首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in epidermal growth factor receptor (EGFR) rendering it constitutively active is one of the major causes for metastatic non-small-cell lung cancer (NSCLC), and EGFR-targeted therapies utilizing tyrosine kinase inhibitors (TKIs) are often used clinically as the first-line treatment. But approximately half of NSCLC patients develop resistance to these therapies, where the MET proto-oncogene is amplified by EGFR through the hypoxia-inducible factor (HIF)-1α. Here we report that endothelial PAS domain-containing protein 1 (EPAS1), with 48% sequence identity to HIF-1α, specifically binds to TKI-resistant T790M EGFR, but not to wild-type EGFR, in NSCLC cell lines. Expression of EPAS1 enhances amplification of MET when simultaneously expressed with T790M EGFR but not with wild-type EGFR, and this enhancement is independent of ligand binding domain of EGFR. MET amplification requires EPAS1, since EPAS1 knock-down reduced MET levels. When NSCLC cells expressing T790M EGFR were treated with TKIs, reduced EPAS1 levels significantly enhanced the drug effect, whereas over-expression of EPAS1 increased the drug resistant effect. This EPAS1-dependent TKI-resistance was abolished by knocking-down MET, suggesting that EPAS1 does not cause TKI-resistance itself but functions to bridge EGFR and MET interactions. Our findings suggest that EPAS1 is a key factor in the EGFR-MET crosstalk in conferring TKI-resistance in NSCLC cases, and could be used as a potential therapeutic target in TKI-resistant NSCLC patients.  相似文献   

2.
本研究通过EGFR-TKI和EGFR单克隆抗体联合应用探讨治疗EGFR突变阴性和EGFR T790M突变继发性耐药的NSCLC的疗效。方法:应用EGFR突变阴性和EGFR T790M突变继发性耐药的NSCLL细胞原代培养及药敏技术检验EGFR-TKI和EGFR单克隆抗体联合应用的疗效。结果:检测厄洛替尼和西妥昔单抗联合处理对于15例EGFR突变阴性和8例T790M突变阳性的继发性耐药的NSCLC患者原代细胞的影响,应用浓度分别为50 μg/mL西妥昔单抗和1 μM厄洛替尼作用于EGFR突变阴性的NSCLC患者原代细胞,结果显示这三组间T/C值无显著性差异(P>0.05),对于T790M突变阳性的继发性耐药的NSCLC原代细胞这三组间T/C值有显著性差异(P<0.05),联合用药组疗效明显高于单药组。结论:进一步验证了厄洛替尼和西妥昔单抗联合应用对于EGFR突变阴性的NSCLC患者无效,但对于T790M突变阳性的继发性耐药的NSCLC患者有效。   相似文献   

3.
《Annals of oncology》2014,25(2):423-428
BackgroundEGFR T790M is the most common mutation associated with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Baseline EGFR T790M mutations in EGFR TKI-naïve patients have been reported, but the frequency and their association with response to EGFR TKIs remain unclear.Patients and methodsThe frequency of baseline EGFR T790M as detected by routine molecular genotyping was determined by reviewing clinical results obtained at our institution from 2009 to 2013. We also collected outcome data for treatment with EGFR TKIs.ResultsTo define the incidence of EGFR T790M, we reviewed 2774 sequentially tested patients with lung cancer who underwent molecular testing using a mass spectrometry-based assay, and 11 (0.5%) had baseline EGFR T790M. Compiling results from several molecular techniques, we observed EGFR T790M in tumors from 20 patients who had not previously been treated with an EGFR TKI. In all cases, EGFR T790M occurred concurrently with another EGFR mutation, L858R (80%, 16/20), or exon 19 deletion (20%, 4/20). Two percent of all pre-treatment EGFR-mutant lung cancers harbored an EGFR T790M mutation. Thirteen patients received erlotinib monotherapy as treatment for metastatic disease. The response rate was 8% (1/13, 95% confidence interval 0%–35%). For the patients who received erlotinib, the median progression-free survival was 2 months and the median overall survival was 16 months.ConclusionsDe novo EGFR T790M mutations are rare (<1%) when identified by standard sensitivity methods. TKI therapy for patients with baseline EGFR T790M detected by standard molecular analysis has limited benefit.  相似文献   

