首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The recent introduction of docetaxel in the treatment of hormone refractory prostate cancer (HRPC) has made a small but significant impact on patient survival. However, its effect is limited by intolerance and resistance. The aim of our study was to investigate if the garlic-derived compound, S-allylmercaptocysteine (SAMC), was able to act as a docetaxel sensitizing agent. First, the effect of SAMC on docetaxel sensitivity was examined on 3 HRPC cell lines by colony forming assay. We found that SAMC increased the efficacy of docetaxel on colony forming inhibition by 9-50% compared to single agent treatment. Second, using the HRPC CWR22R nude mice model, we found that the combination of SAMC and docetaxel was 53% more potent than docetaxel alone (p = 0.037). In addition, there was no additive toxicity in the mice treated with the combination therapy evidenced by histological and functional analysis of liver, kidney and bone marrow. These results suggest that SAMC is able to increase the anticancer effect of docetaxel without causing additional toxic effect in vivo. Third, flow cytometry and Western blotting analysis on HRPC cell lines demonstrated that SAMC promoted docetaxel-induced G2/M phase cell cycle arrest and apoptotic induction. In addition, immunohistochemistry on CWR22R xenograft revealed a suppression of Bcl-2 expression and upregulation of E-cadherin in the SAMC and docetaxel treated animals. These results suggest that SAMC may promote docetaxel-induced cell death through promoting G2/M cell cycle arrest and apoptosis. Our study implies a potential role for SAMC in improving docetaxel based chemotherapy for the treatment of HRPC.  相似文献   

2.

Background

Docetaxel-based chemotherapy failure in advanced prostate carcinoma has partly been attributed to the resistance of prostate cancer (PC) cells to docetaxel-induced apoptosis. Hence, there is an urgent need to identify mechanisms of docetaxel chemoresistance and to develop new combination therapies.

Methods

miR-193a-5p level was evaluated by qPCR in prostate tissues and cell lines, and its expression in the tissues was also examined by in situ hybridization. PC cell line (PC3 cell) was transfected with miR-193a-5p mimic or its inhibitor, and then cell apoptosis and the expression of its downstream genes Bach2 and HO-1 were detected by TUNEL staining and Western blotting. Luciferase reporter assay was used to detect the effect of miR-193a-5p and Bach2 on HO-1 expression. Xenograft animal model was used to test the effect of miR-193a-5p and docetaxel on PC3 xenograft growth.

Results

miR-193a-5p was upregulated in PC tissues and PC cell lines, with significant suppression of PC3 cell apoptosis induced by oxidative stress. Mechanistically, miR-193a-5p suppressed the expression of Bach2, a repressor of the HO-1 gene, by directly targeting the Bach2 mRNA 3′-UTR. Docetaxel treatment modestly decreased Bach2 expression and increased HO-1 level in PC3 cells, whereas a modest increase of HO-1 facilitated docetaxel-induced apoptosis. Notably, docetaxel-induced miR-193a-5p upregulation, which in turn inhibits Bach2 expression and thus relieves Bach2 repression of HO-1 expression, partly counteracted docetaxel-induced apoptosis, as evidenced by the increased Bcl-2 and decreased Bax expression. Accordingly, silencing of miR-193a-5p enhanced sensitization of PC3 cells to docetaxel-induced apoptosis. Finally, depletion of miR-193a-5p significantly reduced PC xenograft growth in vivo.

Conclusions

Silencing of miR-193a-5p or blockade of the miR-193a-5p-Bach2-HO-1 pathway may be a novel therapeutic approach for castration-resistant PC.
  相似文献   

