首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucuronic acid linked prodrugs of O(6)-benzylguanine and O(6)-benzyl-2'-deoxyguanosine were synthesized. The prodrugs were found to be quite stable at physiological pH and were more than 200-fold less active as inactivators of O(6)-alkylguanine-DNA alkyltransferase (alkyltransferase) than either O(6)-benzylguanine or O(6)-benzyl-2'-deoxyguanosine. Beta-glucuronidase from both Escherichia coli and bovine liver cleaved the prodrugs efficiently to release O(6)-benzylguanine and O(6)-benzyl-2'-deoxyguanosine, respectively. In combination with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the prodrugs were not effective adjuvants for HT29 cell killing. However, as expected, incubation of these prodrugs with beta-glucuronidase in the culture medium led to much more efficient cell killing by BCNU as a result of the liberation of the more potent inactivators, O(6)-benzylguanine and O(6)-benzyl-2'-deoxyguanosine. These prodrugs may be useful for prodrug monotherapy of necrotic tumors that liberate beta-glucuronidase or for antibody-directed enzyme prodrug therapy with antibodies that can deliver beta-glucuronidase to target tumor cells.  相似文献   

2.
O6-Alkylguanine-DNA alkyltransferase (alkyltransferase) provides an important source of resistance to some cancer chemotherapeutic alkylating agents. Folate ester derivatives of O6-benzyl-2'-deoxyguanosine and of O6-[4-(hydroxymethyl)benzyl]guanine were synthesized and tested for their ability to inactivate human alkyltransferase. Inactivation of alkyltransferase by the gamma-folate ester of O6-[4-(hydroxymethyl)benzyl]guanine was similar to that of the parent base. The gamma-folate esters of O6-benzyl-2'-deoxyguanosine were more potent alkyltransferase inactivators than the parent nucleoside. The 3'-ester was considerably more potent than the 5'-ester and was more than an order of magnitude more active than O6-benzylguanine, which is currently in clinical trials to enhance therapy with alkylating agents. They were also able to sensitize human tumor cells to killing by 1,3-bis(2-chloroethyl)-1-nitrosourea, with O6-benzyl-3'-O-(gamma-folyl)-2'-deoxyguanosine being most active. These compounds provide a new class of highly water-soluble alkyltransferase inactivators and form the basis to construct more tumor-specific and potent compounds targeting this DNA repair protein.  相似文献   

3.
The human DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) is an important source of resistance to some therapeutic alkylating agents and attempts to circumvent this resistance by the use of hAGT inhibitors have reached clinical trials. Several human polymorphisms in the MGMT gene that encodes hAGT have been described including L84F and the linked double alteration I143V/K178R. We have investigated the inactivation of these variants and the much rarer variant W65C by O(6)-benzylguanine, which is currently in clinical trials, and a number of other second generation hAGT inhibitors that contain folate derivatives (O(4)-benzylfolic acid, the 3' and 5' folate esters of O(6)-benzyl-2'-deoxyguanosine and the folic acid gamma ester of O(6)-(p-hydroxymethyl)benzylguanine). The I143V/K178R variant was resistant to all of these compounds. The resistance was due solely to the I143V change. These results suggest that the frequency of the I143V/K178R variant among patients in the clinical trials with hAGT inhibitors and the correlation with response should be considered.  相似文献   

4.
《Biochemical pharmacology》1997,53(10):1559-1564
Studies were carried out on the inactivation of pure human O6-alkylguanine-DNA alkyltransferase by 9-substituted O6-benzylguanine derivatives in the presence and absence of DNA. The addition of DNA increased the rate of inactivation of the alkyltransferase by O6-benzylguanine and its 9-methyl derivative but had little effect on the rate of inactivation by the 9-cyanomethyl derivative. In contrast, when O6-benzylguanine derivatives with larger 9-substituents such as ribose, 2′-deoxyribose, dihydrotestosterone, or 2-hydroxy-3-(isopropoxy)propyl were used, the addition of DNA was strongly inhibitory to the inactivation. In the case of O6-benzylguanine, O6-benzylguanosine, and O6-benzyl-2′-deoxyguanosine, these results were confirmed by directly measuring the rate of formation by the alkyltransferase of guanine, guanosine, or 2′-deoxyguanosine, respectively. The data indicated that the presence of DNA activated the alkyltransferase, rendering it more reactive with O6-benzylguanine or O6-benzyl-9-methylguanine, but that DNA interferes with the binding of inhibitors with larger 9-substituents, presumably by competing for the same binding site. Since these inactivators readily inactivate alkyltransferase in cells, the amount of cellular alkyltransferase bound to DNA must be small or readily exchangeable with the free form.  相似文献   

