首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mandibular condylar cartilage is often classified as a secondary cartilage, differing from the primary cartilaginous skeleton in its rapid progress from progenitor cells to hypertrophic chondrocytes. In this study we used in situ hybridization and immunohistochemistry to investigate whether the formation of primary (tibial) and secondary (condylar) cartilage also differs with respect to the expression of two major non‐collagenous glycoproteins of bone matrix, bone sialoprotein (BSP) and secreted phosphoprotein 1 (Spp1, osteopontin). The mRNAs for both molecules were never expressed until hypertrophic chondrocytes appeared. In the tibial cartilage, hypertrophic chondrocytes first appeared at E14 and the expression of BSP and Spp1 mRNAs was detected in the lower hypertrophic cell zone, but the expression of BSP mRNA was very weak. In the condylar cartilage, hypertrophic chondrocytes appeared at E15 as soon as cartilage tissue appeared. The mRNAs for both molecules were expressed in the newly formed condylar cartilage, although the proteins were not detected by immunostaining; BSP mRNA in the condylar cartilage was more extensively expressed than that in the tibial cartilage at the corresponding stage (first appearance of hypertrophic cell zone). Endochondral bone formation started at E15 in the tibial cartilage and at E16 in the condylar cartilage. At this stage (first appearance of endochondral bone formation), BSP mRNA was also more extensively expressed in the condylar cartilage than in the tibial cartilage. The hypertrophic cell zone in the condylar cartilage rapidly extended during E15–16. These results indicate that the formation process of the mandibular condylar cartilage differs from that of limb bud cartilage with respect to the extensive expression of BSP mRNA and the rapid extension of the hypertrophic cell zone at early stages of cartilage formation. Furthermore, these results support the hypothesis that, in vivo, BSP promotes the initiation of mineralization.  相似文献   

2.
Histological and autoradiographic studies using 3H-proline indicate that cartilaginous tissue in the mandibular condyle maintains morphologic and metabolic characteristics of an embryonic type of tissue. Cartilage cells in the condyle lack the specific arrangement and cellular homogeneity characteristic of more differentiated endochondral growth sites. Through dedifferentiation many chondrocytes in the mandibular condyle appear to outlive the hypoxic conditions that are reported to prevail within the mineralizing zone. Chondrocytes in this zone reveal only a minimal amount of 3H-proline uptake in comparison with the cells in the chondroblastic and premineralizing zones. The dedifferentiated chondrocytes appear to redifferentiate into more specialized cells, possibly osteoprogenitor cells, as they reveal a significant increase in 3H-proline incorporation in the vicinity of the ossifying front. These observations on proline metabolism support the concept that calcification in the condylar cartilage is not necessarily accompanied by degeneration and death of the chondrocytes.  相似文献   

3.
Histochemical and autoradiographic studies using 35S-sulfate indicate that the majority of the cartilage cells in the developing mandibular condyle of the young mouse are active, vital cells. Concomitant with the increase of hypoxic conditions within the deeper layers of the cartilage, an increase in sulfated glycosaminoglucuronoglycans synthesis takes place. Hypertrophic chon-drocytes in the premineralized and mineralized zones reveal marked 35S-sulfate uptake in comparison with the less differentiated cells in the chondroblastic and perichondrial zones. These observations of radiosulfate activity support the concept that calcification processes in the condylar cartilage are not necessarily accompanied by degeneration and death of the hypertrophic chondrocytes. The radiosulfate activity of the surviving chondrocytes in the vicinity of the ossification front indicates possible modulation into osteoprogenitor cells.  相似文献   

4.
This study provides data concerning the cells and their extracellular matrix in prenatal human mandibular condylar cartilage. The latter cartilage represents a secondary type of cartilage since it develops late in the morphogenesis of the craniofacial skeleton. The cartilage of the mandibular condyle is actively involved in endochondral ossification, thus showing all the phases of cartilage growth, maturation, and mineralization that precedes de novo bone formation. The present study focused on the localization and distribution of the major macromolecules that are normally encountered in cartilage and bone, including colagens, proteoglycans, fibronectin, osteonectin, osteocalcin, alkaline phosphatase, and anchorin CII. It became clear that the mineralized zone of the cartilage already contained bone-specific antigens; thus the above zone might serve as an essential propagative predecessor in the ossification process.  相似文献   