3.
Objective: To investigate the antiproliferative effects of zinc‐citrate compound on hormone refractory prostate cancer (HRPC). Methods: HRPC cell line (DU145) and normal prostate cell line (RWPE-1) were treated with zinc, citrate and zinc-citrate compound at different time intervals and concentrations to investigate the effect of zinc-citrate compound. Mitochondrial (m)-aconitase activity was determined using aconitase assay. DNA laddering analysis was performed to investigate apoptosis of DU145 cells. Molecular mechanism of apoptosis was investigated by Western blot analysis of P53, P21 waf1 , Bcl-2, Bcl-xL and Bax, and also caspase-3 activity analysis. Results: Treatment with zinc-citrate compound resulted in a time-and dose-dependent decrease in cell number of DU145 cells in comparison with RWPE-1. M-aconitase activity was significantly decreased. DNA laddering analysis indicated apoptosis of DU145 cells. Zinc-citrate compound increased the expression of P21 waf1 and P53, and reduced the expression of Bcl-2 and Bcl-xL proteins but induced the expression of Bax protein. Zinc-citrate compound induced apoptosis of DU145 cells by activation of the caspase-3 pathway. Conclusion: Zinc-citrate compound can induce apoptotic cell death in DU145, by caspase-3 activation through up-regulation of apoptotic proteins and down-regulation of antiapoptotic proteins.  相似文献   

4.
Purpose  Combination therapy has generated a significant interest in the clinical setting since certain agents, with known mechanisms of action and non-overlapping toxicities may increase the therapeutic potential of anticancer drugs by decreasing systemic toxicity and overcoming drug resistance. Doxorubicin and docetaxel, two standard antineoplastic agents in hormone-refractory prostate cancer (HRPC) therapy and ciprofloxacin were evaluated singly and in several simultaneous and sequential drug combination schemes, against PC-3 and LNCaP cell lines. Methods  Cellular viability was determined by the resazurin assay and the assessment of synergism, additivity or antagonism was carried out by the median effect analysis. The importance of dose, exposure time and type of administration were investigated and compared. Results  Ciprofloxacin–doxorubicin or docetaxel combinations resulted in prominent additive or synergistic effects in both cell lines, when the cells were pre-treated with ciprofloxacin. These results suggest a rationale for dose reduction of doxorubicin and docetaxel in prostate cancer therapy, since the doses needed to achieve 50% cell death may be decreased by approximately 4- to 15-fold or 3- to 8-fold, respectively, after a pre-treatment with ciprofloxacin. In contrast, the referred combinations yielded moderate antagonistic effects when used concurrently in this in vitro system. Conclusions  Ciprofloxacin sensitized HRPC cells to doxorubicin or docetaxel-induced growth inhibition and, therefore, may play a role as chemosensitizing agent in prostate cancer treatment.  相似文献   

5.
Aurora-A (Aur-A) is a centrosome-associated serine/threonine kinase that is overexpressed in various cancers and potentially correlated with chemoresistance. In the Ara-C-sensitive leukemia cell lines, silencing of Aur-A by small interfering RNA transfection led to a significant increase in the Ara-C-induced cell death rate through induction of mitochondria-mediated, caspase-dependent apoptosis. In contrast, combined treatment of the Ara-C-resistant leukemia cell lines with Aur-A siRNA and Ara-C remarkably enhanced the cell death rate via non-caspase-dependent mitotic catastrophe. Taken together, Aur-A inhibition was an effective treatment for both the Ara-C-sensitive and resistant leukemia cells by increasing apoptosis and mitotic catastrophe, respectively.  相似文献   

6.

Background

The management of hormone-refractory prostate cancer (HRPC) still remains as an important challenge of daily oncology practice. Docetaxel has proved to be a first line treatment choice. All-trans retinoic acid (ATRA) could potently inhibit the growth of prostate cancer cells in vitro and its combination with various anticancer agents results in increased cytotoxicity. Based on these data, our aim was to examine the synergistic/additive cytotoxic and apoptotic effects of combination of docetaxel and ATRA, in hormone- and drug refractory human DU-145 prostate cancer cells. Furthermore, we have searched for the underlying mechanisms of apoptosis by demonstrating apoptosis-related genes.

Methods

XTT cell proliferation assay was used for showing cytotoxicity. For verifying apoptosis, both DNA Fragmentation by ELISA assay and caspase 3/7 activity measurement were used. For detecting the mechanism of apoptosis induced by docetaxel-ATRA combination, OligoGeArray® which consists of 112 apoptosis related genes was used.