5.
Chemotherapeutic alkylnitrosoureas (BCNU, CCNU, streptozotocin) and alkyltriazenes (DTIC, temozolomide) produce a cytotoxic lesion at the O(6)-position of guanine. The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase removes damage from the O(6)-position in a single-step mechanism without co-factors. There is extensive evidence that this protein is one of the most important factors contributing to alkylnitrosourea and alkyltriazene treatment failure. There is an inverse correlation between the level of this protein and the sensitivity of cells to the cytotoxic effects of O(6)-alkylating agents. Attempts have been made to modulate AGT activity using anti-sense technology, methylating agents, O(6)-alkylguanines, and O(6)-benzylguanine analogs. O(6)-Benzylguanine and its analogs are clearly the most potent direct inactivators of the AGT protein. The mechanism involves O(6)-benzylguanine acting as a low-molecular weight substrate with transfer of the benzyl group to the cysteine residue within the active site of the repair protein. Pretreatment of cells with non-toxic doses of O(6)-benzylguanine results in an increase in the sensitivity to O(6)-alkylating agents. Animal studies revealed that the therapeutic index of BCNU increased when administered in combination with O(6)-benzylguanine. This drug is currently in phase I clinical trials. Evidence from animal studies indicates that myelosuppression may be the dose-limiting toxicity, thus, efforts are aimed at improving the therapeutic index by the stable expression of O(6)-benzylguanine-resistant AGT proteins into targeted normal tissue such as bone marrow. The successful modulation of alkyltransferases brings on an exciting new era for alkylnitrosoureas and alkyltriazenes.  相似文献   

6.
O6-Benzylguanine and its metabolite, 8-oxo-O6-benzylguanine, are equally potent inhibitors of the DNA repair enzyme, O6-alkylguanine-DNA alkyltransferase. Pharmacokinetic values are derived from cancer patients participating in a phase I trial (10 or 20 mg/m2 of O6-benzylguanine in a single bolus dose or 10 to 120 mg/m2 as a 60-min constant infusion). A two-compartment model fits the plasma concentration versus time profile of O6-benzylguanine. O6-Benzylguanine is eliminated rapidly from the plasma compartment in humans (t1/2 alpha and t1/2 beta are 2 +/- 2 min and 26 +/- 15 min [mean +/- SD, n = 7], respectively), and its plasma clearance (513 +/- 148 mL/min/m2) is not dose dependent. Metabolite kinetics are evaluated using both a novel approach describing the relationship between O6-benzylguanine and 8-oxo-O6-benzylguanine and classical metabolite kinetics methods. With increasing doses of O6-benzylguanine, the plasma clearance of 8-oxo-O6-benzylguanine, decreases, prolonging elimination of the metabolite. This effect is not altered by coadministration of BCNU. The urinary excretion of drug and metabolites is minimal.  相似文献   

7.
Human colon cancer is resistant to a variety of alkylating agents including the nitrosoureas. To specifically evaluate nitrosourea resistance, we studied the role of O6-alkylguanine-DNA alkyltransferase (alkyltransferase) which is known to repair nitrosourea-induced cytotoxic DNA damage. Alkyltransferase activity varied over a similar wide range in 25 colon cancer biopsies and 14 colon cancer cell lines but the activity was not correlated with differentiation status, Dukes' classification or in vitro growth characteristics. 1,3-Bis-(2-chloroethyl)-1-nitrosourea (BCNU) resistance and alkyltransferase activity were highly correlated (R2 = 0.929, P less than 0.001) in 7 different colon cancer cell lines, suggesting that the alkyltransferase is an important component of nitrosourea resistance in colon cancer cells. In the BCNU-resistant, high alkyltransferase VACO 6 cell line, inactivation of the alkyltransferase by O6-methylguanine caused a proportional decrease in the BCNU IC50, consistent with that predicted by the regression line. Enzyme inactivation was also associated with a marked increase in DNA cross-link formation. Because alkyltransferase correlates with BCNU resistance in colon cancer, and resistance can be reversed by inactivating the protein, the alkyltransferase may have an important role in nitrosourea resistance in human colon cancer cells. These data provide the rationale for clinical trials in colon cancer with biochemical modulators of the alkyltransferase to increase the therapeutic response to nitrosoureas.  相似文献   