5.
Tissue engineering provides the revolutionary possibility for curing temporomandibular joint (TMJ) disorders. Although characterization of the mandibular condyle has been extensively studied, tissue engineering of the mandibular condyle is still in an inchoate stage. The purpose of this review is to provide a summary of advances relevant to tissue engineering of mandibular cartilage and bone, and to serve as a reference for future research in this field. A concise anatomical overview of the mandibular condyle is provided, and the structure and function of the mandibular condyle are reviewed, including the cell types, extracellular matrix (ECM) composition, and biomechanical properties. Collagens and proteoglycans are distributed heterogeneously (topographically and zonally). The complexity of collagen types (including types I, II, III, and X) and cell types (including fibroblast-like cells, mesenchymal cells, and differentiated chondrocytes) indicates that mandibular cartilage is an intermediate between fibrocartilage and hyaline cartilage. The fibrocartilaginous fibrous zone at the surface is separated from hyaline-like mature and hypertrophic zones below by a thin and highly cellular proliferative zone. Mechanically, the mandibular condylar cartilage is anisotropic under tension (stiffer anteroposteriorly) and heterogeneous under compression (anterior region stiffer than posterior). Tissue engineering of mandibular condylar cartilage and bone is reviewed, consisting of cell culture, growth factors, scaffolds, and bioreactors. Ideal engineered constructs for mandibular condyle regeneration must involve two distinct yet integrated stratified layers in a single osteochondral construct to meet the different demands for the regeneration of cartilage and bone tissues. We conclude this review with a brief discussion of tissue engineering strategies, along with future directions for tissue engineering the mandibular condyle.  相似文献   

6.
The aim of this study was to investigate the developmental characteristics of the mandibular condyle in sequential phases at the gene level using in situ hybridisation. At d 14.5 of gestation, although no expression of type II collagen mRNA was observed, aggrecan mRNA was detected with type I collagen mRNA in the posterior region of the mesenchymal cell aggregation continuous with the ossifying mandibular bone anlage prior to chondrogenesis. At d 15.0 of gestation, the first cartilaginous tissue appeared at the posterior edge of the ossifying mandibular bone anlage. The primarily formed chondrocytes in the cartilage matrix had already shown the appearance of hypertrophy and expressed types I, II and X collagens and aggrecan mRNAs simultaneously. At d 16.0 of gestation, the condylar cartilage increased in size due to accumulation of hypertrophic chondrocytes characterised by the expression of type X collagen mRNA, whereas the expression of type I collagen mRNA had been reduced in the hypertrophic chondrocytes and was confined to the periosteal osteogenic cells surrounding the cartilaginous tissue. At d 18.0 of gestation before birth, cartilage-characteristic gene expression had been reduced in the chondrocytes of the lower half of the hypertrophic cell layer. The present findings demonstrate that the initial chondrogenesis for the mandibular condyle starts continuous with the posterior edge of the mandibular periosteum and that chondroprogenitor cells for the condylar cartilage rapidly differentiate into hypertrophic chondrocytes. Further, it is indicated that sequential rapid changes and reductions of each mRNA might be closely related to the construction of the temporal mandibular ramus in the fetal stage.  相似文献   

7.
 Our previous studies have shown that rat tracheal chondrocytes become larger and hypertrophic, and that the cartilage matrix calcifies during development. Type X collagen is a short collagen molecule identified in hypertrophic and calcified cartilage in the growth plate of long bones during endochondral ossification. The present study was designed to investigate the distribution of type X collagen in rat tracheal cartilage during development before and after hypertrophization and calcification. Tracheas from postnatal Wistar rats, newborn, and at 4, 8 and 10 weeks were fixed along with hind limbs from newborn rats. Serial sections were made and adjacent sections were processed for von Kossa staining or immunohistochemistry for type X collagen. In addition, the immunoreactivity to type II collagen was examined as a control. The anti-type X collagen antibody stained hypertrophic and/or calcified cartilage in the newborn rat tibia. The immunoreaction for type X collagen was localized in the uncalcified peripheral region of tracheal cartilage in 4, 8 and 10-week-old rats. In contrast, the anti-type X collagen antibody did not show immunoreactivity to hypertrophic or calcified cartilage in the central region of the 10-week-old rat tracheal cartilage. The present study has suggested that type X collagen is not involved in hypertrophization of chondrocytes or calcification of the matrix in developing rat tracheal cartilage. Accepted: 24 November 1997  相似文献   