Results

Our results revealed that docetaxel and ATRA were synergistically cytotoxic and apoptotic in DU-145 cells, in a dose- and time dependent manner. It was also shown by our studies that apoptosis was induced in DU-145 prostate carcinoma cells with significant cytotoxicity, no matter which agent applied first. We have found out that docetaxel-ATRA combination significantly downregulates survivin (BIRC5), myeloid cell leukemia-1 (MCL-1) and lymphotoxin β-receptor (LTβR) genes, which all three have pivotal roles in regulation of apoptosis and cell cycle progression.

Conclusion

In conclusion, we strongly suggest that docetaxel and ATRA combination is a good candidate for this challenging era of daily oncologic practice. Also, the combination of docetaxel and ATRA might allow a reduction in docetaxel doses and by this way may diminish docetaxel adverse effects while maintaining the therapeutic effect in patients with HRPC.  相似文献   

7.

Purpose

TRAIL, a tumor selective anticancer agent, may be used for the treatment of non-small cell lung cancer (NSCLC). However, TRAIL resistance is frequently encountered. Here, the combined use of TRAIL with trifluorothymidine (TFT), a thymidylate synthase inhibitor, was examined for sensitizing NSCLC cells to TRAIL.

Methods

Interactions between TRAIL and TFT were studied in NSCLC cells using growth inhibition and apoptosis assays. Western blotting and flow cytometry were used to investigate underlying mechanisms.

Results

The combined treatment of TFT and TRAIL showed synergistic cytotoxicity in A549, H292, H322 and H460 cells. For synergistic activity, the sequence of administration was important; TFT treatment followed by TRAIL exposure did not show sensitization. Combined TFT and TRAIL treatment for 24 h followed by 48 h of TFT alone was synergistic in all cell lines, with combination index values below 0.9. The treatments affected cell cycle progression, with TRAIL inducing a G1 arrest and TFT, a G2/M arrest. TFT activated Chk2 and reduced Cdc25c levels known to cause G2/M arrest. TRAIL-induced caspase-dependent apoptosis was enhanced by TFT, whereas TFT alone mainly induced caspase-independent death. TFT increased the expression of p53 and p21/WAF1, and p53 was involved in the increase of TRAIL-R2 surface expression. TFT also caused downregulation of cFLIP and XIAP and increased Bax expression.

Conclusions

TFT enhances TRAIL-induced apoptosis in NSCLC cells by sensitizing the apoptotic machinery at different levels in the TRAIL pathway. Our findings suggest a possible therapeutic benefit of the combined use of TFT and TRAIL in NSCLC.  相似文献   

8.
The poor prognosis of pancreatic cancer and poor sensitivity to current therapeutics, associated with resistance to apoptosis, urge the search for new drugs. We previously described the induction of caspase-independent mithochondrial death in leukemia cells by Bobel-24 (AM-24) and derivatives. Here, we explored whether these compounds induce a similar cytotoxicity in human pancreatic carcinoma cell lines (NP18, NP9, NP31, and NP29). Bobel-24 or Bobel-16 induced cytotoxicity and DNA synthesis inhibition in all cell lines and apoptosis in all lines, except for NP9. Caspase and/or poly(ADP-ribose) polymerase-1 (PARP-1) activity inhibition experiments showed that cytotoxicity was mainly induced through apoptosis in NP18 and through a caspase-independent process in NP9. Moreover, in NP29 or NP31 cell lines, both caspase-dependent and caspase-independent cell death mechanisms coexisted. Cell death was associated with reactive oxygen species (ROS) production, mitochondrial depolarization, cytochrome c and apoptosis-inducing factor (AIF) release, AIF nuclear translocation, and lysosomal cathepsin release. Inhibition of ROS production, mitochondrial pore permeability, PARP-1, or phospholipase A2 partially prevented cell death. Moreover, cathepsin B inhibition or down-regulation by small interfering RNA partially blocked cell death. In conclusion, Bobel-24 and derivatives trigger caspase-independent lysosomal and mitochondrial death in all tested human pancreatic cancer lines, irrespective of their degree of apoptotic sensitivity, becoming the only active cytotoxic mechanism in the apoptosis-resistant NP9 line. This mechanism may overcome the resistance to apoptosis observed in pancreatic carcinoma when treated with current genotoxic drugs.  相似文献   