8.
A series of O6- and S6-substituted purine derivatives were tested for their ability to deplete the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in cell-free extracts from HT29 colon tumor cells and intact HT29 cells. The order of potency was O6-(p-Y-benzyl)-guanine (Y = H, F, Cl, and CH3) > O6-benzyl-2'-deoxyguanosine > O6-(p-Y-benzyl)guanosine (Y = H, Cl, and CH3) > or = a series of 9-substituted O6-benzylguanine derivatives > or = O6-allylguanine > O6-benzylhypoxanthine > O6-methylguanine. A series of 7-substituted O6-benzylguanine derivatives, 2-amino-6-(p-Y-benzylthio)purine (Y = H, CH3), 2-amino-6-[(p-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and 7-benzylguanine were inactive. It is concluded that for efficient AGT depletion, an allyl or benzyl group attached through exocyclic oxygen at position 6 of a 2-aminopurine derivative is required. Activity is preserved with a variety of substituent groups attached to position 9 while substitution at position 7 leads to a complete loss of activity.  相似文献   

9.
Four cyclohexene analogues of gamma-aminobutyric acid (GABA) and beta-alanine were designed as conformationally rigid analogues of the epilepsy and drug addiction drug vigabatrin and as potential mechanism-based inactivators of gamma-aminobutyric acid aminotransferase (GABA-AT). The corresponding cyclopentene analogues were previously reported to be inhibitors, but not inactivators, of GABA-AT (Qiu, J.; Pingsterhaus, J.; Silverman, R. B. J. Med. Chem. 1999, 42, 4725-4728). cis-3-Aminocyclohex-4-ene-1-carboxylic acid (3) and cis-2-aminocyclohex-3-ene-1-carboxylic acid (5) showed time- and concentration-dependent, irreversible inactivation of GABA-AT. In both cases, the inactivations are protected by substrate, indicating that they are active site-directed. trans-3-Aminocyclohex-4-ene-1-carboxylic acid (4) and trans-2-aminocyclohex-3-ene-1-carboxylic acid (6) are not inactivators but are competitive reversible inhibitors of GABA-AT. Unlike the cyclopentene analogues, there appears to be sufficient ring flexibility to allow inactivation to occur. The orientation of the carboxylic and amino groups of these analogues is important for their binding to GABA-AT. Molecular modeling of GABA-AT with 3-6 and molecular dynamics simulations with vigabatrin bound provide rationalizations for the inhibitory properties of these compounds.  相似文献   

10.
Cellular resistance to chemotherapeutics that alkylate the O-6 position of guanine residues in DNA correlates with their O(6)-alkylguanine-DNA alkyltransferase activity. In normal cells high [O(6)-alkylguanine-DNA alkyltransferase] is beneficial, sparing the host from toxicity, whereas in tumor cells high [O(6)-alkylguanine-DNA alkyltransferase] prevents chemotherapeutic response. Therefore, it is necessary to selectively inactivate O(6)-alkylguanine-DNA alkyltransferase in tumors. The oxygen-deficient compartment unique to solid tumors is conducive to reduction, and could be utilized to provide this selectivity. Therefore, we synthesized 2-nitro-6-benzyloxypurine, an analog of O(6)-benzylguanine in which the essential 2-amino group is replaced by a nitro moiety, and 2-nitro-6-benzyloxypurine is >2000-fold weaker than O(6)-benzylguanine as an O(6)-alkylguanine-DNA alkyltransferase inhibitor. We demonstrate oxygen concentration sensitive net reduction of 2-nitro-6-benzyloxypurine by cytochrome P450 reductase, xanthine oxidase, and EMT6, DU145, and HL-60 cells to yield O(6)-benzylguanine. We show that 2-nitro-6-benzyloxypurine treatment depletes O(6)-alkylguanine-DNA alkyltransferase in intact cells under oxygen-deficient conditions and selectively sensitizes cells to laromustine (an agent that chloroethylates the O-6 position of guanine) under oxygen-deficient but not normoxic conditions. 2-Nitro-6-benzyloxypurine represents a proof of concept lead compound; however, its facile reduction (E(1/2) - 177 mV versus Ag/AgCl) may result in excessive oxidative stress and/or the generation of O(6)-alkylguanine-DNA alkyltransferase inhibitors in normoxic regions in vivo.  相似文献   