4.
Tyrosine kinase inhibitors (TKI) that target the EGF receptor (EGFR) are effective in most non-small cell lung carcinoma (NSCLC) patients whose tumors harbor activating EGFR kinase domain mutations. Unfortunately, acquired resistance eventually emerges in these chronically treated cancers. Two of the most common mechanisms of acquired resistance to TKIs seen clinically are the acquisition of a secondary "gatekeeper" T790M EGFR mutation that increases the affinity of mutant EGFR for ATP and activation of MET to offset the loss of EGFR signaling. Although up to one-third of patient tumors resistant to reversible EGFR TKIs harbor concurrent T790M mutation and MET amplification, potential therapies for these tumors have not been modeled in vivo. In this study, we developed a preclinical platform to evaluate potential therapies by generating transgenic mouse lung cancer models expressing EGFR-mutant Del19-T790M or L858R-T790M, each with concurrent MET overexpression. We found that monotherapy targeting EGFR or MET alone did not produce significant tumor regression. In contrast, combination therapies targeting EGFR and MET simultaneously were highly efficacious against EGFR TKI-resistant tumors codriven by Del19-T790M or L858R-T790M and MET. Our findings therefore provide an in vivo model of intrinsic resistance to reversible TKIs and offer preclinical proof-of-principle that combination targeting of EGFR and MET may benefit patients with NSCLC.  相似文献   

5.
Evidence suggests that activation of the MET signaling pathway might be associated with EGFR-TKI resistance. EGFR TKI-resistant lung cancers often remain sensitive to inhibition of the EGFR pathway; thus, c-MET inhibitors are likely to be effective when combined with continued EGFR-TKI treatment. Here, we described a 56-year-old male who became refractory after first-line gefitinib therapy and was confirmed to have c-MET overexpression without a T790M mutation, c-MET amplification or MET exon 14 alterations. A complete response to crizotinib occurred in this patient. Our case report uncovered the underlying mechanism of c-MET overexpression in affecting EGFR-TKI sensitivity, and crizotinib may assist in overcoming this problem.  相似文献   

6.
Epidermal growth factor receptor (EGFR) is a critical target in the treatment of nonsmall cell lung cancer (NSCLC). The mutations involving EGFR are more prevalent in patients of Asian ancestry, women, never smokers, and those with adenocarcinoma histology. Primary mechanism of resistance to EGFR-TKIs includes in frame insertion mutation in exon 20, de novo T790M mutation also on exon 20, activating mutations in KRAS, loss of PTEN, and amplification of c-MET whereas acquired resistance results from development of secondary alteration in ATP domain of T790M. There are many novel targeting agents in development to overcome resistance to EGFR TKIs.  相似文献   

7.
Primary epidermal growth factor receptor (EGFR) T790M mutation can be occasionally identified in previous untreated nonsmall cell lung cancer (NSCLC) patients. To compare clinical characteristics and outcomes in patients with primary and acquired EGFR T790M mutation, we collected the data of patients diagnosed with EGFR mutation from 2012 to 2017 in Shanghai Chest Hospital. Primary EGFR T790M mutation was identified in 61 patients (1.1%; 95% confidence interval (CI): 0.8%–1.3%) of 5685 TKI-naive EGFR mutant patients. Acquired T790M mutation was detected in 98 patients (50.3%; 95%CI: 43.2%–57.3%) of 195 TKI-treated patients. T790M mutation always coexisted with sensitizing EGFR mutations. Primary EGFR T790M always coexisted with 21L858R (46/61) whereas acquired T790M coexisted with 19del (68/98), (p < 0.001). Among them, 18 patients with primary T790M mutation received osimertinib and 72 patients with acquired T790M mutation received osimertinib. The median progression-free survival (PFS) of osimertinib was significantly longer in primary T790M group (17.0 months, 95%CI:14.0–20.0 months) compared to acquired T790M group (10.0 months, 95%CI:8.6–11.4 months, p = 0.022). However, the median overall survival (OS) of acquired T790M mutation patients was significantly longer compared to that of primary T790M mutation patients who received osimertinib (50.4 months vs. 29.9 months, p = 0.016). Our findings suggest that primary T790M mutation likely coexists with 21L858R while acquired mutation likely coexists with 19del. Both mutations showed good response to osimertinib. Patients with primary T790M mutation experienced greater benefits from osimertinib. However, patients with acquired T790M mutation had a better overall survival during the entire clinical treatment.  相似文献   