9.
Heat shock protein 70-2 (Hsp70-2) is a chaperone protein essential for the growth of spermatocytes and cancer cells. Here, we show that Hsp70-2 depletion triggers lysosomal membrane permeabilization and cathepsin-dependent cell death and identify lens epithelium-derived growth factor (LEDGF) as an Hsp70-2-regulated guardian of lysosomal stability in human cancer. Knockdown of LEDGF in cancer cells induces destabilization of lysosomal membranes followed by caspase-independent and Bcl-2-resistant cell death. Accordingly, ectopic LEDGF stabilizes lysosomes and protects cancer cells against cytotoxicity induced by anticancer agents that trigger the lysosomal cell death pathway. Remarkably, ectopic LEDGF also increases the tumorigenic potential of human cancer cells in immunodeficient mice, and LEDGF expression is increased in human breast and bladder carcinomas correlating with that of Hsp70-2 in invasive bladder cancer. Taken together, these data reveal LEDGF as an oncogenic protein that controls a caspase-independent lysosomal cell death pathway.  相似文献   

10.
Advanced castration-resistant prostate cancer has high mortality rates and limited treatment options. Novel therapies are needed to better contend with this disease. Polysaccharide-K? (PSK), an extract of the mushroom Trametes versicolor, has immunomodulatory and tumor suppressive activities. PSK is used in Asia as a cancer immunotherapy. However, its benefit in combination with taxanes for prostate cancer is unknown. We examined whether PSK would enhance docetaxel-induced apoptosis and augment anti-tumor immune responses in orthotopic tumors using transgenic adenocarcinoma of the mouse prostate (TRAMP)-C2-bearing mice. Combining PSK with docetaxel induced significantly higher tumor suppression than either treatment alone (p<0.05), including a reduction in tumor proliferation and enhanced apoptosis. Combined PSK and docetaxel treatment led to a lower decrease in number of white blood cells than docetaxel alone, an effect accompanied by increased numbers of tumor-infiltrating CD4+ and CD8+ T cells. PSK with or without docetaxel significantly enhanced mRNA expression of IFN-γ compared to control, but did not significantly alter T-regulatory FoxP3 mRNA expression in tumors. PSK also augmented docetaxel-induced splenic natural killer cell cytolytic activity against YAC-1 target cells (p=0.045). This study is the first to show that PSK enhances docetaxel-induced prostate cancer tumor suppression, apoptosis and antitumor responses.  相似文献   

11.

Background

Ethnic differences in drug susceptibility and toxicity are a major concern, not only in drug development but also in the clinical setting. We review the toxicity profiles of docetaxel according to dose and ethnicity.

Methods

We analyzed phase II and III clinical trials that included a once-every-3-weeks single-agent docetaxel arm. Logistic regression analysis was applied to identify the significant variables affecting the reported incidence of docetaxel-induced severe neutropenia.

Results

Multivariate logistic regression analysis identified studies conducted in Asia [odds ratio (OR) 19.0; 95% confidence interval (95% CI) 3.64–99.0] and docetaxel dose (OR 1.08; 95% CI 1.03–1.13) as independent variables for the incidence of grade 3/4 neutropenia.

Conclusions

There is a significant difference in the incidence of docetaxel-induced severe neutropenia between Asian and non-Asian clinical studies. Physicians and pharmacists should consider ethnic diversity in docetaxel toxicity when interpreting the results of clinical trials.  相似文献   

12.
We report that all- trans retinoic acid (ATRA) enhanced the toxicity of docetaxel against DU145 and LNCaP prostate cancer cells, and that the nature of the interaction between ATRA and docetaxel was highly synergistic. Docetaxel-induced apoptotic cell death was associated with phosphorylation and hence inactivation of Bcl-2. ATRA enhanced docetaxel-induced apoptosis and combined treatment with ATRA and docetaxel resulted in down-regulation of Bcl-2. Docetaxel caused phosphorylation and hence inactivation of cdc2 kinase result ing in G2/M arrest. ATRA inhibited docetaxel-induced phosphorylation of cdc2 resulting in activation of cdc2 kinase and partial reversal of the G2/M arrest. ATRA also inhibited docetaxel-induced activation of MAPK indicating that the effects of docetaxel and ATRA on cdc2 phosphorylation are dependent on MAPK. We conclude that ATRA synergistically enhances docetaxel toxicity by down-regulating Bcl-2 expression and partially reverses the docetaxel-induced G2/M arrest by inhibiting docetaxel-induced cdc2 phosphorylation in a pathway that is dependent on MAPK.  相似文献   

13.

Purpose

Preclinical evaluation is essential for a rational design of combination chemotherapy as some agents, with known mechanisms of action and non-overlapping toxicities may increase the therapeutic index of anticancer drugs, whose clinical success is hindered by side effects and drug resistance. The present study investigated new drug combinations with potential outcome for the treatment of metastatic prostate cancer. This final clinical stage exhibits predominantly hormone-refractory prostate cancer (HRPC) cells but also a minority of hormone responsive cells.

Methods

Growth inhibition activity of simultaneous and sequential combinations was evaluated by resazurin assay. In vitro evaluation of synergism, additivity, or antagonism, against prostate cancer cell lines, was performed by the median effect analysis. The importance of dosage, exposure time, drug ratio, and type of treatment were investigated and compared.

Results

Most simultaneous combinations of two drugs with different mechanisms of action or of two topoisomerase II inhibitors resulted in mild antagonism of antiproliferative effects, particularly notorious at high cell death. Imatinib?Cmitoxantrone and ciprofloxacin?Cetoposide combinations were exceptions, as they yielded additivity and dose reduction index (DRI) values of 2.6 and 3.5-fold for mitoxantrone and etoposide, respectively. Sequential combinations (ciprofloxacin or imatinib pre-treatment) revealed additive growth inhibition effects, translated in much higher DRI values (from 7.0 to 15.3-fold). Moderate synergism was restricted to sequential ciprofloxacin combinations at high cell death.

Conclusions

Ciprofloxacin and imatinib significantly improve growth inhibition activity of standard antineoplastic drugs in a schedule-dependent manner and, therefore, may have an important role as adjuvant therapeutic agents in a clinical setting.  相似文献   

14.
Chan YW  Chen Y  Poon RY 《Oncogene》2009,28(2):170-183
Overriding the G(2) DNA damage checkpoint permits precocious entry into mitosis that ultimately leads to mitotic catastrophe. Mitotic catastrophe is manifested by an unscheduled activation of CDK1, caspase activation and apoptotic cell death. We found that although cyclin B1 was required for mitotic catastrophe, it was cleaved into a approximately 35 kDa protein by a caspase-dependent mechanism during the process. Cyclin B1 cleavage occurred after Asp123 in the motif ILVD(123) downward arrow, and mutation of this motif attenuated the cleavage. Cleavage was abolished by a pan-caspase inhibitor as well as by specific inhibitors for the effector caspase-6 and the initiator caspase-8. Cleavage created a truncated cyclin B1 lacking part of the NH(2)-terminal regulatory domain that included the destruction box sequence. Although cleavage of cyclin B1 itself was not absolutely required for mitotic catastrophe, expression of the truncated product enhanced cell death. In support of this, ectopic expression of this truncated cyclin B1 was not only sufficient to induce mitotic block and apoptosis but also enhanced mitotic catastrophe induced by ionizing radiation and caffeine. These data underscore a possible linkage between mitotic and apoptotic functions by caspase-dependent processing of mitotic activators.  相似文献   