11.
Double-stranded and gapped shuttle vectors were used to study mutagenesis in human cells by O(6)-methyl (m(6)G)-, O(6)-ethyl (e(6)G)-, and O(6)-benzylguanine (b(6)G), and O(4)-methylthymine (m(4)T) when these bases were incorporated site-specifically in the ATG initiation codon of a lacZ' gene. Vectors were transfected into either human kidney cells (293) or colon tumor cells (SO) or into mismatch repair defective human colon tumor cells (H6 and LoVo). Cellular O(6)-alkylguanine-DNA alkyltransferase (alkyltransferase) was optionally inactivated by treating cells with O(6)-benzylguanine prior to transfection. In alkyltransferase competent cells, the mutagenicity of all the modified bases was substantially higher in gapped plasmids than in double-stranded plasmids. Alkyltransferase inactivation increased mutagenesis by the three O(6)-substituted guanines in both double-stranded and gapped plasmids but did not affect m(4)T mutagenesis. In the absence of alkyltransferase, mutagenesis by m(6)G and to a lesser extent e(6)G in double-stranded vectors was higher in the mismatch repair defective H6 and LoVo cells than in SO or 293 cells indicating that e(6)G as well as m(6)G were subject to mismatch repair processing in these cells. The level of mutagenesis by m(4)T and b(6)G was not affected by mismatch repair status. When incorporated in gapped plasmids and in the absence of alkyltransferase, the order of mutagenicity for the modified bases was m(4)T > e(6)G congruent with m(6)G > b(6)G. The O(6)-substituted guanines primarily produced G-->A transitions while m(4)T primarily produced T-->C transitions. However, m(4)T also produced a significant number of T-->A transversion mutations in addition to T-->C transitions in mismatch repair deficient LoVo cells.  相似文献   

12.
A series of O(6)-allyl- and O(6)-(2-oxoalkyl)guanines were synthesized and evaluated, in comparison with the corresponding O(6)-alkylguanines, as potential inhibitors of the DNA-repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT). Simple O(6)-alkyl- and O(6)-cycloalkylguanines were weak AGT inactivators compared with O(6)-allylguanine (IC(50) = 8.5 +/- 0.6 microM) with IC(50) values ranging from 100 to 1000 microM. The introduction of substituents at C-2 of the allyl group of O(6)-allylguanine reduced activity compared with the parent compound, while analogous compounds in the O(6)-(2-oxoalkyl)guanine series exhibited very poor activity (150-1000 microM). O(6)-Cycloalkenylguanines proved to be excellent AGT inactivators, with 1-cyclobutenylmethylguanine (IC(50) = 0.55 +/- 0.02 microM) and 1-cyclopentenylmethylguanine (IC(50) = 0.39 +/- 0.04 microM) exhibiting potency approaching that of the benchmark AGT inhibitor O(6)-benzylguanine (IC(50) = 0.18 +/- 0.02 microM). 1-Cyclopentenylmethylguanine also inactivated AGT in intact HT29 human colorectal carcinoma cells (IC(50) = 0.20 +/- 0.07 microM) and potentiated the cytotoxicity of the monomethylating antitumor agent Temozolomide by approximately 3- and 10-fold, respectively, in the HT29 and Colo205 tumor cell lines. The observation that four mutant AGT enzymes resistant to O(6)-benzylguanine also proved strongly cross-resistant to 1-cyclopentenylmethylguanine indicates that the O(6)-substituent of each compound makes similar binding interactions within the active site of AGT.  相似文献   