8.
An ultrastructural study was undertaken on cartilage resorption at the site of initial endochondral bone formation in the mouse mandibular condyle on d 16 of pregnancy. After resorbing the bone collar, the osteoclasts extended their cell processes into the cartilage matrix and made contact with hypertrophic chondrocytes. By means of cell processes or vacuolar structures, these osteoclasts entrapped the calcified cartilage matrices, cell debris, and the degraded uncalcified cartilage matrices. In particular, since the calcified cartilage matrices were sometimes seen to be disrupted within the osteoclastic vacuolar structures, they were probably disposed of by the osteoclasts. Invading endothelial cells giving rise to capillaries also directly surrounded the degraded uncalcified cartilage matrices and small deposits of cell debris. In addition, hypertrophic chondrocytes that had attached to or were in the process of attaching to the invading osteoclasts often enclosed the small calcified cartilage matrices. Other cell types that have often been reported in other regions of cartilage resorption were not seen at the site of initial endochondral bone formation in this study. Our findings in relation to cartilage resorption may therefore represent unique features of the site of initial endochondral bone formation site. We consider that the manner of cartilage resorption is likely to vary by site, age, and species.  相似文献   

9.
CTRP3/cartducin, a novel C1q family protein, is expressed in proliferating chondrocytes in the growth plate and has an important role in regulating the growth of both chondrogenic precursors and chondrocytes in vitro. We examined the expression of CTRP3/cartducin mRNA in Meckel's cartilage and in condylar cartilage of the fetal mouse mandible. Based on in situ hybridization studies, CTRP3/cartducin mRNA was not expressed in the anlagen of Meckel's cartilage at embryonic day (E)11.5, but it was strongly expressed in Meckel's cartilage at E14.0, and then reduced in the hypertrophic chondrocytes at E16.0. CTRP3/cartducin mRNA was not expressed in the condylar anlagen at E14.0, but was expressed in the upper part of newly formed condylar cartilage at E15.0. At E16.0, CTRP3/cartducin mRNA was expressed from the polymorphic cell zone to the upper part of the hypertrophic cell zone, but was reduced in the lower part of the hypertrophic cell zone. CTRP3/cartducin-antisense oligodeoxynucleotide (AS-ODN) treatment of Meckel's cartilage and condylar anlagen from E14.0 using an organ culture system indicated that, after 4-day culture, CTRP3/cartducin abrogation induced curvature deformation of Meckel's cartilage with loss of the perichondrium and new cartilage formation. Aggrecan, type I collagen, and tenascin-C were simultaneously immunostained in this newly formed cartilage, indicating possible transformation from the perichondrium into cartilage. Further, addition of recombinant mouse CTRP3/cartducin protein to the organ culture medium with AS-ODN tended to reverse the deformation. These results suggest a novel function for CTRP3/cartducin in maintaining the perichondrium. Moreover, AS-ODN induced a deformation of the shape, loss of the perichondrium/fibrous cell zone, and disorder of the distinct architecture of zones in the mandibular condylar cartilage. Additionally, AS-ODN-treated condylar cartilage showed reduced levels of mRNA expression of aggrecan, collagen types I and X, and reduced BrdU-incorporation. These results suggest that CTRP3/cartducin is not only involved in the proliferation and differentiation of chondrocytes, but also contributes to the regulation of mandibular condylar cartilage.  相似文献   

10.
This study analyses some morphological and histological aspects that could have a role in the development of the condylar cartilage (CC). The specimens used were serial sections from 49 human fetuses aged 10–15 weeks. In addition, 3D reconstructions of the mandibular ramus and the CC were made from four specimens. During weeks 10–11 of development, the vascular canals (VC) appear in the CC and the intramembranous ossification process begins. At the same time, in the medial region of the CC, chondroclasts appear adjacent to the vascular invasion and to the cartilage destruction. During weeks 12–13 of development, the deepest portion of the posterolateral vascular canal is completely surrounded by the hypertrophic chondrocytes. The latter emerge with an irregular layout. During week 15 of development, the endochondral ossification of the CC begins. Our results suggest that the situation of the chondroclasts, the posterolateral vascular canal and the irregular arrangement of the hypertrophic chondrocytes may play a notable role in the development of the CC.  相似文献   

