首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to compare the efficacy of four different home-based interventions on dual-task balance performance and to determine the generalizability of the four trainings to untrained tasks. Sixty older adults, aged 65 and older, were randomly assigned to one of four home-based interventions: single-task motor training, single-task cognitive training, dual-task motor-cognitive training, and dual-task cognitive–cognitive training. Participants received 60-min individualized training sessions, 3 times a week for 4 weeks. Prior to and following the training program, participants were asked to walk under two single-task conditions (i.e. narrow walking and obstacle crossing) and two dual-task conditions (i.e. a trained narrow walking while performing verbal fluency task and an untrained obstacle crossing while counting backward by 3 s task). A nine-camera motion capture system was used to collect the trajectories of 32 reflective markers placed on bony landmarks of participants. Three-dimensional kinematics of the whole body center of mass and base of support were computed. Results from the extrapolated center of mass displacement indicated that motor-cognitive training was more effective than the single-task motor training to improve dual-task balance performance (p = 0.04, ES = 0.11). Interestingly, balance performance under both single-task and dual-task conditions can also be improved through a non-motor, single-task cognitive training program (p = 0.01, ES = 0.13, and p = 0.01, ES = 0.11, respectively). However, improved dual-task processing skills during training were not transferred to the novel dual task (p = 0.15, ES = 0.09). This is the first study demonstrating that home-based dual-task training can be effectively implemented to improve balance performance during gait in older adults.  相似文献   

2.
BackgroundCerebral palsy (CP) is associated with a high risk of falling during walking. Many gait abnormalities associated with CP likely alter foot placement and center of mass (CoM) movement in a way that affects anterior or lateral dynamic stability, in turn influencing fall risk.Research questionDo children with CP demonstrate altered anterior or lateral dynamic stability compared to typically-developing (TD) children?MethodsIn this case-control, observational study, we measured gait kinematics of two groups of children (15 CP, 11 GMFCS level I, 4 GMFCS level II; 14 TD; age 5–12) in walking conditions of a preferred speed, a fast speed, and a preferred speed while completing a cognitive task. For dominant and non-dominant limbs, the margin of stability (MoS), a spatial measure of dynamic stability, was calculated as the distance between the edge of the base of support and the CoM position after accounting for scaled velocity. Statistical comparisons of were made using mixed factorial ANOVAs. Post hoc comparisons were Sidak adjusted.ResultsThe anterior MoS before foot strike and at mid-swing differed between each condition but not between groups. Based on the minimum lateral MoS, children with CP had more stability when bearing weight on their non-dominant limb compared to TD children. These differences were not apparent when on the dominant limb.SignificanceThis high-functioning group of children with CP exhibited a more conservative lateral stability strategy during walking when bearing weight with the non-dominant limb. This strategy may be protective against lateral falls. We observed no between-group differences in anterior stability. Because CP has been previously associated with impaired anterior balance reactions, and there was no observed compensation in anterior gait stability, this lack of group differences could contribute to a higher risk of falling in that direction.  相似文献   

3.
Treadmills are appealing for gait studies, but some gait mechanics are disrupted during treadmill walking. The purpose of this study was to examine the effects of speed and treadmill walking on walking smoothness and rhythmicity of 40 men and women between the ages of 70-96 years. Gait smoothness was examined during overground (OG) and treadmill (TM) walking by calculating the harmonic ratio from linear accelerations measured at the level of the lumbar spine. Rhythmicity was quantified as the stride time standard deviation. TM walking was performed at two speeds: a speed matching the natural OG walk speed (TM-OG), and a preferred TM speed (PTM). A dual-task OG condition (OG-DT) was evaluated to determine if TM walking posed a similar cognitive challenge. Statistical analysis included a one-way Analysis of Variance with Bonferroni corrected post hoc comparisons and the Wilcoxon signed rank test for non-normally distributed variables. Average PTM speed was slower than OG. Compared to OG, those who could reach the TM-OG speed (74.3% of sample) exhibited improved ML smoothness and rhythmicity, and the slower PTM caused worsened vertical and AP smoothness, but did not affect rhythmicity. PTM disrupted smoothness and rhythmicity differently than the OG-DT condition, likely due to reduced speed. The use of treadmills for gait smoothness and rhythmicity studies in older adults is problematic; some participants will not achieve OG speed during TM walking, walking at the TM-OG speed artificially improves rhythmicity and ML smoothness, and walking at the slower PTM speed worsens vertical and AP gait smoothness.  相似文献   

