首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Strenuous exercise promotes changes in salivary IgA and can be associated with a high incidence of upper respiratory tract Infections. However, moderate exercise enhances immune function. The effect of exercise on salivary IgA has been well studied, but its effect on other immunological parameters is poorly studied. Thus, this study determined the effect of moderate acute exercise on immunological salivary parameters, such as the levels of cytokines (TGF‐β and IL‐5), IgA, α‐amylase and total protein, over 24 h. Ten male adult subjects exercised for 60 min at an intensity of 70% VO2 peak. Saliva samples were collected before (‘basal’) and 0, 12 and 24 h after an exercise session. The total salivary protein was lower after 12 and 24 h than immediately after exercise, whereas α‐amylase increased at 12 and 24 h after exercise compared with basal levels. The IgA concentration was increased at 24 h after exercise relative to immediately after exercise, and there was no difference in the IL‐5 while TGF‐β concentration increased in recovery. In conclusion, 70% VO2 peak exercise does not induce changes immediately after exercise, but after 24 h, it produces an increase in salivary TGF‐β without changing IL‐5.  相似文献   

4.
5.
6.

Background

Interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α) are key mediators of the intracapsular pathological conditions of the temporomandibular joint (TMJ). Therefore, the gene expression profiles in synovial fibroblast‐like cells (SFCs) from patients with internal derangement of the TMJ were examined after they were stimulated with IL‐1β or TNF‐α to determine which genes were altered.

Methods

Ribonucleic acid was isolated from SFCs after IL‐1β or TNF‐α treatment. Gene expression profiling was performed using oligonucleotide microarray analysis. On the basis of the results of this assay, we investigated the kinetics of macrophage inflammatory protein‐3α (MIP‐3α) gene expression using PCR, and protein production in TMJ SFCs stimulated by IL‐1β or TNF‐α using an ELISA. Inhibition experiments were performed with MAPK and NFκB inhibitors. SFCs were stimulated with IL‐1β or TNF‐α after treatment with inhibitors. The MIP‐3α levels were measured using an ELISA.

Results

Macrophage inflammatory protein‐3α was the gene most upregulated by IL‐1β‐ or TNF‐α stimulation. The mRNA and protein levels of MIP‐3α increased in response to IL‐1β in a time‐dependent manner. In contrast, during TNF‐α stimulation, the MIP‐3α mRNA levels peaked at 4 h, and the protein levels peaked at 8 h. In addition, the IL‐1β‐ and TNF‐α‐stimulated MIP‐3α production was potently reduced by the MAPK and NFκB signaling pathway inhibitors.

Conclusion

Interleukin‐1β and TNF‐α increased the MIP‐3α production in SFCs via the MAPK and NFκB pathways. These results suggest that the production of MIP‐3α from stimulation with IL‐1β or TNF‐α is one factor associated with the inflammatory progression of the internal derangement of the TMJ.  相似文献   

7.
Sasaki H, Suzuki N, AlShwaimi E, Xu Y, Battaglino R, Morse L, Stashenko P. 18β‐Glycyrrhetinic acid inhibits periodontitis via glucocorticoid‐independent nuclear factor‐κB inactivation in interleukin‐10‐deficient mice. J Periodont Res 2010; 45: 757–763. © 2010 John Wiley & Sons A/S Background and Objective: 18β‐Glycyrrhetinic acid (GA) is a natural anti‐inflammatory compound derived from licorice root extract (Glycyrrhiza glabra). The effect of GA on experimental periodontitis and its mechanism of action were determined in the present study. Material and Methods: Periodontitis was induced by oral infection with Porphyromonas gingivalis W83 in interleukin‐10‐deficient mice. The effect of GA, which was delivered by subcutaneous injections in either prophylactic or therapeutic regimens, on alveolar bone loss and gingival gene expressions was determined on day 42 after initial infection. The effect of GA on lipopolysaccharide (LPS)‐stimulated macrophages, T cell proliferation and osteoclastogenesis was also examined in vitro. Results: 18β‐Glycyrrhetinic acid administered either prophylactically or therapeutically resulted in a dramatic reduction of infection‐induced bone loss in interleukin‐10‐deficient mice, which are highly disease susceptible. Although GA has been reported to exert its anti‐inflammatory activity via downregulation of 11β‐hydroxysteroid dehydrogenase‐2 (HSD2), which converts active glucocorticoids to their inactive forms, GA did not reduce HSD2 gene expression in gingival tissue. Rather, in glucocorticoid‐free conditions, GA potently inhibited LPS‐stimulated proinflammatory cytokine production and RANKL‐stimulated osteoclastogenesis, both of which are dependent on nuclear factor‐κB. Furthermore, GA suppressed LPS‐ and RANKL‐stimulated phosphorylation of nuclear factor‐κB p105 in vitro. Conclusion: These findings indicate that GA inhibits periodontitis by inactivation of nuclear factor‐κB in an interleukin‐10‐ and glucocorticoid‐independent fashion.  相似文献   

8.
9.
10.
L Qiu  L Zhang  L Zhu  D Yang  Z Li  K Qin  X Mi 《Oral diseases》2008,14(8):727-733
Objective: The effect of calyculin A (CA), a serine/threonine protein phosphatase inhibitor, on tumor necrosis factor‐α (TNF‐α) in primary osteoblasts was investigated to determine whether protein phosphatases could affect primary osteoblasts and if so which signaling pathways would be involved. Materials and methods: Primary osteoblasts were prepared from newborn rat calvaria. Cells were treated with 1 nM CA for different time periods. The expressions of TNF‐α and GAPDH mRNA were determined by RT‐PCR. Cell extracts were subjected to SDS‐PAGE and the activation of Akt and NF‐κB were analyzed by western blotting. Results: Calyculin A‐treatment markedly increased the expression of TNF‐α mRNA and enhanced the phosphorylation level of Akt (Ser473) in these cells. Pretreatment with the PI3K inhibitor LY294002 suppressed the increase in TNF‐α mRNA expression and the phosphorylation of Akt in response to CA. Western blot analysis showed that CA stimulated the phosphorylation and nuclear translocation of NF‐κB in primary osteoblasts, and these responses were blocked by pretreatment with LY294002. Conclusion: Calyculin A elicits activation of PI3K/Akt pathway which leads to expression of TNF‐α mRNA and activation of NF‐κB. This NF‐κB activation involves both phosphorylation and nuclear translocation of NF‐κB.  相似文献   

11.
12.
13.
14.
Reprograming of metabolic pathways is critical in governing the polarization of macrophages into classical proinflammatory M1 or alternative anti‐inflammatory M2 phenotypes in metabolic diseases, such as diabetes. Porphyromonas gingivalis, a keystone pathogen of periodontitis, causes an imbalance in M1/M2 activation, resulting in a hyperinflammatory environment that promotes the pathogenesis of periodontitis. However, whether P. gingivalis infection modulates metabolic pathways to alter macrophage polarization remains unclear. Bone‐marrow‐derived macrophages (BMDMs) were collected from 6‐week‐old female C57BL/6 mice and stimulated with P. gingivalis, P. gingivalis‐derived LPS or IL‐4. Relative gene expression and protein production were measured by quantitative real‐time PCR, RNA sequencing and western blotting. Colorimetric assays were also performed to assess the amounts of α‐ketoglutarate (α‐KG) and succinate. P. gingivalis or P. gingivalis‐derived LPS‐induced inflammatory responses enhanced M1 macrophages and suppressed M2 macrophages, even in the presence of IL‐4. P. gingivalis inhibited Idh1/2 and Gpt1/2 mRNA expression, and increased Akgdh mRNA expression, thus decreasing the ratio of α‐KG/succinate. Supplementation of cell‐permeable dimethyl‐α‐KG dramatically restored M2 activation during P. gingivalis infection. Our study suggests that P. gingivalis maintains a hyperinflammatory state by suppressing the production of α‐KG by M2 macrophages.  相似文献   

15.
16.
17.
The incidence of β‐lactamase production in anaerobic gram‐negative rods isolated from 93 pus specimens of orofacial odontogenic infections and the antimicrobial susceptibility of these isolates against 11 antibiotics were determined. A total of 191 anaerobic gram‐negative rods were isolated from the specimens. β‐Lactamase was detected in 35.6% of the black‐pigmented Prevotella and 31.9% of the nonpigmented Prevotella. However, no strains among the other species isolated produced β‐lactamase. Ampicillin, cefazolin and cefotaxime showed decreased activity as regards β‐lactamase‐positive Prevotella strains, whereas the activity of ampicillin/sulbactam, cefmetazole, and imipenem continued to be effective against such strains. All tested β‐lactam antibiotics were effective against Porphyromonas and Fusobacterium. Erythromycin showed decreased activity against nonpigmented Prevotella and Fusobacterium. Clindamycin, minocycline and metronidazole were powerful antibiotics against which anaerobic gram‐negative rods could be tested. The present study showed that β‐lactamase‐positive strains were found more frequently in the Prevotella strains than in any of the other species of anaerobic gram‐negative rods. The effectiveness of adding sulbactam to ampicillin was demonstrated, as well as the difference in cephalosporin activity against β‐lactamase‐positive strains.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号