13.
14.
合成一系列O^6-苄基鸟嘌呤(O^6-BG)类似物,并且采用MTT法评价其体外对DNA修复蛋白AGT的抑制作用,探讨其作为潜在的正电子发射断层成像技术(PET)显像剂前体的可能性。以鸟嘌呤作为起始原料分别合成了O^6-BG及其类似物HMBG,MOBG,MOMOBG,BABP和PEG。采用MTT方法,通过测定合成产物增强HeLa细胞对1,3-双(2-氯乙基)亚硝基脲(BCNU)药物敏感性的强弱来评价其对AGT的抑制作用。合成产物对AGT抑制活性强弱排序为HMBG≥O^6-BG≥MOBG≥MOMBG,而BABP和PEG基本未表现出任何的AGT抑制活性。HMBG,MOBG和MOMBG具有良好的体外活性,其正电子核素标记物可能成为有前景的用于肿瘤AGT显像的PET显像剂。  相似文献   

15.
A series of 4-nitrobenzyloxycarbonyl prodrug derivatives of O(6)-benzylguanine (O(6)-BG), conceived as prodrugs of O(6)-BG, an inhibitor of the resistance protein O(6)-alkylguanine-DNA alkyltransferase (AGT), were synthesized and evaluated for their ability to undergo bioreductive activation by reductase enzymes under oxygen deficiency. Three agents of this class, 4-nitrobenzyl (6-(benzyloxy)-9H-purin-2-yl)carbamate (1) and its monomethyl (2) and gem-dimethyl analogues (3), were tested for activation by reductase enzyme systems under oxygen deficient conditions. Compound 3, the most water-soluble of these agents, gave the highest yield of O(6)-BG following reduction of the nitro group trigger. Compound 3 was also evaluated for its ability to sensitize 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine (laromustine)-resistant DU145 human prostate carcinoma cells, which express high levels of AGT, to the cytotoxic effects of this agent under normoxic and oxygen deficient conditions. While 3 had little or no effect on laromustine cytotoxicity under aerobic conditions, significant enhancement occurred under oxygen deficiency, providing evidence for the preferential release of the AGT inhibitor O(6)-BG under hypoxia.  相似文献   

16.
Amides of 1-benzyl-3,7-dimethyl-4-oxo-2-thioxo-1,2,3,4- tetrahydropyrido[2,3]pyrimidine-6-carboxylic acid were obtained by the condensation of ammonia, primary and secondary cyclic amines with the corresponding acid chloride. As by - products amides of 1-benzyl-3,7-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyr imidine-6- carboxylic acid were isolated as a result of desulfuration. The same reaction performed with chloride of 1-butyl-7-methyl-3-phenyl-4-oxo-2-thioxo-1,2,3,4-tetrahydropyri do[2,3- d]pyrimidine-6-carboxylic acid gave mainly the corresponding 2,4-dioxo-amides.  相似文献   

17.
Temozolomide is a new anticancer agent which in the early clinical investigation has shown promising antitumor activity. It decomposes spontaneously to the active metabolite of DTIC (MTIC). Temozolomide is more cytotoxic against L1210 than against a subline L1210/BCNU, resistant to chloroethylnitrosoureas. Using [methyl-3H] temozolomide we found that after 1 h exposure the amount of O6-methylguanine (O6mGua) was twice as high in L1210 than in L1210/BCNU whereas the amount of N7 mGua was approximately the same in the two cell lines. O6-alkylguanine DNA alkyltransferase (AT) levels were higher in L1210/BCNU than in L1210, supporting the view that the resistance to methyltriazenes is probably related to the efficient repair of O6mGua in L1210/BCNU. Exposure of L1210/BCNU cells to 0.4 mM O6mGua for 24 h resulted in a depletion of AT and in a higher temozolomide-induced cytotoxicity. In the sensitive cell line L1210, temozolomide activity was not potentiated by O6mGua pretreatment. Moreover, in L1210/BCNU, O6mGua increased DNA single-strand breaks caused by temozolomide, suggesting that O6-guanine alkylation induces an excision repair mechanism in cells depleted in AT.  相似文献   