8.
Activating mutations in the epidermal growth factor receptor (EGFR) characterize a subset of non-small cell lung cancers (NSCLC) with extraordinary sensitivity to targeted tyrosine kinase inhibitors (TKI). A single secondary EGFR mutation, T790M, arising in cis with the primary activating mutation, confers acquired resistance to these drugs. However, the T790M mutation is also detected in the absence of drug selection, suggesting that it may provide a growth advantage. We show here that although T790M alone has only a modest effect on EGFR function, when combined with the characteristic activating mutations L858R or del746-750, it results in a dramatic enhancement of EGFR activity. The double mutants show potent ligand-independent receptor autophosphorylation associated with altered cellular phenotypes, soft agar colony formation, and tumorigenesis in nude mice. The significant gain-of-function properties of these double mutants may explain their initial presence before drug selection and their rapid selection as the single drug resistance mutation during therapy with gefitinib/erlotinib, and suggests that they may contribute to the adverse clinical course of TKI-resistant NSCLC.  相似文献   

9.
Most advanced Non–Small-cell lung cancers (NSCLCs) with activating epidermal growth factor receptor (EGFR) mutations (exon 19 deletions or L858R) initially respond to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. However, over time (median of 6–12 months), most tumors develop acquired resistance to EGFR TKIs. Intense research in these NSCLCs has identified two major mechanisms of resistance to gefitinib/erlotinib: secondary resistance mutations and “oncogene kinase switch" systems. The secondary T790M mutation occurs in 50% of EGFR-mutated patients with TKI resistance, and in vitro, this mutation negates the hypersensitivity of activating EGFR mutations. Sensitive detection methods have identified a proportion of TKI-naive tumors that carry T790M, and these resistant clones may be selected after exposure to gefitinib or erlotinib. Other secondary resistance mutations (D761Y, L747S, T854A) seem to be rare. The amplification of the MET oncogene is present in 20% of TKI-resistant tumors; however, in half of the cases with this “oncogene kinase switch" mechanism the T790M is coexistent. It is possible that other kinases (such as insulin-like growth factor-1 receptor [IGF-1R]) might also be selected to bypass EGFR pathways in resistant tumors. The growing preclinical data in EGFR-mutated NSCLCs with acquired resistance to gefitinib or erlotinib has spawned the initiation or conception of clinical trials testing novel EGFR inhibitors that in vitro inhibit T790M (neratinib, XL647, BIBW 2992, and PF-00299804), MET, or IGF-1R inhibitors in combination with EGFR TKIs, and heat shock protein 90 inhibitors. Ongoing preclinical and clinical research in EGFR-mutated NSCLC has the potential to significantly improve the outcomes of patients with these somatic mutations.  相似文献   

10.
PURPOSE: In patients whose lung adenocarcinomas harbor epidermal growth factor receptor (EGFR) tyrosine kinase domain mutations, acquired resistance to the tyrosine kinase inhibitors (TKI) gefitinib (Iressa) and erlotinib (Tarceva) has been associated with a second-site EGFR mutation, which leads to substitution of methionine for threonine at position 790 (T790M). We aimed to elucidate the frequency and nature of secondary EGFR mutations in patients with acquired resistance to TKI monotherapy. EXPERIMENTAL DESIGN: Tumor cells from patients with acquired resistance were examined for secondary EGFR kinase domain mutations by molecular analyses. RESULTS: Eight of 16 patients (50% observed rate; 95% confidence interval, 25-75%) had tumor cells with second-site EGFR mutations. