首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
Naturally occurring plant phenols with antimutagenic and anticarcinogenic activities were tested for their abilities to inhibit the ornithine decarboxylase (ODC) response linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical applications of tannic acid (TA) inhibit remarkably and in a dose-dependent manner TPA-induced ODC activity in mouse epidermis in vivo. This inhibitory effect of TA is dependent on the time of its administration relative to TPA. The induction of epidermal ODC activity by 8.5 nmol of TPA is inhibited maximally when 20 mumol of TA are applied topically to the skin 20 min before the tumor promoter. Gallic acid and several of its derivatives inhibit the ODC response to TPA to a lesser degree than TA. Ellagic acid is the least effective inhibitor tested. TA also inhibits the ODC-inducing activities of several structurally different tumor promoters and the greater ODC responses produced by repeated TPA treatments. The ability of TA to inhibit by 85% the ODC marker of skin tumor promotion suggests that TA and other polyphenols may be effective not only against tumor initiation and complete carcinogenesis but also against the promotion phase of tumorigenesis.  相似文献   

2.
Protein Kinase Cdelta (PKCdelta), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is among the PKC isoforms expressed in mouse epidermis. We reported that FVB/N transgenic mice that overexpress ( approximately eightfold) PKCdelta protein in basal epidermal cells are resistant to skin tumor formation by the 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion protocol. However, despite being resistant to skin tumor promotion by TPA, PKCdelta transgenic mice elicited a 3-4-fold increase in TPA-induced epidermal ODC activity and putrescine levels than their wild-type littermates. PKCdelta was observed to be the key component of the TPA signal transduction pathways to the induction of mouse epidermal ODC activity. To determine if TPA-induced ODC activity and associated putrescine levels in PKCdelta transgenic mice contributed to PKCdelta-mediated suppression of skin tumor promotion by TPA, the irreversible inhibitor of ODC, alpha-difluoromethylornithine (DFMO), was used. PKCdelta transgenic mice and their wild-type littermates were initiated with 100 nmol DMBA and then promoted twice weekly with 5 nmol TPA. The experimental group was given 0.5% DFMO in their drinking water, while the control group was given tap water. After 25 weeks, the number of papillomas (>2 mm) per mouse was counted. The DFMO treatment did not affect the skin tumor multiplicity of PKCdelta transgenic mice. These results indicate that PKCdelta-induced ODC activity is not involved in PKCdelta-mediated tumor suppression. Thus, the signaling pathways via PKCdelta to epidermal ODC induction and skin tumor suppression appear to be independent.  相似文献   

3.
Previous work from our laboratory demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) or a synthetic diacylglycerol induced significantly higher epidermal ornithine decarboxylase (ODC) activity in C57BL/6 than in DBA/2 mice. To understand further the genetic basis for this strain difference, two tumor promoters were evaluated for their effects on epidermal ODC activity: teleocidin, which activates protein kinase C (PKC); and 1,8-dihydroxyl-3-methyl-9-anthrone (chrysarobin), which does not. In addition, the ODC induction response in B6D2F1 offspring and BXD recombinant inbred (RI) strains was examined following multiple treatments with TPA. A single topical application of teleocidin to mouse dorsal skin led to the hyperinduction of epidermal ODC activity in C57BL/6 mice. In contrast, while chrysarobin induced epidermal ODC activity, no significant differences in the magnitude of this response were observed in SENCAR, DBA/2 or C57BL/6 mice. Consistent with our previous findings, the magnitude of ODC induction by teleocidin in these three mouse lines (C57BL/6 greater than SENCAR greater than DBA/2) did not correlate with their susceptibility to tumor promotion by TPA (SENCAR greater than DBA/2 greater than C57BL/6). ODC activity induced by multiple application of TPA in B6DF1 mice, whose susceptibility to phorbol ester tumor promotion is inherited as an incomplete dominant trait, was comparable to that induced in C57BL/6 mice at all the doses examined. Cluster analysis of TPA-induced ODC activity in BXD RI strains allowed us tentatively to group them into four or five phenotypes and to estimate a minimum of two genetic loci controlling TPA-induced ODC activity. Furthermore, in BXD RI strains, there was no apparent relationship between the magnitude of ODC induction and responsiveness to tumor promotion or sustained hyperplasia. Collectively, these results suggest that hyperinducibility of ODC in response to PKC-activating tumor promoters is inherited as an autosomal dominant trait, and that genetic determinants for ODC induction, at least in C57BL/6 and DBA/2 mice, appear completely independent of those controlling tumor promotion susceptibility.  相似文献   

