首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attention-dependent modulation of neural activity in visual association cortex (VAC) is thought to depend on top-down modulatory control signals emanating from the prefrontal cortex (PFC). In a previous functional magnetic resonance imaging study utilizing a working memory task, we demonstrated that activity levels in scene-selective VAC (ssVAC) regions can be enhanced above or suppressed below a passive viewing baseline level depending on whether scene stimuli were attended or ignored (Gazzaley, Cooney, McEvoy, et al. 2005). Here, we use functional connectivity analysis to identify possible sources of these modulatory influences by examining how network interactions with VAC are influenced by attentional goals at the time of encoding. Our findings reveal a network of regions that exhibit strong positive correlations with a ssVAC seed during all task conditions, including foci in the left middle frontal gyrus (MFG). This PFC region is more correlated with the VAC seed when scenes were remembered and less correlated when scenes were ignored, relative to passive viewing. Moreover, the strength of MFG-VAC coupling correlates with the magnitude of attentional enhancement and suppression of VAC activity. Although our correlation analyses do not permit assessment of directionality, these findings suggest that PFC biases activity levels in VAC by adjusting the strength of functional coupling in accordance with stimulus relevance.  相似文献   

2.
On grounds of electrophysiological mapping, cytoarchitecture, myeloarchitecture and callosal and thalamic connectivity, we have identified two cortical areas in the posterior parietal cortex of the ferret: posterior parietal caudal and rostral (PPc and PPr). These areas occupy the lateral and suprasylvian gyri, from the cingulate sulcus (medially) to the suprasylvian sulcus (laterally) and lie between visual areas 18 and 21 (posteriorly) and the somatosensory areas (anteriorly). Within both areas a coarse representation of the visual field was found and within PPr there was also a representation of the body. Each representation mirrors those within neighboring areas. Cytoarchitectonic and myeloarchitectonic fields within this cortical region did not correspond in any simple way to the physiological representations. The architectonic differences correlate to differential callosal connectivity, with predominant connectivity corresponding to the upper hemifield/head representations. PPr and PPc receive thalamic projections from a different, but overlapping, complement of thalamic nuclei. The superimposition of somatic and visual maps in PPr might relate to the probable role of this area in transforming retinal-centered to body-centered spatial coordinates. The organization of the parietal areas in the ferret resembles that of the flying fox and might unveil a common organizational plan from which the primate posterior parietal cortex evolved.  相似文献   

3.
Controversy surrounds the role of the temporoparietal junction (TPJ) area of the human brain. Although TPJ has been implicated both in reorienting of attention and social cognition, it is still unclear whether these functions have the same neural basis. Indeed, whether TPJ is a precisely identifiable cortical region or a cluster of subregions with separate functions is still a matter of debate. Here, we examined the structural and functional connectivity of TPJ, testing whether TPJ is a unitary area with a heterogeneous functional connectivity profile or a conglomerate of regions with distinctive connectivity. Diffusion-weighted imaging tractrography-based parcellation identified 3 separate regions in TPJ. Resting-state functional connectivity was then used to establish which cortical networks each of these subregions participates in. A dorsal cluster in the middle part of the inferior parietal lobule showed resting-state functional connectivity with, among other areas, lateral anterior prefrontal cortex. Ventrally, an anterior TPJ cluster interacted with ventral prefrontal cortex and anterior insula, while a posterior TPJ cluster interacted with posterior cingulate, temporal pole, and anterior medial prefrontal cortex. These results indicate that TPJ can be subdivided into subregions on the basis of its structural and functional connectivity.  相似文献   

4.
Cortical projections of area V2 in the macaque   总被引:6,自引:6,他引:0  
To determine the locus, extent and topograhic organization of cortical projections of area V2, we injected tritiated amino acids under electrophysiological control into 15 V2 sites in 14 macaques. The injection sites included the foveal representation and representations ranging from central to far peripheral eccentricities in both the upper and lower visual fields. The results indicated that all V2 sites project topographically back to V1 and forward to V3, V4 and MT. There is also a topographically organized projection from V2 to V4t, but this projection is limited to the lower visual field representation. V2 thus appears to project to virtually all the visual cortex within the occipital lobe. In addition to these projections to occipital visual areas, V2 sites representing eccentricities of approximately 30 degrees and greater project to three visual areas in parietal cortex-the medial superior temporal (MST), parieto-occipital (PO) and ventral intraparietal (VIP) areas. This peripheral field representation of V2 also projects to area VTF, a visual area located in area TF on the posterior parahippocampal gyrus. Projections from the peripheral field representation of V2 of parietal areas could provide a direct route for rapid activation of circuits serving spatial vision and spatial attention.   相似文献   