15.
You RI  Chen MC  Wang HW  Chou YC  Lin CH  Hsieh SL 《Cancer research》2006,66(6):3051-3061
TNFSF14/LIGHT is a member of the tumor necrosis factor superfamily that binds to lymphotoxin-beta receptor (LTbetaR) to induce cell death via caspase-dependent and caspase-independent pathways. It has been shown that cellular inhibitor of apoptosis protein-1 inhibits cell death by binding to LTbetaR-TRAF2/TRAF3 complexes and caspases. In this study, we found that both Kaposi's sarcoma-associated herpesvirus K7 (KSHV-K7), a viral inhibitor of apoptosis protein, and the structurally related protein survivin-DeltaEx3 could inhibit LTbetaR-mediated caspase-3 activation. However, only survivin-DeltaEx3 could protect cells from LTbetaR-mediated cell death. The differential protective effects of survivin-DeltaEx3 and KSHV-K7 can be attributed to the fact that survivin-DeltaEx3, but not KSHV-K7, is able to maintain mitochondrial membrane potential and inhibit second mitochondria-derived activator of caspase/DIABLO release. Moreover, survivin-DeltaEx3 is able to inhibit production of reactive oxygen species and can translocate from nucleus to cytosol to associate with apoptosis signal-regulating kinase 1 after activation of LTbetaR. Furthermore, survivin-DeltaEx3 protects LTbetaR-mediated cell death in caspase-3-deficient MCF-7 cells. Thus, survivin-DeltaEx3 is able to regulate both caspase-dependent and caspase-independent pathways, whereas inhibition of caspase-independent pathway is both sufficient and necessary for its protective effect on LTbetaR-mediated cell death.  相似文献   

16.
The molecular mechanisms conferring resistance to docetaxel in prostate cancer patients remain partially understood. We generated docetaxel resistant derivatives of the androgen independent prostate cancer cell lines PC-3 and DU-145. Docetaxel rapidly induces DU-145 cell death via apoptosis and the drug resistant cells were produced by periodically exposing proliferating DU-145 cultures to small doses of docetaxel. In PC-3 cells docetaxel induces delayed cell death via mitotic catastrophe evident by profound multinucleation and formation of giant cells. Mononucleated progeny of the giant PC-3 cells shows significant resistance to docetaxel. Gene expression profiling of these docetaxel resistant PC-3 cells revealed sets of docetaxel inducible and constitutively expressed genes associated with major cancer pathways. A contradictory overlap with DU-145 docetaxel resistant cells was also found. Analyses suggested significant changes associated with apoptotic function, DNA repair, cell growth, survival and proliferation, metabolism, maintenance of cytoskeleton and extracellular matrix formation. These cellular processes often contribute to drug resistance and our study identified a set of genes managing this phenotype. Additional analyses of the drug resistant PC-3 cells using shRNA constructs determined direct relevance of Cyclin G2 to docetaxel resistance as well as prevention of multinucleation, whereas the knockdown of upregulated CYP1B1 showed no effect on either of these processes. Downregulated GBP1 was explored by ectopic overexpression and even though GBP1 has a potential to mediate resistance to docetaxel, it was not utilized in PC-3 cells. The results suggest complex combination of gene expression pattern changes that enables resistance to docetaxel while preventing death via multinucleation.  相似文献   

17.

Background

Prostate cancer that has recurred after local therapy or disseminated distantly is usually treated with androgen deprivation therapy; however, most men will eventually experience disease progression within 12 to 20 months. New data emerging from randomized controlled trials (RCTs) of chemotherapy provided the impetus for a systematic review addressing the following question: which non-hormonal systemic therapies are most beneficial for the treatment of men with hormone-refractory prostate cancer (HRPC) and clinical evidence of metastases?

Methods

A systematic review was performed to identify RCTs or meta-analyses examining first-line non-hormonal systemic (cytotoxic and non-cytotoxic) therapy in patients with HRPC and metastases that reported at least one of the following endpoints: overall survival, disease control, palliative response, quality of life, and toxicity. Excluded were RCTs of second-line hormonal therapies, bisphosphonates or radiopharmaceuticals, or randomized fewer than 50 patients per trial arm. MEDLINE, EMBASE, the Cochrane Library, and the conference proceedings of the American Society of Clinical Oncology were searched for relevant trials. Citations were screened for eligibility by four reviewers and discrepancies were handled by consensus.

Results

Of the 80 RCTs identified, 27 met the eligibility criteria. Two recent, large trials reported improved overall survival with docetaxel-based chemotherapy compared to mitoxantrone-prednisone. Improved progression-free survival and rates of palliative and objective response were also observed. Compared with mitoxantrone, docetaxel treatment was associated with more frequent mild toxicities, similar rates of serious toxicities, and better quality of life. More frequent serious toxicities were observed when docetaxel was combined with estramustine. Three trials reported improved time-to-disease progression, palliative response, and/or quality of life with mitoxatrone plus corticosteroid compared with corticosteroid alone. Single trials reported improved disease control with estramustine-vinblastine, vinorelbine-hydrocortisone, and suramin-hydrocortisone compared to controls. Trials of non-cytotoxic agents have reported equivocal results.

