首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Human neuroblastoma SH-SY5Y cells were used to study the effects of transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) on neuronal differentiation and acquisition of a catecholaminergic phenotype. SH-SY5Y cells express the intracellular factors activated through the receptors of the TGFβ superfamily members, Smad1 and Smad4, as in basal conditions or after differentiation with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or retinoic acid (RA). TGF-β1 and BMP-2 induce differentiation in SH-SY5Y cells by different pathways: the effect of TGF-β1 is potentiated by TPA and the effect of BMP-2 is blocked by RA. Cell differentiation due to TGF-β1 treatment is accompanied by an increase in tyrosine hydroxylase (TH) expression, more pronounced in the presence of TPA or RA and counteracted by BMP-2. BMP-2 and RA both induce noncatecholaminergic cell differentiation, and together they may induce choline acetyltransferase expression in serum-cultured cells. In conclusion, our results suggest that TGF-β1 and BMP-2 may contribute, in opposite ways, to regulation of the neuronal catecholaminergic phenotype.  相似文献   

2.
目的研究Nogo-A在维甲酸(RA)诱导SH-SY5Y细胞分化后的表达及分布。方法采用免疫荧光单标记法和免疫荧光双标记法染色,显微镜观察。结果SH-SY5Y细胞经RA诱导后,细胞生长出较长的突起,具有典型的神经元形态。Nogo-A在未分化的SH-SY5Y细胞中主要分布于胞浆中。经RA诱导后,Nogo-A分布于胞浆及突起中,尤以突起末梢生长锥处免疫阳性强度高。结论Nogo-A在RA诱导SH-SY5Y细胞分化后的轴丘和生长锥处的表达提示其在神经元突起生长过程中可能起到重要作用。  相似文献   

3.
Apoptosis Associated Tyrosine Kinase (AATYK), a novel protein recently isolated from differentiating 32D mouse myeloid cells, contains a putative tyrosine kinase domain and several binding motifs for src homology 2 (SH-2) and src homology 3 (SH-3) domain containing proteins. We observed that AATYK is expressed in different regions of the brain. Although it might play a role in normal nervous system development by modulating apoptosis, little is known regarding its function in the brain or its intracellular localization and kinase activity. Recognizing its homology with Insulin like growth factor-I (IGF-I) receptor (IGF-IR) and the critical role of IGF-I in neuronal survival, we hypothesized that AATYK plays an important role in neuronal differentiation/apoptosis. To test this hypothesis, we transfected the human adrenergic neuroblastoma (NB):SH-SY5Y cells with AATYK cDNA under a tetracycline-repressible promoter and established stable cell lines that readily express AATYK on removal of tetracycline. AATYK immunoprecipitated from these cell lysates is an active kinase. Indirect immunofluorescent staining of the clones revealed AATYK to be localized in the cytoplasm. By itself, AATYK overexpression for short duration (2-3 days) did not induce differentiation in the stable SH-SY5Y clones. On the other hand, overexpression for longer periods (7-8 days) per se, significantly (P<0.05-0.001) increased the percent of differentiated cells as well as the neurite length. AATYK-induced differentiation was in the same range as the differentiation induced by agents like all-trans retinoic acid (RA), 12-O-Tetradecanoyl phorbol 13-acetate (TPA) and IGF-I. In addition, AATYK significantly promoted the neuronal differentiation induced by these agents. Our results demonstrate for the first time that AATYK is an active, non-receptor, cytosolic kinase which induces neuronal differentiation and also promotes differentiation induced by other agents in the SH-SY5Y cells.  相似文献   

4.
Yu YM  Han PL  Lee JK 《Neuroreport》2003,14(7):941-945
Neurite outgrowth is a central event of neuronal differentiation that proceeds in multiple processes requiring various cellular factors. Here we demonstrated that c-Jun N-terminal kinase 1 (JNK1) plays an essential role in RA-induced neurite outgrowth of SH-SY5Y cells. Treatment of SH-SY5Y cells with RA induced a strong activation of JNK1 within 10 min, and the immediate increase of JNK1 activity returned to the basal level in an hour. The second surge of JNK1 activity was observed around 1 day after RA treatment, which coincided with the period of extensive neurite outgrowth. Interestingly, phospho-JNK was concentrated in the nucleus of cells during the early induction, whereas it was distributed into neurite processes during the delayed second activation period. In SH-SY5Y carrying a dominant negative form of SEK1, an upstream kinase of JNK1, both early and late inductions of JNK1 activity were repressed along with RA-induced neurite outgrowth. These results suggest that JNK1 plays an essential role in RA-induced neuronal differentiation of SH-SY5Y cells.  相似文献   

5.
Human catecholaminergic neuroblastoma cells (SH-SY5Y) have been widely used in different neurochemical investigations. Quite often these cells are induced to differentiation by various agents, such as staurosporine and retinoic acid. Interestingly, even though both staurosporine and retinoic acid induce similar morphological differentiation in SH-SY5Y cells, we found that these two groups of differentiated cells exhibited opposite vulnerability to harmful chemicals and physical insults. In the present study, cisplatin, 5-fluorouracil (5-FU), N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), 6-hydroxydopamine (6-OHDA), and gamma-radiation were used to assess the tolerance of the differentiated cells. Cell viability was determined by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Staurosporine-treated SH-SY5Y cells were more sensitive to these toxic insults than the untreated controls. In contrast, retinoic acid-treated cells became more resistant to the same treatments. The expression of the proteins of the protooncogene Bcl-2 and the tumor suppressor gene p53 following staurosporine or retinoic acid treatment was assessed by Western blot and immunocytochemistry. Retinoic acid increased Bcl-2 and decreased p53 levels, whereas staurosporine decreased Bcl-2 and increased p53 levels. The opposite alteration of Bcl-2 (anti-apoptotic) and p53 (apoptotic) contents in SH-SY5Y cells with retinoic acid and staurosporine are attributed to the changes in cell vulnerability. These observations also indicate that caution should be taken when chemically induced differentiated neuroblastoma cells are to be used as an in vitro model for studying neuronal survival.  相似文献   

6.
Activation of transforming growth factor-beta (TGF-beta) receptors typically elicits mesodermal development, whereas inhibition of this pathway induces neural fates. In vitro differentiated mouse embryonic stem (ES) cells with deletion of the TGF-beta pathway-related factors Smad4 or Cripto exhibited increased numbers of neurons. Cripto-/- ES cells developed into neuroecto-/epidermal cell types, while Smad4-/- cells also displayed mesodermal differentiation. ES cell differentiation into catecholaminergic neurons showed that these ES cells retained their ability to develop into dopaminergic and serotonergic neurons with typical expression patterns of midbrain and hindbrain genes. In vivo, transplanted ES cells to the mouse striatum became small neuronal grafts, or large grafts with cell types from all germ layers independent of their ES cell genotype. This demonstrates that Smad4-/- and Cripto-/- ES cells favor a neural fate in vitro, but also express the mesodermal phenotype, implying that deletion of either Smad4 or Cripto is not sufficient to block nonneuronal tissue formation.  相似文献   

7.
8.
9.
We characterized undifferentiated (UN) and three differentiation conditions of the SH-SY5Y neuroblastoma cell line for phenotypic markers of dopaminergic cells, sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP), the requirement to utilize the dopamine (DA) transporter (DAT) for MPP toxicity, and the neuroprotective effects of pramipexole. Cells were differentiated with retinoic acid (RA), 12-O-tetradecanoly-phorbol-13-acetate (TPA), and RA followed by TPA (RA/TPA). RA/TPA treated cells exhibited the highest levels of tyrosine hydroxylase and DAT but lower levels of vesicular monoamine transporter. The kinetics of [3H]DA uptake and [3H]MPP uptake to DAT in RA/TPA differentiated cells were similar to that of rat and mouse caudate-putamen synaptosomes. RA/TPA differentiated cells evidenced high sensitivity to the neurotoxic effects of MPP (0.03 to 3.0 mM), and the neurotoxic effects of MPP were blocked with the DAT inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). DA-induced cell death was not more sensitive in RA vs RA/TPA differentiated cells and was not inhibited by transporter inhibitors. RA/TPA differentiated cells exhibited 3- fold and 6-fold higher levels, respectively, of DA D2 and D3 receptors than UN or RA differentiated cells. Pretreatment with pramipexole was protective against MPP in the RA/TPA differentiated cells but not in undifferentiated or RA differentiated cells. The neuroprotective effect of pramipexole was concentration-dependent and dopamine D2/D3 receptor dependent. In contrast, protection by pramipexole against DA was not DA receptor dependent. Further characterization of the neuroprotective effects of DA agonists in this model system can provide unique information about DA receptor dependent and independent mechanisms of neuroprotection.  相似文献   