5.
Lesions of the basal forebrain (BF) cortical cholinergic system impair performance on a rodent five-choice visual attentional task. This study examines the effects on the same task of selective depletion of acetylcholine from the prefrontal cortex (PFC) using 192 IgG-saporin, the cholinergic immunotoxin. Rats were trained to detect brief visual stimuli, either presented unpredictably both temporally and spatially to increase attentional load, or under less demanding conditions where stimuli were temporally and spatially predictable. Following training, 192 IgG-saporin (50 ng or 100 ng/infusion) or its vehicle was infused bilaterally into the ventromedial PFC. The 100 ng lesion group exhibited post-operatively a transient increase in perseveration, specifically when the visual stimuli were temporally unpredictable. A vigilance decrement, as well as a reinstatement of perseverative responding occurred in both lesion groups under conditions of enhanced attentional load, specifically with high target frequency sustained over many trials. Lesioned subjects were also more impulsive with increased anticipatory errors. Systemic administration of the muscarinic receptor antagonist scopolamine further dissociated the groups with attentional accuracy in the 100 ng group decreasing relative to shams. These findings are consistent with an important modulatory influence of PFC function by BF cholinergic neurons, particularly during increased attentional demand.  相似文献   

6.
Novel mapping stimuli composed of biological motion figures were used to study the extent and layout of multiple retinotopic regions in the entire human brain and to examine the independent manipulation of retinotopic responses by visual stimuli and by attention. A number of areas exhibited retinotopic activations, including full or partial visual field representations in occipital cortex, the precuneus, motion-sensitive temporal cortex (extending into the superior temporal sulcus), the intraparietal sulcus, and the vicinity of the frontal eye fields in frontal cortex. Early visual areas showed mainly stimulus-driven retinotopy; parietal and frontal areas were driven primarily by attention; and lateral temporal regions could be driven by both. We found clear spatial specificity of attentional modulation not just in early visual areas but also in classical attentional control areas in parietal and frontal cortex. Indeed, strong spatiotopic activity in these areas could be evoked by directed attention alone. Conversely, motion-sensitive temporal regions, while exhibiting attentional modulation, also responded significantly when attention was directed away from the retinotopic stimuli.  相似文献   

7.
Cortical connections of area V4 in the macaque   总被引:1,自引:0,他引:1  
To determine the locus, full extent, and topographic organization of cortical connections of area V4 (visual area 4), we injected anterograde and retrograde tracers under electrophysiological guidance into 21 sites in 9 macaques. Injection sites included representations ranging from central to far peripheral eccentricities in the upper and lower fields. Our results indicated that all parts of V4 are connected with occipital areas V2 (visual area 2), V3 (visual area 3), and V3A (visual complex V3, part A), superior temporal areas V4t (V4 transition zone), MT (medial temporal area), and FST (fundus of the superior temporal sulcus [STS] area), inferior temporal areas TEO (cytoarchitectonic area TEO in posterior inferior temporal cortex) and TE (cytoarchitectonic area TE in anterior temporal cortex), and the frontal eye field (FEF). By contrast, mainly peripheral field representations of V4 are connected with occipitoparietal areas DP (dorsal prelunate area), VIP (ventral intraparietal area), LIP (lateral intraparietal area), PIP (posterior intraparietal area), parieto-occipital area, and MST (medial STS area), and parahippocampal area TF (cytoarchitectonic area TF on the parahippocampal gyrus). Based on the distribution of labeled cells and terminals, projections from V4 to V2 and V3 are feedback, those to V3A, V4t, MT, DP, VIP, PIP, and FEF are the intermediate type, and those to FST, MST, LIP, TEO, TE, and TF are feedforward. Peripheral field projections from V4 to parietal areas could provide a direct route for rapid activation of circuits serving spatial vision and spatial attention. By contrast, the predominance of central field projections from V4 to inferior temporal areas is consistent with the need for detailed form analysis for object vision.  相似文献   

8.
The posterior parietal cortex (PPC) has been proposed to play a critical role in exerting top-down influences on occipital visual areas. By inducing activity in the PPC (angular gyrus) using transcranial magnetic stimulation (TMS), and using the phosphene threshold as a measure of visual cortical excitability, we investigated the functional role of this region in modulating the activity of the visual cortex. When triple-pulses of TMS were applied over the PPC unilaterally, the intensity of stimulation required to elicit a phosphene from the visual cortex (area V1/V2) was reduced, indicating an increase in visual cortical excitability. The increased excitability that was observed with unilateral TMS was abolished when TMS was applied over the PPC bilaterally. Our results provide a demonstration of the top-down modulation exerted by the PPC on the visual cortex and show that these effects are subject to interhemispheric competition.  相似文献   

9.
Visual changes in feature movies, like in real-live, can be partitioned into global flow due to self/camera motion, local/differential flow due to object motion, and residuals, for example, due to illumination changes. We correlated these measures with brain responses of human volunteers viewing movies in an fMRI scanner. Early visual areas responded only to residual changes, thus lacking responses to equally large motion-induced changes, consistent with predictive coding. Motion activated V5+ (MT+), V3A, medial posterior parietal cortex (mPPC) and, weakly, lateral occipital cortex (LOC). V5+ responded to local/differential motion and depended on visual contrast, whereas mPPC responded to global flow spanning the whole visual field and was contrast independent. mPPC thus codes for flow compatible with unbiased heading estimation in natural scenes and for the comparison of visual flow with nonretinal, multimodal motion cues in it or downstream. mPPC was functionally connected to anterior portions of V5+, whereas laterally neighboring putative homologue of lateral intraparietal area (LIP) connected with frontal eye fields. Our results demonstrate a progression of selectivity from local and contrast-dependent motion processing in V5+ toward global and contrast-independent motion processing in mPPC. The function, connectivity, and anatomical neighborhood of mPPC imply several parallels to monkey ventral intraparietal area (VIP).  相似文献   

10.
Primary sensory cortical responses are modulated by the presence or expectation of related sensory information in other modalities, but the sources of multimodal information and the cellular locus of this integration are unclear. We investigated the modulation of neural responses in the murine primary auditory cortical area Au1 by extrastriate visual cortex (V2). Projections from V2 to Au1 terminated in a classical descending/modulatory pattern, with highest density in layers 1, 2, 5, and 6. In brain slices, whole-cell recordings revealed long latency responses to stimulation in V2L that could modulate responses to subsequent white matter (WM) stimuli at latencies of 5-20 ms. Calcium responses imaged in Au1 cell populations showed that preceding WM with V2L stimulation modulated WM responses, with both summation and suppression observed. Modulation of WM responses was most evident for near-threshold WM stimuli. These data indicate that corticocortical projections from V2 contribute to multimodal integration in primary auditory cortex.  相似文献   

11.
Priming of motion direction and area V5/MT: a test of perceptual memory   总被引:2,自引:2,他引:0  
Presentation of supraliminal or subliminal visual stimuli that can (or cannot) be detected or identified can improve the probability of the same stimulus being detected over a subsequent period of seconds, hours or longer. The locus and nature of this perceptual priming effect was examined, using suprathreshold stimuli, in subjects who received repetitive pulse transcranial magnetic stimulation over the posterior occipital cortex, the extrastriate motion area V5/MT or the right posterior parietal cortex during the intertrial interval of a visual motion direction discrimination task. Perceptual priming observed in a control condition was abolished when area V5/MT was stimulated but was not affected by magnetic stimulation over striate or parietal sites. The effect of transcranial magnetic stimulation (TMS) on priming was specific to site (V5/MT) and to task - colour priming was unaffected by TMS over V5/MT. The results parallel, in the motion domain, recent demonstrations of the importance of macaque areas V4 and TEO for priming in the colour and form domains.  相似文献   

12.
Despite numerous functional neuroimaging and lesion studies of human executive function, the precise neuroanatomical correlates of specific components of attentional control remain controversial. Using a novel approach that focused upon volunteer behavior rather than experimental manipulations, specific components of attentional shifting were fractionated, and their neural correlates differentiated using event-related fMRI. The results demonstrate that the ventrolateral prefrontal cortex is involved in switching attention "between" stimulus dimensions, whereas the posterior parietal cortex mediates changes in stimulus-response mapping. Furthermore, reversals based on negative feedback activated the lateral orbitofrontal cortex, whereas positive feedback modulated activity in the medial orbital frontal cortex. Finally, the dorsolateral prefrontal cortex was active throughout solution search. These findings support the hypothesis that lateral prefrontal, orbital, and parietal areas form a supervisory network that controls the focus of attention and suggests that these regions can be fractionated in terms of their specific contributions.  相似文献   

13.
We have used small injections of biocytin to label and comparepatterns of intreareal, laterally spreading projections of pyramidalneurons in a number of areas of macaque monkey cerebral cortex.In visual areas (V1, V2, and V4), somatosensory areas (3b, 1,and 2), and motor area 4, a punctate discontinuous pattern ofconnections is made from 200-µm-diameter biocytin injectionsin the superficial layers. In prefrontal cortex (areas 9 and46), stripe-like connectivity patterns are observed. In allareas of cortex examined, the width of the terminal-free gapsis closely scaled to the average diameter of terminal patches,or width of terminal stripes. In addition, both patch and gapdimensions match the average lateral spread of the dendriticfield of single pyramidal neurons in the superficial layersof the same cortical region. These architectural features ofthe connectional mosaics are constant despite a twofold differencein scale across cortical areas and different species. They thereforeappear to be fundamental features of cortical organization.A model is offered in which local circuit inhibitory "basket"interneurons, activated at the same time as excitatory pyramidalneurons, could veto pyramidal neuron connections within eithercircular or stripe-like domains; this could lead to the formationof the pattern of lateral connections observed in this study,and provides a framework for further theoretical studies ofcerebral cortex function.  相似文献   

14.
15.
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.  相似文献   

16.
Although it has long been known that right posterior parietal cortex (PPC) has a role in certain visual search tasks, and human motion area V5 is involved in processing tasks requiring attention to motion, little is known about how these areas may interact during the processing of a task requiring the speciality of each. Using transcranial magnetic stimulation (TMS), this study first established the specialization of each area in the form of a double dissociation; TMS to right PPC disrupted processing of a color/form conjunction and TMS to V5 disrupted processing of a motion/form conjunction. The key finding of this study is, however, if TMS is used to disrupt processing of V5 at its critical time of activation during the motion/form conjunction task, concurrent disruption of right PPC now has a significant effect, where TMS at PPC alone does not. Our findings challenge the conventional interpretation of the role of right PPC in conjunction search and spatial attention.  相似文献   

17.
A neural model suggests how horizontal and interlaminar connections in visual cortical areas V1 and V2 develop within a laminar cortical architecture and give rise to adult visual percepts. The model suggests how mechanisms that control cortical development in the infant lead to properties of adult cortical anatomy, neurophysiology and visual perception. The model clarifies how excitatory and inhibitory connections can develop stably by maintaining a balance between excitation and inhibition. The growth of long-range excitatory horizontal connections between layer 2/3 pyramidal cells is balanced against that of short-range disynaptic interneuronal connections. The growth of excitatory on-center connections from layer 6-to-4 is balanced against that of inhibitory interneuronal off-surround connections. These balanced connections interact via intracortical and intercortical feedback to realize properties of perceptual grouping, attention and perceptual learning in the adult, and help to explain the observed variability in the number and temporal distribution of spikes emitted by cortical neurons. The model replicates cortical point spread functions and psychophysical data on the strength of real and illusory contours. The on-center, off-surround layer 6-to-4 circuit enables top-down attentional signals from area V2 to modulate, or attentionally prime, layer 4 cells in area V1 without fully activating them. This modulatory circuit also enables adult perceptual learning within cortical area V1 and V2 to proceed in a stable way.  相似文献   

18.
The inferior temporal (IT) cortex is the last unimodal visual area in the ventral visual pathway and is essential for color discrimination. Recent imaging and electrophysiological studies have revealed the presence of several distinct patches of color-selective cells in the anterior IT cortex (AIT) and posterior IT cortex (PIT). To understand the neural machinery for color processing in the IT cortex, in the present study, we combined anatomical tracing methods with electrophysiological unit recordings to investigate the anatomical connections of identified clusters of color-selective cells in monkey IT cortex. We found that a color cluster in AIT received projections from a color cluster in PIT as well as from discrete clusters of cells in other occipitotemporal areas, in the superior temporal sulcus, and in prefrontal and parietal cortices. The distribution of the labeled cells in PIT closely corresponded with that of the physiologically identified color-selective cells in this region. Furthermore, retrograde tracer injections in the posterior color cluster resulted in labeled cells in the anterior cluster. Thus, temporal lobe color-processing modules form a reciprocally interconnected loop within a distributed network.  相似文献   

19.
Recent studies have revealed a marked degree of variation in the pyramidal cell phenotype in visual, somatosensory, motor and prefrontal cortical areas in the brain of different primates, which are believed to subserve specialized cortical function. In the present study we carried out comparisons of dendritic structure of layer III pyramidal cells in the anterior and posterior cingulate cortex and compared their structure with those sampled from inferotemporal cortex (IT) and the primary visual area (V1) in macaque monkeys. Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors was determined, and somal areas measured. We found that pyramidal cells in anterior cingulate cortex were more branched and more spinous than those in posterior cingulate cortex, and cells in both anterior and posterior cingulate were considerably larger, more branched, and more spinous than those in area V1. These data show that pyramidal cell structure differs between posterior dysgranular and anterior granular cingulate cortex, and that pyramidal neurons in cingulate cortex have different structure to those in many other cortical areas. These results provide further evidence for a parallel between structural and functional specialization in cortex.  相似文献   

20.
We measured the regional cerebral blood flow (rCBF) in 11 healthyvolunteers with PET (positron emission tomography). The mainpurpose was to map the areas of the human brain that changedrCBF during (1) the storage, (2) retrieval from long-term memory,and (3) recognition of complex visual geometrical patterns.A control measurement was done with subjects at rest. Perceptionand learning of the patterns increased rCBF in V1 and in 17cortical fields located in the cuneus, the lingual, fusiform,inferior temporal, occipital, and angular gyri, the precuneus,and the posterior part of superior parietal lobules. In addition,rCBF increased in the anterior hippocampus, anterior cingulategyrus, and in several fields in the prefrontal cortex. Recognitionof the patterns increased rCBF in 18 identically located fieldsoverlapping those activated in learning. In addition, recognitionprovoked differentially localized increases in the pulvinar,posterior hippocampus, and prefrontal cortex. Learning and recognitionof the patterns thus activated identical visual regions, butdifferent extravisual regions. A surprising finding was thatthe hippocampus was also active in recognition. Recall of thepatterns from long-term memory was associated with rCBF increasesin yet difierent fields in the prefrontal cortex, and the anteriorcingulate cortex. In addition, the posterior inferior temporallobe, the precuneus, the angular gyrus, and the posterior superiorparietal lobule were activated, but not any spot within theoccipital cortex. Activation of V1 or immediate visual associationareas is not a prerequisite for visual imagery for the patterns.The only four fields activated in storage recall and recognitionwere those in the posterior inferior temporal lobe, the precuneus,the angular gyrus, and the posterior superior parietal lobule.These might be the storage sites for such visual patterns. Ifthis is true, storage, retrieval, and recognition of complexvisual patterns are mediated by higher-level visual areas. Thus,visual learning and recognition of the same patterns make useof identical visual areas, whereas retrieval of this materialfrom the storage sites activates only a subset of the visualareas. The extravisual networks mediating storage, retrieval,and recognition differ, indicating that the ways by which thebrain accesses the storage sites are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号