Conclusion

Docetaxel-based chemotherapy modestly improves survival and provides palliation for men with HRPC and metastases. Other than androgen deprivation therapy, this is the only other therapy to have demonstrated improved overall survival in prostate cancer in RCTs. Further investigations to identify more effective therapies for HRPC including the use of systemic therapies earlier in the natural history of prostate cancer are warranted.  相似文献   

18.

Background

Reversine, a small synthetic purine analogue, has been reported to be effective in tumor suppression. In the present study, we demonstrated an antitumor activity of reversine that could suppress cellular proliferation and induce cell cycle arrest and apoptosis in human breast cancer cell lines.

Methods

To evaluate whether reversine could suppress cell growth of MCF-7 and MDA-MB-231 cells and induce cell death, the cell viability, cell cycle, and apoptosis were determined in this study.

Results

Reversine treatment in human breast cancer cells reduced cell viability in a dose-dependent manner. Cell cycle accumulation at the G2/M phase in reversine-treated cells was also determined. Moreover, polyploidy was also found in reversine-treated cells. Apoptosis in reversine-treated cells was exhibited with PARP cleavage and caspase-3 and caspase-8 activation, but not caspase-9 activation, indicating that caspase-dependent apoptosis mediated by an extrinsic pathway took place in reversine-treated cells. Furthermore, reversine attenuated cell death in cells pretreated with a pan-caspase inhibitor before reversine treatment.

Conclusions

In the present study, we demonstrated that reversine contributes to growth inhibition in human breast cancer cells through cell cycle arrest, polyploidy, and/or apoptosis induction. The apoptosis mediated by reversine was induced by the mitochondria-independent pathway. Therefore, the potential role of reversine as a novel therapeutic agent for the treatment of breast cancer is worthy of further investigation.  相似文献   

19.
Apoptosis and autophagic cell death are programmed cell deaths that are involved in cell survival, growth, development and carcinogenesis. p53, the most extensively studied tumor suppressor, regulates apoptosis and autophagy by transactivating its downstream genes. It also stimulates the mitochondrial apoptotic pathway and inhibits autophagy in a transactivation-independent manner. However, the contribution of apoptosis and autophagic cell death to p53-dependent cell death is unclear. Using wild-type (WT) and mutant (MT) p53 inducible cell lines in TP53-null SF126 glioblastoma cells, we examined the apoptosis and autophagic cell death induced by p53. WT p53 expression in SF126 cells induced apoptosis and autophagy, and reduced the cell number. An autophagy inhibitor reduced autophagy, increased the S-phase fraction, and attenuated the inhibition of cell proliferation induced by WT p53. Pan-caspase inhibitor reduced apoptosis but showed weaker inhibition of cell proliferation than the autophagy inhibitor. We concluded that p53-dependent cell death in SF126 cells comprises caspase-dependent and caspase-independent apoptosis and autophagic cell death, and the induction of autophagy as well as apoptosis could be a new strategy to treat some type of WT p53-retaining tumors.  相似文献   

20.
Until now, mitoxantrone was the standard drug for hormone resistant prostate cancer (HRPC). Docetaxel has shown more than 50% of biological response rate in HRPC in several phase II studies. Recently, two phase III studies comparing mitoxantrone and docetaxel were reported. In the view of the results of these studies, it is likely that we will change the usual treatment policy. First one , TAX 327, compared docetaxel 75 mg/m2 every 3 weeks, docetaxel 35 mg/m2 weekly and mitoxantrone 12 mg/m2 every 3 weeks. 1,006 patients were included, overall survival was better in the docetaxel arm than in the mitoxantrone arm (18.7 vs. 16.9 months; p = 0.009). The SWOG study compared docetaxel-estramustine and mitoxantrone-prednisone. 770 patients were included, the difference in overall survival was significantly in favor of the docetaxel arm (17.5 vs. 15.6 months; p = 0.02). These results shows that docetaxel is now the standard treatment of HRPC and the standard arm for future studies in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号