free nanoparticles group. In conclusion, local delivery of paclitaxel-loaded DMAB-modified PCL/F68 nanoparticles was proven an effective means of long-term inhibition of hyperplasia in the rabbits.  相似文献   

20.
Ketotifen (KT) was encapsulated into poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA 50/50) by spray-drying to investigate the use of biodegradable drug-loaded microspheres as delivery systems in the intraperitoneal cavity. Ketotifen stability was evaluated by HPLC, and degradation was not observed. Drug entrapment efficiency was 74 +/- 7% (82 +/- 8 microg KT/mg for PLA) and 81 +/- 6% (90 +/- 7 microg KT/mg for PLGA 50/50). PLA microspheres released ketotifen (57% of encapsulated KT) in 350 h at two release rates (221 microg/h, 15 min to 2 h; 1.13 microg/h, 5-350 h). A quicker release of ketotifen took place from PLGA 50/50 microspheres (67.4% of encapsulated KT) in 50 h (322 microg/h, 15 min to 2 h; 16.18 microg/h, 5-50 h). After intraperitoneal administration (10 mg KT/kg b.w.), microsphere aggregations were detected in adipose tissue. Ketotifen concentration was determined in plasma by HPLC. The drug released from PLA and PLGA 50/50 microspheres was detected at 384 and 336 h, respectively. Noncompartmental analysis was performed to determine pharmacokinetic parameters. The inclusion of ketotifen in PLGA and PLA microspheres resulted in significant changes in the plasma disposition of the drug. Overall, these ketotifen-loaded microspheres yielded an intraperitoneal drug release that may be suitable for use as delivery systems in the treatment of inflammatory response in portal hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号