11.
Mandibular condylar cartilage is a representative secondary cartilage, differing from primary cartilage in various ways. Syndecan is a cell-surface heparan sulfate proteoglycan and speculated to be involved in chondrogenesis and osteogenesis. This study aimed to investigate the expression patterns of the syndecan family in the developing mouse mandibular condylar cartilage. At embryonic day (E)13.0 and E14.0, syndecan-1 and -2 mRNAs were expressed in the mesenchymal cell condensation of the condylar anlage. When condylar cartilage was formed at E15.0, syndecan-1 mRNA was expressed in the embryonic zone, wherein the mesenchymal cell condensation is located. Syndecan-2 mRNA was mainly expressed in the perichondrium. At E16.0, syndecan-1 was expressed from fibrous to flattened cell zones and syndecans-2 was expressed in the lower hypertrophic cell zone. Syndecan-3 mRNA was expressed in the condylar anlage at E13.0 and E13.5 but was not expressed in the condylar cartilage at E15.0. It was later expressed in the lower hypertrophic cell zone at E16.0. Syndecan-4 mRNA was expressed in the condylar anlage at E14.0 and the condylar cartilage at E15.0 and E16.0. These findings indicated that syndecans-1 and -2 could be involved in the formation from mesenchymal cell condensation to condylar cartilage. The different expression patterns of the syndecan family in the condylar and limb bud cartilage suggest the functional heterogeneity of chondrocytes in the primary and secondary cartilage.  相似文献   

12.
Juvenile mice were treated for up to eight weeks with weekly doses of a synthetic analogue of cortisol:triamcinolone hexacetonide. The mandibular condylar cartilage was studied histologically and histochemically at regular intervals. Morphometric measurements were performed along the mandibular posterior vertical dimension (condylar process and ramus). By the second injection significant morphological changes were noted in the condylar cartilage, followed by retardation of bone growth. The most distinctive feature in the cartilage of triamcinolone-treated mice was a marked increase in the dimension of its mineralized zone concomitant with a significant increase in the number of hypertrophic chondrocytes. The role of condylar cartilage in mandibular growth is discussed.  相似文献   

13.
Juvenile mice were treated for up to eight weeks with weekly doses of a synthetic analogue of cortisol:triamcinolone hexacetonide. The mandibular condylar cartilage was studied histologically and histochemically at regular intervals. Morphometric measurements were performed along the mandibular posterior vertical dimension (condylar process and ramus). By the second injection significant morphological changes were noted in the condylar cartilage, followed by retardation of bone growth. The most distinctive feature in the cartilage of triamcinolone-treated mice was a marked increase in the dimension of its mineralized zone concomitant with a significant increase in the number of hypertrophic chondrocytes. The role of condylar cartilage in mandibular growth is discussed.  相似文献   

14.
Although cartilage contains many angiogenic factors during endochondral ossification, it is an avascular tissue. The cartilage-specific non-collagenous matrix protein chondromodulin-I (ChM-I) has been shown to be a strong angio-inhibitor. To elucidate whether ChM-I plays an essential role in angio-inhibition during endochondral ossification in man, we investigated the expression and localization of ChM-I in comparison with those of angiogenic factors and the endothelial cell marker CD34 in human neonatal vertebral tissues. Although invasion of CD34-positive endothelial cells was observed in primary subchondral spongiosa, expression of the marker of endothelial cells, CD34, was not found in neonatal vertebral cartilage matrix. Type II collagen was deposited in all matrices during endochondral ossification, whereas aggrecan was deposited in the matrix of hypertrophic cartilage, especially around lacunae. Vascular endothelial growth factor (VEGF), which is known to be a strong angiogenic factor, was localized in chondrocytes in mature to hypertrophic cartilage and also in bone marrow. Fibroblast growth factor-2 (FGF-2; basic fibroblast growth factor), which is also known to be a strong angiogenic factor, was localized in the cytoplasm of chondrocytes of mature cartilage in human vertebral cartilage tissues. Transforming growth factor (TGF)-beta has been reported to have many functions including angiogenesis, and TGF-beta1 was also localized in mature chondrocytes in endochondral tissues undergoing ossification. On the other hand, the novel cartilage-specific matrix protein ChM-I was localized in interterritorial regions of the matrix in mature to hypertrophic cartilage, especially around lacunae. In conclusion, these observations indicate that ChM-I may serve as a barrier against the angiogenic properties of VEGF, FGF-2 and TGF-beta1 during endochondral ossification, and this matrix molecule may play an essential role in determining the avascular nature of cartilage in vivo.  相似文献   

15.
The 25-kDa heat-shock protein (Hsp25) is expressed in the cartilage of the growth plate and suggested to function in chondrocyte differentiation and degeneration. Using immunohistochemistry, we examined the temporal and spatial occurrence of Hsp25 in Meckel's cartilage in embryonic mice mandibles, and in other types of cartilage in both embryonic and adult mice. In adults, Hsp25 immunoreactivity was detected in the hypertrophic chondrocytes located in growth plates of long bones and in non-osteogenic laryngeal and tracheal cartilages. No chondrocytes in the resting or proliferating phase exhibited Hsp25 immunoreactivity. In the embryonic mandibles, resting and proliferating chondrocytes in the anterior and intermediate portions of Meckel's cartilage showed Hsp25 immunoreactivity from the 12th day of gestation (E12) through E15, whereas those in the posterior portion showed little or no immunoreactivity. After E16, the overall Hsp25 immunoreactivity in Meckel's cartilage substantially reduced in intensity, and little or no immunoreactivity was detected in the hypertrophic chondrocytes located in the degenerating portions of Meckel's cartilage. The antisense oligonucleotide for Hsp25 mRNA applied to the culture media of the mandibular explants from E10 embryos caused significant inhibition of the development of the anterior and middle portions of Meckel's cartilage. These results suggested that Hsp25 is essential for the development of Meckel's cartilage and plays different roles in Meckel's cartilage from those in the permanent cartilages and the cartilages undergoing endochondral ossification.  相似文献   

16.

The field of temporomandibular joint (TMJ) condyle regeneration is hampered by a limited understanding of the phenotype and regeneration potential of cells in mandibular condyle cartilage. It has been shown that chondrocytes derived from hyaline and costal cartilage exhibit a greater chondro-regenerative potential in vitro than those from mandibular condylar cartilage. However, our recent in vivo studies suggest that mandibular condyle cartilage cells do have the potential for cartilage regeneration in osteochondral defects, but that bone regeneration is inadequate. The objective of this study was to determine the regeneration potential of cartilage and bone cells from goat mandibular condyles in two different photocrosslinkable hydrogel systems, PGH and methacrylated gelatin, compared to the well-studied costal chondrocytes. PGH is composed of methacrylated poly(ethylene glycol), gelatin, and heparin. Histology, biochemistry and unconfined compression testing was performed after 4 weeks of culture. For bone derived cells, histology showed that PGH inhibited mineralization, while gelatin supported it. For chondrocytes, costal chondrocytes had robust glycosaminoglycan (GAG) deposition in both PGH and gelatin, and compression properties on par with native condylar cartilage in gelatin. However, they showed signs of hypertrophy in gelatin but not PGH. Conversely, mandibular condyle cartilage chondrocytes only had high GAG deposition in gelatin but not in PGH. These appeared to remain dormant in PGH. These results show that mandibular condyle cartilage cells do have innate regeneration potential but that they are more sensitive to hydrogel material than costal cartilage cells.

  相似文献   

17.
Chondrocyte hypertrophy is a mandatory step during endochondral ossification. Cbfa1-deficient mice lack hypertrophic chondrocytes in some skeletal elements, indicating that Cbfa1 may control hypertrophic chondrocyte differentiation. To address this question we generated transgenic mice expressing Cbfa1 in nonhypertrophic chondrocytes (alpha1(II) Cbfa1). This continuous expression of Cbfa1 in nonhypertrophic chondrocytes induced chondrocyte hypertrophy and endochondral ossification in locations where it normally never occurs. To determine if this was caused by transdifferentiation of chondrocytes into osteoblasts or by a specific hypertrophic chondrocyte differentiation ability of Cbfa1, we used the alpha1(II) Cbfa1 transgene to restore Cbfa1 expression in mesenchymal condensations of the Cbfa1-deficient mice. The transgene restored chondrocyte hypertrophy and vascular invasion in the bones of the mutant mice but did not induce osteoblast differentiation. This rescue occurred cell-autonomously, as skeletal elements not expressing the transgene were not affected. Despite the absence of osteoblasts in the rescued animals there were multinucleated, TRAP-positive cells resorbing the hypertrophic cartilage matrix. These results identify Cbfa1 as a hypertrophic chondrocyte differentiation factor and provide a genetic argument for a common regulation of osteoblast and chondrocyte differentiation mediated by Cbfa1.  相似文献   

18.
Prenatal development of the human mandible.   总被引:8,自引:0,他引:8  
In an effort to better understand the interrelationship of the growth and development pattern of the mandible and condyle, a sequential growth pattern of human mandibles in 38 embryos and 111 fetuses were examined by serial histological sections and soft X-ray views. The basic growth pattern of the mandibular body and condyle appeared in week 7 of fertilization. Histologically, the embryonal mandible originated from primary intramembranous ossification in the fibrous mesenchymal tissue around the Meckel cartilage. From this initial ossification, the ramifying trabecular bones developed forward, backward and upward, to form the symphysis, mandibular body, and coronoid process, respectively. We named this initial ossification site of embryonal mandible as the mandibular primary growth center (MdPGC). During week 8 of fertilization, the trabecular bone of the mandibular body grew rapidly to form muscular attachments to the masseter, temporalis, and pterygoid muscles. The mandible was then rapidly separated from the Meckel cartilage and formed a condyle blastema at the posterior end of linear mandibular trabeculae. The condyle blastema, attached to the upper part of pterygoid muscle, grew backward and upward and concurrent endochondral ossification resulted in the formation of the condyle. From week 14 of fertilization, the growth of conical structure of condyle became apparent on histological and radiological examinations. The mandibular body showed a conspicuous radiating trabecular growth pattern centered at the MdPGC, located around the apical area of deciduous first molar. The condyle growth showed characteristic conical structure and abundant hematopoietic tissue in the marrow. The growth of the proximal end of condyle was also approximated to the MdPGC on radiograms. Taken together, we hypothesized that the MdPGC has an important morphogenetic affect for the development of the human mandible, providing a growth center for the trabecular bone of mandibular body and also indicating the initial growth of endochondral ossification of the condyle.  相似文献   

19.
PTHrP null mutant mice exhibit skeletal abnormalities both in the craniofacial region and limbs. In the growth plate cartilage of the null mutant, a diminished number of proliferating chondrocytes and accelerated chondrocytic differentiation are observed. In order to examine the effect of PTHrP deficiency on the craniofacial morphology and highlight the differential feature of the composing cartilages, we examined the various cartilages in the craniofacial region of neonatal PTHrP deficient mice. The major part of the cartilaginous anterior cranial base appeared to be normal in the homozygous PTHrP deficient mice. However, acceleration of chondrocytic differentiation and endochondral bone formation was observed in the posterior part of the anterior cranial base and in the cranial base synchondroses. Ectopic bone formation was observed in the soft tissue-running mid-portion of the Meckel's cartilage, where the cartilage degenerates and converts to ligament in the course of normal development. The zonal structure of the mandibular condylar cartilage was scarcely affected, but the whole condyle was reduced in size. These results suggest the effect of PTHrP deficiency varies widely between the craniofacial cartilages, according to the differential features of each cartilage.  相似文献   

20.
Excised mouse pubic bone rudiments were exposed to H3-thymidine. Rudiments preserved immediately after exposure consisted of mesenchyme with a large number of cells showing intense radioactivity. Rudiments incubated on a filter membrane after exposure went through the developmental stages of complete chondrification of the pubic rami followed by periosteal and then endochondral bone formation. Only chondrocytes showed radioactivity in rami consisting of cartilage and periosteal bone that were preserved prior to endochondral ossification. Cell types showing radioactivity in rami preserved during endochondral ossification were chondrocytes, chondroclasts, and osteoblasts and osteocytes of endochondral bone. The results of the study demonstrated that hypertrophic chondrocytes of the calcified cartilage of a developing mammalian long bone not only survive dissolution of their matrix, but transform into chondroclasts and osteoprogenitor cells that give rise to osteoblasts and osteocytes which form endochondral bone in the absence of blood vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号