10.
We characterized undifferentiated (UN) and three differentiation conditions of the SH-SY5Y neuroblastoma cell line for phenotypic markers of dopaminergic cells, sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP+), the requirement to utilize the dopamine (DA) transporter (DAT) for MPP+ toxicity, and the neuroprotective effects of pramipexole. Cells were differentiated with retinoic acid (RA), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and RA followed by TPA (RA/TPA). RA/TPA treated cells exhibited the highest levels of tyrosine hydroxylase and DAT but lower levels of vesicular monoamine transporter. The kinetics of [3H]DA uptake and [3H]MPP+ uptake to DAT in RA/TPA differentiated cells were similar to that of rat and mouse caudate-putamen synaptosomes. RA/TPA differentiated cells evidenced high sensitivity to the neurotoxic effects of MPP+ (0.03 to 3.0 mM), and the neurotoxic effects of MPP+ were blocked with the DAT inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). DA-induced cell death was not more sensitive in RA vs RA/TPA differentiated cells and was not inhibited by transporter inhibitors. RA/TPA differentiated cells exhibited 3-fold and 6-fold higher levels, respectively, of DA D2 and D3 receptors than UN or RA differentiated cells. Pretreatment with pramipexole was protective against MPP+ in the RA/TPA differentiated cells but not in undifferentiated or RA differentiated cells. The neuroprotective effect of pramipexole was concentration-dependent and dopamine D2/D3 receptor dependent. In contrast, protection by pramipexole against DA was not DA receptor dependent. Further characterization of the neuroprotective effects of DA agonists in this model system can provide unique information about DA receptor dependent and independent mechanisms of neuroprotection.  相似文献   

11.
12.
Retinoic acid (RA) induced differentiation of SH-SY5Y cells increases the expression of mu opioid receptors (HMOR) and inhibitory G proteins, as well as the efficacy of opioids to inhibit forskolin-induced adenylyl cyclase activity. We examined the time course of the effects of all-trans retinoic acid (RA) on HMOR and c-fos mRNA levels as determined by solution hybridization (using HMOR and rat c-fos riboprobes) in RNA extracts from SH-SY5Y cells. Electrophoretic Mobility Shift Assay (EMSA) and Western blot analysis were used to assess the changes AP-1 DNA binding and the presence of fos-related proteins in nuclear extracts from untreated, vehicle (ethanol) or RA-treated SH-SY5Y cells. Exposure to RA for 0.5 h had no effect on HMOR while after 6-18 h of exposure HMOR in mRNA levels were decreased by 50% and then after 168 h of RA exposure, HMOR mRNA levels were doubled. In contrast, c-fos mRNA levels were unchanged at 0.5 h, but increased by 50% after 18 and 168 h of RA exposure. RA increased AP-1 binding after 18 and 168 h and a pan fos-FRA antibody produced a supershift. Western analysis indicates that RA activates a 45-kDa protein corresponding to the size of the fos B protein. These results identify two signal transduction targets that are regulated by RA during differentiation.  相似文献   

13.
Recently, we showed expression of apolipoprotein E (apoE) in human neuronal-type cells such as neuroblastoma SK N SH-SY 5Y cells. In this model, a negative effect of neuronal differentiation on apoE synthesis was suspected. To check this hypothesis, we studied the regulation of apoE in human postmitotic neurons. The presence of apoE was investigated in undifferentiated human teratocarcinoma NT2/D1 (NT2) cells and during their differentiation into postmitotic hNT neurons induced by retinoic acid (RA) treatment. Before differentiation, apoE protein and mRNA were detected in NT2 cells by Western blotting and RT-PCR experiments. Immunofluorescence study showed that apoE was present in all cells. For longer times of RA treatment (3 weeks), the apoE labeling became heterogeneous: only some cells were immunopositive and among them were some differentiating cells in which apoE was located in both cellular body and neuritic process. Interestingly, terminally differentiated hNT cells no longer expressed apoE. These results demonstrate that neuronal precursor and differentiating cells were able to synthesize apoE while the fully neuronal differentiation exerted a negative effect on apoE neuronal expression. Our results are compatible with a weak expression of apoE in neurons of adult brains.  相似文献   

14.
Cultured human SH-SY5Y neuroblastoma cells could be induced to differentiate morphologically and biochemically followed by growth inhibition, by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). The cells showed a limited differentiation when treated with substances known to increase the intracellular concentration of cyclic AMP. When these substances were combined with TPA, morphological differentiation and growth inhibition of the cells were potentiated. In contrast, these substances inhibited the TPA-induced increase in noradrenaline concentration and the relative activity of neuron-specific enolase. Both the intracellular concentration of cyclic AMP and the cytosolic level of cyclic AMP-binding components were similar in control and TPA-treated cells. It is suggested that cyclic AMP has a limited and non-regulatory role in the initiation of differentiation of SH-SY5Y cells. The effect of cyclic AMP is probably coupled mainly to the polymerization of microtubules, thus enhancing the morphological differentiation of the cells.  相似文献   

15.
While the biological importance of the cytochrome P450 system in the liver is well established, much less is known about its role in the brain and drug interactions at the level of brain cells have hardly been investigated. Here, we show that modafinil, a well-known inducer of hepatic CYP enzymes, also increases CYP3A4 expression in human-derived neuron-like SH-SY5Y cells. Upregulation of CYP3A4 by modafinil was associated with increased retinoic acid (RA) degradation, which could be blocked by specific CYP3A4 inhibitor erythromycin. In turn, reduced RA levels in culture medium during modafinil treatment resulted in decreased neuronal differentiation of SH-SY5Y cells as assessed by intracellular neurotransmitter concentrations and proliferative activity. Again, this differentiation-impeding effect of modafinil on SH-SY5Y cells was antagonized by erythromycin. Similarly, modafinil treatment of the murine GL261 glioma cell line resulted in increased proliferative activity. This was associated with upregulation of RA-degrading CYP26A1 in GL261 cells. Taken together, our results indicate that psychopharmacological agents such as modafinil may directly act on CYP enzymes in neural tissue. These kinds of drug effects may become highly relevant especially in the context of biomolecules such as RA whose local metabolism in brain is under tight spatial and temporal control.  相似文献   

16.
Human SH-SY5Y neuroblastoma cells were induced to neuronal differentiation by using 12-0-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid (RA). Both treatments rapidly induced long neurites and increased the content of neurofilaments as shown by immunocytochemistry and immunoblotting. Immunoprecipitation and immunoblotting of the culture medium with monoclonal antibodies demonstrated a rapid onset of synthesis and secretion of Mr 280,000 tenascin (Tn) polypeptide with TPA and both Mr 280,000 and 190,000 Tn polypeptides with RA and an increased secretion of extradomain A cellular fibronectin (EDA-Fn) upon both treatments. Upon RA treatment both Tn polypeptides were also found in extracellular matrix preparations of the differentiated cells. A diffuse extracellular Tn immunoreactivity and a distinct cytoplasmic reaction were seen in differentiated cells especially after exposure to monensin to inhibit cellular secretion. Instead, immunoprecipitation experiments suggested that laminin was synthesized by the cells but was not upregulated upon differentiation. Experiments with purified Tn, used to coat the culture substratum, demonstrated that the undifferentiated cells were unable to adhere or spread on Tn but rapidly acquired the spreading capacity upon differentiation with the inducing agents. In immunofluorescence and immunoblotting the undifferentiated cells presented only a faint heterogenous reaction for β1 integrin (Int) subunit, whereas cells exposed to RA presented a strong reaction for the Int α1 and β1 subunits, hence suggestive of Int α1β1, and for Int αv subunit. Cells exposed to TPA showed an enhanced immunoreaction for Int α2 and β1 subunits, suggestive of Int α2β1, and for Int αv subunit. Immunoreactivity for Int αv located to distinct punctate plaques in the differentiated cells after both inducing agents. The results suggest that Tn is produced by cultured neuronally differentiating cells, and it is accompanied by the acquitance of an adhesion receptor for Tn. J. Neurosci. Res. 49:53–63, 1997. © 1997 Wiley-Liss Inc.  相似文献   

17.
Gene transfer is a powerful tool for functional gene analysis in human cells. In this respect, there is a need to develop experimental models that involve homogeneous cultures of human neuron-like cells susceptible to gene transduction and that are easy to handle. Here we describe an optimized and reproducible procedure to differentiate human SH-SY5Y neuroblastoma cells into a homogeneous population of neuron-like cells. The fully differentiated cells are postmitotic and resemble primary cultured neurons in terms of their cytoskeletal polarity. Notably, differentiated SH-SY5Y cells are far more susceptible to transduction by herpes simplex virus (HSV-1)-based vectors than proliferating SH-SY5Y cells. This increase in transduction efficiency after neuronal differentiation may be due to the up-regulation of cell surface receptors for herpesvirus entry. In summary, we propose that fully differentiated human neuron-like cells obtained from the SH-SY5Y neuroblastoma may constitute an excellent and versatile experimental tool for gene transfer and functional genomic studies with HSV-1 vectors.  相似文献   

18.
19.
Presenilin 1 interacts with beta-catenin, an essential component of the Wnt signaling pathway. To elucidate the role of presenilin 1-beta-catenin interaction in neuronal differentiation, we established SH-SY5Y cells stably expressing wild-type presenilin 1, P117L mutant presenilin 1, which is linked to the early-onset familial form of Alzheimer's disease, and D385A mutant presenilin 1, which has no aspartyl proteinase activity. We demonstrate that SH-SY5Y cells stably expressing D385A mutant presenilin 1 failed to differentiate in response to retinoic acid treatment. Retinoic acid caused an increase in nuclear beta-catenin levels in SH-SY5Y cells, which was followed by an increase in cyclin D1 protein levels. Abnormal cellular accumulation of beta-catenin was observed in D385A mutant transfected cells, whereas nuclear beta-catenin and cellular cyclin D1 levels failed to increase. Conversely, SH-SY5Y cells expressing the P117L mutant differentiated normally and showed increased nuclear beta-catenin and cellular cyclin D1 levels. These findings suggest that neuronal differentiation of SH-SY5Y cells involves the Wnt signaling pathway and that presenilin 1 plays a crucial role in Wnt signal transduction by regulating the nuclear translocation of beta-catenin.  相似文献   

20.
Pregnenolone, the precursor of all steroids, is synthesized by CNS structures. The synthesis requires an obligatory step involving cholesterol transport to mitochondrial cytochrome P450-cholesterol side chain cleavage (cytP450scc), although the underlying mechanism(s) are still mostly unknown. We used the human neuroblastoma SH-SY5Y cell line to investigate cytP450scc expression and activity and to establish a role of cytoskeleton in pregnenolone synthesis. Immunocytochemical and biochemical approaches revealed that undifferentiated as well as differentiated cells either by retinoic acid (RA) or phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), possess cytP450scc and rapidly synthesize pregnenolone in the presence of a NADPH-generating system. The newly neurosteroid formation by SH-SY5Y cells was increased by 22R-hydroxycholesterol and blocked by the cytP450scc inhibitor, aminoglutethimide. When trilostane was used to inhibit 3beta-hydroxysteroid dehydrogenase catalyzing pregnenolone conversion into progesterone, a higher pregnenolone accumulation occurred in TPA-differentiated cells than in RA-differentiated ones. Although SU 10603, a blocker of 17alpha-hydroxylase/c17,20-lyase enzyme involved in DHEA formation from pregnenolone, gave rise to an elevated neurosteroid content only in RA-differentiated cells. No difference in pregnenolone levels was found in undifferentiated cells treated with each inhibitor. Thus, differentiation seems to promote pregnenolone-metabolizing enzyme activities that may vary upon phenotypic changes induced by RA or TPA. Treatments of differentiated cells with the microtubule-depolymerizing drug colchicine and the actin microfilament-altering agent cytochalasin D decreased pregnenolone synthesis without affecting cell viability or cytP450scc amount. Addition of the cell-permeant cholesterol analogue 22R-hydroxycholesterol known to elude cholesterol transport systems induced pregnenolone synthesis, however, indicating that perturbations in cytoskeleton likely affect endogenous cholesterol transport. The relevance of this finding may rest on the observed involvement of cytoskeletal organization in such events as neuronal plasticity, cognitive function and also neurodegenerative disorders in which neurosteroids have been shown to have a part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号