4.
The effect of topical application of PGE on induction of ODC in mouse epidermis was measured. When direct induction of ODC by TPA was blocked by also applying indomethacin, maximum ODC activity occurred only when PGE was applied simultaneously with TPA 4 1/2 hr before killing of the mice. If either TPA or PGE was applied at other times, ODC activity decreased substantially. Induction of ODC by mezerein was blocked by indomethacin but restored by PGE, as was observed with TPA, but induction by ethyl phenylpropiolate was not affected by indomethacin or PGE. DMBA did not cause a consistent increase in ODC activity, nor was its inductive action affected by indomethacin or PGE. However, another weak inducer, acetic acid, exhibited elevated ODC activity when PGE was also applied. Inhibition by topical retinoic acid of ODC induction by TPA was partially overcome in a dose-response fashion by PGE. The results indicate that at least 2 events, elevation of PGE and another independent event, are required for induction of ODC activity. It appears that TPA causes at least 4 independent events essential for tumor promotion. A model for the events in the 2-stage tumor promotion model is proposed.  相似文献   

5.
Application of the tumor-promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin leads to a manifold induction of ornithine decarboxylase (ODC) activity within 5 hr and an increased accumulation of putrescine. The relevance of these TPA-induced changes to the mechanism of tumor promotion was investigated using alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. DFMO applied to mouse skin (0.3 mg in 0.2 ml of solvent) or administered in the drinking water (1%) in conjunction with skin tumor promotion by TPA inhibited the formation of mouse skin papillomas by 50 and 90%, respectively. TPA-induced ODC activity and the accumulation of putrescine were almost completely inhibited. DFMO given in the drinking water decreased spermidine levels, but DFMO treatment by any route did not alter the spermine levels of mouse epidermis. DFMO decreased TPA-induced hyperplasia by 25 to 40%, and the TPA-caused increases in DNA synthesis and mitotic index were inhibited by 60 and 50%, respectively. Therefore, in mouse epidermis, enhanced cell proliferation can be dissociated from ODC induction and the accumulation of putrescine. At the tested dose levels and routes of administration, DFMO did not inhibit the inflammatory response to TPA in several tissues. These results provide evidence for an essential role of ODC induction and the accumulation of putrescine in tumor promotion by TPA and add strength to the proposal that DFMO may be a promising drug for the prevention and treatment of cancer in human beings.  相似文献   

6.
Skin tumor promotion induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) was inhibited by a concurrent and topical application of phthalic acid mono-n-butyl ester cupric salt (PAMBCu) in CD-1 mice initiated with 7,12-dimethylbenz[a]anthracene. PAMBCu inhibited TPA-caused epidermal ornithine decarboxylase (ODC) induction and ear edema formation, i.e. skin inflammation. However, neither PAMBCu nor superoxide dismutase (SOD) inhibited TPA-caused ODC induction in primary cultured mouse epidermal cells. 7-Bromomethylbenz[a]anthracene (BrMBA) is known to be a non-TPA type of tumor promoting agent. Epidermal ODC induction and inflammation caused by BrMBA were not inhibited by a concurrent application of PAMBCu. When mice were topically treated twice with PAMBCu, i.e. concurrently with and 7 h after BrMBA treatment, BrMBA-caused ODC induction was markedly suppressed. The same dose regimen of PAMBCu, however, failed to inhibit tumor promotion and inflammation caused by BrMBA. PAMBCu showed SOD-mimetic activity in superoxide generating systems, i.e. xanthine-xanthine oxidase reaction and TPA-stimulated polymorphonuclear leukocytes (PMN). Mono-n-butyl phthalate, which lacks SOD-mimetic activity, failed to inhibit TPA-caused ODC induction and skin inflammation. Therefore, inhibition by PAMBCu of TPA-caused tumor promotion, epidermal ODC induction and inflammation may be attributable to its SOD-mimetic activity. The results also support the contention that a superoxide anion of non-epidermal cell origin, such as PMN and macrophages, plays a role (probably some enhancing role) in in vivo ODC induction and tumor promotion caused by TPA. Failure of PAMBCu to inhibit BrMBA-caused tumor promotion suggests that superoxide anion generation is not involved in the tumor promoting action of this agent and that the anti-tumor promoting action of PAMBCu is dependent on the nature of the tumor promoting agents.  相似文献   

7.
Diethyldithiocarbamate (DDTC) injected i.p. inhibits remarkably and in a dose-dependent manner 12-O-tetradecanoylphorbol-13-acetate (TPA)-decreased glutathione (GSH) peroxidase and TPA-induced ornithine decarboxylase (ODC) activities in mouse epidermis in vivo. DDTC is more potent in inhibiting these effects of TPA than 16 other antioxidants, free radical scavengers, thiol-containing compounds, and reduced glutathione (GSH) level-raising agents, even though some of these treatments are applied directly to the TPA-treated skin. DDTC also inhibits the effects of several structurally different tumor promoters and the greater GSH peroxidase and ODC responses produced by repeated TPA treatments. The inhibitory effects of DDTC on TPA-decreased GSH peroxidase and TPA-induced ODC activities are additive with those of Na2SeO3 and D-alpha-tocopherol (vitamin E). Interestingly, DDTC is a more effective inhibitor when it is administered after TPA, suggesting that DDTC may supplement, facilitate, and/or enhance the activity of the natural GSH-dependent detoxifying system protecting the epidermis against the oxidative challenge presumably linked to the tumor-promoting activity of TPA. When tested in the initiation-promotion protocols, DDTC inhibits to the same degree complete tumor promotion by TPA and stage 2 tumor promotion by mezerein, in relation with its identical inhibition of the GSH peroxidase and ODC responses to both TPA and mezerein. Moreover, the inhibition of the first stage tumor-promoting activity of TPA by DDTC may be attributed to its ability to inhibit TPA-induced DNA synthesis, a postulated component of the conversion phase of skin carcinogenesis when TPA is used as a stage 1 tumor promoter.  相似文献   

8.
Effects of methyiglyoxal bis(butylamidinohydrazone) (MGBB),a reversible inhibitor of ornithine decarboxylase (ODC) andS-adenosylmethionine decarboxylase (AdoMetDC), on 12-0-tetradecanoylphorbol-13-acetate(TPA)-induced increases of ODC and AdoMetDC activities, ODCmRNA level and polyamine contents in mouse skin were investigatedin connection with tumor formation. Formation of papillomasby applications of TPA to 7,12-dimethylbenz[a]anthracene (DMBA)-initiatedmouse skin was effectively inhibited by simultaneous topicalapplications of MGBB. MGBB also dose-dependently inhibited theability of TPA to induce increases of ODC activity, ODC mRNAlevel and the accumulation of putrescine and spermidine in mouseskin. Induction of AdoMetDC activity was not affected by thedrug. These inhibitory effects of MGBB on ODC induction andtumor promotion were more evident in multiple application experimentsthan with a single application of the drug.  相似文献   

9.
When topically applied to guinea pig ear skin the tumor promotingphorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) inducedinflammation and epidermal hyperproliferation which could beinhibited by indomethacin. This inhibition could be reversedboth by prostaglandins E and F. Five minutes after TPA treatmentan increase in the level of prostaglandin E but not of prostaglandinF was observed in the epidermis. The non-promoting phorbol ester4-O-methyl-TPA also stimulated epidermal cell proliferationbut this stimulation was not inhibited by indomethacin. Theabove results are in agreement with those already reported inthe mouse system with these two compounds. Ornithine decar-boxylase(ODC) activity has been evaluated in the epidermis of guineapig ear after topical application of 20 nmol of TPA. No increasewas noted. This is in contrast with the well documented activationof ODC in mouse skin treated with TPA. Since TPA acts as a promoterin the mouse whereas both croton oil and TPA have no promotingaction in the guinea pig, the above result supports the viewthat ODC activation is related to promotion, and provides apossible explanation for the resistance of this animal speciesto promotion. This resistance is further documented by the factthat no "dark cells" were found in guinea pig ear skin.  相似文献   

10.
The antitumor antibiotics Adriamycin (ADR) and daunomycin (DAU) were tested for their ability to alter some of the molecular events linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). When applied topically to mouse skin, DAU is a more effective inhibitor of the basal level of epidermal DNA synthesis than ADR. However, these drugs alone are unable to inhibit the sequential induction of RNA, protein, and DNA synthesis caused by TPA in mouse epidermis in vivo. Moreover, ADR enhances substantially the induction of epidermal ornithine decarboxylase (ODC) activity by TPA. In vitro, the incorporation of [3H]DAU into isolated epidermal cells resembles more that of the HL-60 cells resistant to vincristine than that of the parental cell line. TPA does not alter the incorporation of [3H]DAU into epidermal cells. The Ca2+ antagonists verapamil (VRP) and trifluoperazine (TFP) enhance significantly the amount of [3H]DAU associated with the epidermal cells after 1 h. When applied shortly before TPA in vivo, VRP and TFP inhibit TPA-induced ODC activity at 5 h and TPA-induced DNA synthesis at 17 h. Moreover, the combinations of Ca2+ antagonists and anthracycline antibiotics administered before TPA inhibit synergistically these ODC and DNA responses to the tumor promoter. When they are applied at various times after TPA treatment, the same combinations of ADR or DAU and VRP or TFP fail to alter TPA-induced RNA and protein synthesis but still exert synergistic inhibitory effects on the peak of DNA synthesis observed 17 h after TPA. However, the chronic administration of ADR and DAU alone or in combination with VRP prior to the peak of TPA-induced DNA synthesis 16 h after each promotion treatment with TPA fails to alter the promotion of skin papillomas in the two-stage protocol of mouse skin carcinogenesis. In contrast, when administered alone or in combination with DAU prior to each TPA treatment, VRP inhibits skin tumor promotion and reveals the antitumor-promoting activity of DAU. These results point to the modulatory role of Ca2+ in the action of ADR and TPA and demonstrate the refractory nature of mouse epidermis to cancer chemotherapy by anthracycline antibiotics. However, ADR and DAU may be effective against skin tumor promotion if they are applied in combination with Ca2+ antagonists and at a time when they can inhibit the inductions of both ODC activity and DNA synthesis by TPA.  相似文献   

11.
In recent years, considerable emphasis has been placed on identifyingnew cancer chemopreventive agents which could be useful forhuman populations. Silymarin, an anti-oxidant flavonoid isolatedfrom artichoke, has been shown to possess siginificant activityagainst hepatotoxicity and other pharmacological and physiologicaldisorders. Since many antioxidants inhibit tumor promotion,and because ornithine decarboxylase (ODC) is a well known biochemicalmarker of tumor promotion, we assessed the effect of skin applicationof silymarin on 12-O-tetradecanoylphorbol-13-acetate (TPA) inducedepidermal ODC activity and ODC mRNA levels in SENCAR mice. Applicationof silymarin at doses of 0.5–18 mg (1–37 µmol)/mouseprior to that of TPA (2.5 µg) treatment resulted in significantinhibition of TPA-induced epidermal ODC activity in a dose-and time-dependent manner. Northern blot analysis revealed thattopical application of silymarin at the dose of 2 mg/mouse resultedin almost complete inhibition of TPA-induced epidermal ODC mRNA.In other studies, silymarin also showed significant inhibitionof epidermal ODC activity induced by several other tumor promoters,including free radical-generating compounds. Our data suggestthat silymarin could be a useful anti-tumor promoting agentcapable of ameliorating the tumor promoting effects of a widerange of tumor promoters.  相似文献   

12.
The purpose of this study was to examine the activity and associated kinetic parameters of epidermal protein kinase C (PKC) following stimulation by sn-1,2-dioctanoylglycerol (DIC8) or 12-O-tetradecanoylphorbol-13-acetate (TPA) and to examine the relationship between levels of epidermal PKC activity and the induction of ornithine decarboxylase by these agents, utilizing various stocks and strains of mice. Importantly, the mouse strains and stock used in this study have known differing susceptibilities to undergo TPA-induced tumor promotion: the CD-1 stock and the DBA/2 strain (both sensitive to TPA-induced tumor promotion) and the C57BL/6 strain (resistant to TPA-induced tumor promotion). TPA-stimulated protein kinase C activity was measured in the 10(5)g supernatant fraction of epidermal homogenates using lysine-rich histone as a phosphate acceptor substrate. The maximal velocities for TPA-stimulated epidermal PKC activity in CD-1, DBA/2 and C57BL/6 were 0.28, 0.29 and 0.27 nmol PO4-histone/mg 10(5)g protein/min, respectively. TPA-stimulated epidermal PKC from CD-1, DBA/2 and C57BL/6 had similar theoretical Vmax values and the apparent concentrations of TPA yielding half-maximal stimulation of PKC were also similar. DiC8-stimulated PKC activity to a greater Vmax; however, the concentration required to yield half-maximal stimulation of PKC was one thousand times greater than that of TPA. There were no strain differences in these parameters when the enzyme was stimulated with DiC8. Thus, the levels of epidermal PKC activity in CD-1, DBA/2 and C57BL/6 mice exhibit no strain differences when stimulated by TPA or DiC8 using lysine-rich histone as a phosphate acceptor substrate. Since sn-1,2-diacylglycerols are known effective inducers of epidermal ornithine decarboxylase (ODC) activity, the induction of epidermal ODC was examined in each mouse strain 5 h after topical application of 2 nmol TPA, 5 nmol TPA or 2.5 mumol DiC8. After topical treatment with TPA, C57BL/6 demonstrated an unexpected 2- and 4-fold increase in ODC activity over CD-1 and DBA/2 mice. After treatment with DiC8, C57BL/6 demonstrated a 6- and 10-fold increase in ODC activity over CD-1 and DBA/2, respectively. Thus, the resistant strain (C57BL/6) demonstrated a 'hyperinducibility' of epidermal ODC activity by TPA or DiC8. The time course for the induction of epidermal ODC was examined in each strain, and at every time point measured (3-15 h), the C57BL/6 strain exhibited this 'hyperinducibility' of ODC relative to the other strains. Epidermal DNA synthesis was stimulated to a similar extent in C57BL/6 and CD-1 mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
Cyclohexane, a frequently used solvent in industry, was assessed for its tumorigenic potential on mouse skin following multistage initiation-promotion protocols. The activity of ornithine decarboxylase (ODC), a marker of tumor promotion was found to be induced by the topical application of cyclohexane. This ODC induction was dependent on the dose of cyclohexane used and the duration of application. Effect of protein synthesis inhibitors and the modifiers of tumor promotion on the cyclohexane induced ODC activity was also studied. ODC induction was inhibited by cycloheximide and also, up to some extent, by actinomycin D. Inhibitors of stage II tumor promotion showed more effect on the ODC induction by cyclohexane as compared to the inhibitors of stage I tumor promotion. In chronic animal bioassay experiments topical application of cyclohexane to DMBA initiated mouse skin resulted in just 10% of tumor bearing animals while prior application of TPA for two weeks resulted in 45% of tumor bearing animals. Collectively, the present study demonstrates that cyclohexane is more effective as a stage II tumor promoter over mouse skin and possibly affects the biochemical events at the molecular level.  相似文献   

15.
The production of hydroperoxides is rapidly increased and remains at 200-280% of the control 1-24 h after the second daily application of 17 nmol of 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin in vivo. The levels of hydroperoxides are increased 1.63-, 2.64-, 4.07-, and 4.31-fold 18 h after one, two, three, or four applications of TPA at 24-h intervals, respectively. The hydroperoxide response to TPA observed in whole skin reflects almost entirely the increased hydroperoxide-producing activity of the epidermis. Such hydroperoxide responses are triggered to various degrees by the anthrone derivatives and the phorbol esters and diterpene with complete and/or stage 2 tumor-promoting activities but not by the agents with only inflammatory, hyperplastic or stage 1 tumor-promoting activities. However, the Ca2+ ionophores A23187 and ionomycin are potent inducers of hydroperoxide formation. Several discrepancies are observed between the hydroperoxide response to TPA and the known effects of the tumor promoter on ornithine decarboxylase (ODC) induction. In contrast to the refractory state against ODC induction caused by TPA treatments repeated at intervals of less than 48 h, the time interval required for recovery of the hydroperoxide response to TPA in TPA-pretreated skins is only 5 h. The stimulatory effects of A23187, ionomycin and various diacylglycerols (DAGs) on hydroperoxide production do not correlate with their ODC-inducing activities. The increasing susceptibilities of C57BL/6, CF-1, and SEN-CAR mice to skin tumor promotion correlate with their hydroperoxide responses but not with their ODC responses to TPA. alpha-Difluoromethylornithine (DFMO) and other inhibitors of TPA-induced ODC activity fail to alter hydroperoxide production whereas the compounds that inhibit the hydroperoxide response to TPA, such as fluocinolone acetonide, have no or only minimal inhibitory activity against ODC induction. This would suggest that the hydroperoxide response to TPA does not require ODC induction and may not be essential for ODC induction. The hydroperoxide response to TPA is mimicked, but to a lesser degree, by the activator of protein kinase C, 1,2-dioctanoyl-sn-glycerol, and inhibited by verapamil, trifluoperazine, and palmitoylcarnitine. Populations of TPA-treated keratinocytes, therefore, may be responsible not only for ODC activation but also for hydroperoxide production. However, these two responses, which involve, at least in part, Ca2+ mobilization and protein kinase C activation and play important roles in the mechanism of skin tumor promotion, do not appear to be correlated.  相似文献   

16.
17.
Palm oil is a rich source of vitamin E, carotenoids, tocotrienols and tocopherols which are natural antioxidants and act as scavengers of oxygen free radicals. 12-O-Tetradecanoyl-phorbol-13-acetate (TPA) is a known oxidant that promotes tumorigenesis in mouse skin through the elaboration of oxidative stress. In this study we therefore assessed the anti-tumor promoting potential of palm oil against TPA-mediated skin tumorigenesis in 7,12-dimethylbenz[a]anthracene-initiated Swiss albino mice. Topical application of palm oil 1 h prior to application of TPA resulted in a significant protection against skin tumor promotion. The animals pre-treated with palm oil showed a decrease in both tumor incidence and tumor yield as compared to the TPA (alone)-treated group. Palm oil application also reduced the development of malignant tumors. Since TPA-induced epidermal ornithine decarboxylase (ODC) activity and [(3)H]thymidine incorporation are conventionally used markers of skin tumor promotion, we also assessed the effect of pre-application of palm oil on these parameters, and it was observed that the application of palm oil prior to the application of TPA alleviated both these TPA-induced markers of tumor promotion. The effect of pre-application of palm oil on TPA-mediated depletion in the non-enzymatic and enzymatic molecules was also assessed and it was observed that palm oil application prior to TPA application resulted in the recovery of TPA-mediated depletion in the levels of these molecules viz. glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and catalase. Similarly, palm oil also exhibited a protective effect against Fe(2+)-ascorbate-induced lipid peroxidation in the epidermal microsomes. The results of the present study thus suggest that palm oil possesses anti-skin tumor promoting effects, and that the mechanism of such effects may involve the inhibition of tumor promoter-induced epidermal ODC activity, [(3)H]thymidine incorporation and cutaneous oxidative stress.  相似文献   

18.
A transgenic mouse line expressing a truncated form of the ornithine decarboxylase (ODC) dominant-negative mutant K69A/C360A under the control of the keratin 6 promoter has been established (K6/ODCdn mice). These mice were backcrossed onto both the DBA/2J and C57BL/6J backgrounds for subsequent tumorigenesis experiments utilizing an initiation/promotion protocol. In short-term experiments, expression of the ODCdn protein product was induced in the epidermis within 24 h after application of the tumor promoter tetradecanoyl phorbol acetate (TPA) to the skin, and ODC activity in the epidermis of K6/ODCdn mice was reduced by at least 75% compared with littermate controls. However, in tumorigenesis experiments utilizing a variety of initiator (7,12-dimethylbenz[a]anthracene; DMBA) and promoter (TPA) concentrations, K6/ODCdn mice formed at least as many tumors as their littermate controls regardless of background strain. In experiments utilizing chrysarobin, a tumor promoter with a different mechanism of action than TPA, again there was no significant difference in tumor formation between K6/ODCdn mice and littermate controls. Similarly, when K6/ODCdn mice were crossed with K5/ODC mice, a transgenic line described previously which forms tumors without application of a promoting agent, double transgenic mice formed as many tumors as mice expressing the K5/ODC transgene alone. Analysis of epidermis following multiple TPA applications revealed a dramatic spike in ODC activity in both K6/ODCdn mice and non-transgenic mice after six applications, and western blot analysis suggested a stabilization of endogenous wild-type ODC in K6/ODCdn transgenic mice. ODC activity, endogenous protein and polyamines were also elevated in tumors from K6/ODCdn mice. The accumulation of endogenous ODC protein is most probably the result of competition from the transgene-derived ODCdn protein for binding of antizyme, which is known to regulate ODC activity by stimulating degradation of the ODC protein.  相似文献   

19.
The role of 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated polyamine biosynthesis in the development of metastatic squamous cell carcinoma (mSCC) in protein kinase C epsilon (PKC epsilon) transgenic mice was determined. TPA treatment induced epidermal ornithine decarboxylase (ODC) activity and putrescine levels approximately 3-4-fold more in PKC epsilon transgenic mice than their wild-type littermates. Development of mSCC by the 7,12-dimethylbenz(a)anthracene (100 nmol)-TPA (5 nmol) protocol in PKC epsilon transgenic mice was completely prevented by administration of the suicide inhibitor of ODC alpha-difluoromethylornithine (DFMO, 0.5% w/v) in the drinking water during TPA promotion. However, DFMO treatment led to marked hair loss in PKC epsilon transgenic mice. DFMO treatment-associated hair loss in PKC epsilon transgenic mice was accompanied by a decrease in the number of intact hair follicles. These results indicate that TPA-induced ODC activity and the resultant accumulation of putrescine in PKC epsilon transgenic mice are linked to growth and maintenance of hair follicles, and the development of mSCC. Severe hair loss observed in PKC epsilon transgenic mice on DFMO during skin tumor promotion has not been reported before in the prevention of cancer in other animal models or in human cancer prevention trials.  相似文献   

20.
Extensive animal data have suggested that, in some systems, the induction of ornithine decarboxylase (ODC) is an essential, although not sufficient, aspect of tumor promotion and that compounds that inhibit ODC can inhibit tumor formation. Using fasting human volunteers, we report that human epidermal and dermal ODC are consistently induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in a manner similar to that seen in mouse skin. There is a marked intersubject variation in TPA-induced epidermal ODC activity levels. Orally administered compounds significantly inhibited TPA-caused human epidermal ODC induction. These data may be useful in the further development of drugs, doses, and dose schedules for use in human cancer chemoprevention studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号