4.
The purpose of this study was to compare the efficiency of three different balance training strategies in an effort to understand the mechanisms underlying training-related changes in dual-task balance performance of older adults with balance impairment. Elderly individuals with balance impairment, age 65 and older, were randomly assigned to one of three individualized training programs: single-task (ST) balance training; dual-task training with fixed-priority (FP) instruction; and dual-task training with variable-priority (VP) instruction. Balance control during gait, under practiced and novel conditions, was assessed by calculating the center of mass and ankle joint center inclination angles in the frontal plane. A smaller angle indicated better balance performance. Other outcomes included gait velocity, stride length, verbal reaction time, and rate of response. All measures were collected at baseline and the end of the 4-week training. Results indicated that all training strategies were equally effective (P > .05) at improving balance performance (smaller inclination angle) under single-task contexts. However, the VP training strategy was more effective (P = .04) in improving both balance and cognitive performance under dual-task conditions than either the ST or the FP training strategies. Improved dual-task processing skills did not transfer to a novel dual-task condition. Results support Kramer et al.’s proposal that VP training improves both single-task automatization and the development of task-coordination skills.  相似文献   

5.
BackgroundRecent studies provide compelling evidence that recruiting a common pool of motor modules across behaviors (i.e., motor module generalization) may facilitate motor performance. In particular, motor module generalization across standing reactive balance and walking is associated with both walking speed and endurance in neurologically impaired populations (e.g., stroke survivors and individual’s with Parkinson’s disease). To test whether this phenomenon is a general neuromuscular strategy associated with well-coordinated walking and not limited to motor impairment, this relationship must be confirmed in neurologically intact adults.Research QuestionIs motor module generalization across standing reactive balance and walking related to walking performance in neurologically intact young adults?MethodsTwo populations of young adults were recruited to capture a wide range of walking performance: professionally-trained ballet dancers (i.e., experts, n = 12) and novices (n = 8). Motor modules (a.k.a. muscle synergies) were extracted from muscles spanning the trunk, hip, knee and ankle during walking and multidirectional perturbations to standing. Motor module generalization was calculated as the number of modules common to these behaviors. Walking performance was assessed using self-selected walking speed and beam-walking proficiency (i.e., distance walked on a narrow beam). Motor module generalization between experts and novices was compared using rank-sum tests and the association between generalization and walking performance was assessed using correlation analyses.ResultsExperts generalized more motor modules across standing reactive balance and walking than novices (p = 0.009). Across all subjects, motor module generalization was moderately associated with increased beam walking proficiency (r = 0.456, p = 0.022) but not walking speed (r = 0.092, p = 0.349).SignificanceSimilar relationships between walking performance and motor module generalization exist in neurologically intact and impaired populations, suggesting that motor module generalization across standing reactive balance and walking may be a general neuromuscular mechanism contributing to the successful control of walking.  相似文献   

6.
BackgroundDual-task walking (DTW) is common in daily life and represents an ideal paradigm for elucidating gait irregularity. Under single-task walking (STW) and DTW conditions, the symmetric and bilaterally coordinated human gait pattern found in healthy individuals is absent in individuals with neurological ailments such as Parkinson’s disease, Alzheimer’s disease and post-stroke issues. Cerebral small vessel disease (CSVD) is a neuropathological and radiological issue that has been reported to be associated with cognitive and motor disorders. However, few gait analyses have focused on elderly individuals with CSVD under DTW conditions.Research questionAre parameters of gait analysis helpful in elucidating gait abnormalities in elderly patients with CSVD under DTW conditions?MethodsA total of 46 elderly patients with CSVD (CSVD group) and 22 healthy, age-matched individuals (HE group) were recruited. Gait data were collected from both groups under STW and DTW conditions. Direct parameters and metrics reflecting gait variability, gait asymmetry, and bilateral coordination of gait in the two groups were compared.ResultsUnder STW conditions, elderly individuals with CSVD showed markedly shorter stride length, were slower, and had higher gait asymmetry (GA) and phase coordination index (PCI) than healthy controls after adjusting for age, sex and level of education. Under DTW conditions, there were statistically significant differences between the two groups in stride time, stride length, cadence, stride time variability, GA and PCI after adjusting for age, sex, and level of education.SignificanceReanalysis-generated parameters, such as gait variability, GA, and PCI, are biomarkers for gait dysfunction in elderly patients with CSVD. In this study, elderly individuals with CVSD showed abnormal gait features under both STW and DTW conditions.  相似文献   

7.
Patellar tendinopathy (PT) is one of the most common overuse injuries of the knee. Recent reports indicate that increased body mass is frequently associated with tendinopathy, not only biomechanically but biochemically. Abnormalities of other structures within the knee extensor mechanism [patellofemoral joint (PFJ) alignment and patellar tendon length] that can directly influence the strain distribution of the patellar tendon are inconsistently implicated in PT. The aim of this study was to compare the infrapatellar fat pad volume, patellar tendon length and PFJ alignment in people with chronic PT and a group of age-, gender-, height-, and activity-matched controls with normal tendons. Axial magnetic resonance (MR) images, from 26 participants with PT and 28 control participants were obtained. Fat pad size, patellar tendon length and PFJ alignment were measured digitally from the MR images, using measurement software, and the results compared between the PT group and control group. People with PT had a significantly larger fat pad than healthy controls when controlled for height (P=0.04). Patellar tendon length was not significantly different between groups (P=0.16), nor were there between-group differences for the measures of PFJ alignment (P=0.07-0.76). Thus, the infrapatellar fat pad may play an important role in PT.  相似文献   

8.
BackgroundEvidence indicates the presence of both kinesiophobia and knee extension strength deficits in women with patellofemoral pain (PFP). Both impairments may contribute to apparent compensatory gait patterns including reduced cadence and peak knee flexion during stair negotiation.Research questionIs kinesiophobia or knee extension strength associated with movement pattern in women with patellofemoral pain?MethodsForty women with PFP were assessed with three-dimensional kinematic analyses during stair descent; isokinetic dynamometry of the knee extensors (isometric, concentric and eccentric); and the Tampa scale for kinesiophobia. Pearson coefficients were calculated to determine relationship among variables.ResultsKinesiophobia correlated significantly with cadence (r = −0.62, p < 0.001), and peak knee flexion (r = −0.76, p < 0.001). No significant correlations were found between any knee extensor strength variables and kinematics (cadence or peak knee flexion); or kinesiophobia (p > 0.05).SignificanceFindings of this study could suggest addressing strength impairments alone may not adequately address kinesiophobia and movement pattern impairments in women with PFP. However, high-quality randomised controlled trials are needed to test this assumption. Further value may be added if currently evidence-based knee strengthening exercise is combined with education and/or graded exposure to address kinesiophobia, and consideration to gait retraining to address altered movement patterns at the knee.  相似文献   

9.
ObjectivesRegular physical exercise is known to protect endothelial integrity. It has been proposed that acute exercise-induced changes of the (anti-)oxidative system influence early (glycocalyx shedding) and sustained endothelial activation (shedding of endothelial cells, ECs) as well as endothelial-cell repair by circulating hematopoietic stem and progenitor cells (HPCs). However, results are not conclusive and data in trained participants performing different exercise modalities is lacking.DesignEighteen healthy, well-trained participants (9 runners, 9 cyclists; age: 29.7 ± 4.2 yrs) performed a strenuous acute exercise session consisting of 4 bouts of 4-min high-intensity with decreasing power profile and 3-min low-intensity in-between.MethodsAverage power/speed of intense phases was 85% of the peak achieved in a previous incremental test. Before and shortly after exercise, total oxidative and antioxidative capacities (TAC), shedding of syndecan-1, heparan sulfate, hyaluronan, ECs, and circulating HPCs were investigated.ResultsTAC decreased from 1.81 ± 0.42 nmol/L to 1.47 ± 0.23 nmol/L post-exercise (p = 0.010) only in runners. Exercise-induced early and sustained endothelial activation were enhanced post-exercise- syndecan-1: 103.2 ± 63.3 ng/mL to 111.3 ± 71.3 ng/mL, heparan sulfate: from 2637.9 ± 800.1 ng/mL to 3197.1 ± 1416.3 ng/mL, both p < 0.05; hyaluronan: 84.3 ± 21.8 ng/mL to 121.4 ± 29.4 ng/mL, ECs: from 6.6 ± 4.5 cells/μL to 9.5 ± 6.2 cells/μL, both p < 0.01; results were not different between exercise modalities and negatively related to TAC concentrations post-exercise. HPC proportions and self-renewal ability were negatively, while EC concentrations were positively associated with circulating hyaluronan concentrations.ConclusionsThese results highlight the importance of the antioxidative system to prevent the endothelium from acute exercise-induced vascular injury – independent of exercise modality – in well-trained participants. Endothelial-cell repair is associated with hyluronan signaling, possibly a similar mechanism as in wound repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号