18.
DNA repair mechanisms serve as useful targets for modulating the cytotoxic and chemotherapeutic effects of many agents whose mechanism of action involves the induction of DNA damage. For example, the modified base O6-methylguanine can inactivate the repair protein O6-alkylguanine alkyltransferase, thereby sensitizing cells to the cytotoxic effects of clinically useful nitrosoureas such as BCNU. Some of the cytotoxic DNA adducts induced by BCNU are repaired by O6-alkylguanine alkyltransferase; thus, inactivation of the protein by O6-methylguanine converts cells that are relatively resistant to BCNU into sensitive cells. Another cellular enzyme, poly(ADP-ribose) polymerase, responds to DNA strand breaks by cleaving its substrate, NAD+, and using the resultant ADP-ribose moieties to synthesize homopolymers of ADP-ribose. The use of agents such as benzamide derivatives to inhibit enzyme function results in the accumulation of DNA strand breaks and potentiates the tumoricidal effects of some DNA strand-breaking agents such as bleomycin. Poly(ADP-ribose) polymerase can also affect pyridine nucleotide metabolism in a manner that initiates biochemical alterations leading directly to cell death. Thus, the amount of NAD used in the synthesis of poly(ADP-ribose) is dependent on the number of DNA strand breaks present in the cells. DNA damage can sufficiently activate the enzyme to rapidly consume NAD and consequently deplete ATP levels, resulting in the cessation of all energy-dependent functions and cell death. Understanding this biochemical pathway that leads to cell death provides a new basis for modulating chemotherapy. For example, agents such as Tiazofurin and/or 6-aminonicotinamide can each be used to alter pyridine nucleotide metabolism, lower NAD pools and potentiate the cytotoxic effects of other chemotherapeutic agents whose primary target is the induction of DNA damage.  相似文献   

19.
Recently, we found (Qiu, J.; Pingsterhaus, J. M.; Silverman, R. B. J. Med. Chem. 1999, 42, 4725-4728) that conformationally rigid analogues of the GABA aminotransferase (GABA-AT) inactivator vigabatrin were not inactivators of GABA-AT. To determine if this is a general phenomenon of GABA-AT inactivators, several mono- and di-halogen-substituted conformationally rigid analogues (7-15) of other GABA-AT inactivators, 4-amino-5-halopentanoic acids, were synthesized as potential inactivators of GABA-AT. Four of them, (+)-7, (-)-9, (+)-10, and (+)-15, were inactivators, although not as potent as the corresponding open-chain analogues. The maximal inactivation rate constants, k(inact), for the fluoro- and bromo-substituted analogues were comparable, indicating that cleavage of the C-X bond is not rate determining. Consistent with that observation is the finding that [3-(2)H]-10 exhibits a deuterium isotope effect on inactivation of 3.3, suggesting that C-H bond cleavage is the rate-determining step. The rate of inactivation of GABA-AT by the fluorinated analogue 7 is 1/15 that of inactivation by the corresponding open-chain analogue, 4-amino-5-fluoropentanoic acid (3a). Whereas inactivation by 3a releases only one fluoride ion, inactivation by 7 releases 148 fluoride ions, accounting for the less efficient inactivation rate. Inactivation leads to covalent attachment of 2 equiv of inactivator after gel filtration; upon urea denaturation, 1 equiv of radioactivity remains bound to the enzyme. This suggests that, unlike the open-chain anlogue, the conformationally rigid analogue becomes, at least partially, attached to an active-site residue. It appears that the conformational constraint has a larger effect on inactivators that inactivate by a Michael addition mechanism than by an enamine mechanism.  相似文献   

20.
应用噻唑蓝 (MTT)法检测 O6-苄基鸟嘌呤(O6- BG)与 1 ,3-二 (2 -氯乙基 ) -亚硝基脲 (BCNU)合用的细胞毒作用及透射电镜检测凋亡细胞的方法研究了 O6- BG对 O6-烷基鸟嘌呤 - DNA烷基转移酶(O6- AGT )阳性的人肝癌细胞 SMMC- 772 1对BCNU细胞毒作用敏感性的影响及其与 BCNU合用治疗移植瘤的协同效果 .结果显示 :1 .5- 6.0 mg· L-1的 O6- BG预先作用 2 h后 ,SMMC- 772 1细胞对 BCNU的敏感性明显增加 ;0 .75- 6.0 mg· L-1的 O6- BG可完全快速地抑制肿瘤细胞的 AGT活性并持续 1 2 h;ip 90 mg· kg-1的 O6- BG预处理 2 h后给予 2 5mg·kg-1的 BCNU治疗 ,可使动物 sc接种的人肝癌移植瘤生长延迟 38.6d,诱导肿瘤细胞凋亡 ,并且可明显抑制肿瘤组织的转移酶活性 .说明 O6- BG与 BCNU合用于 AGT阳性的肿瘤将具有明显的治疗效果  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号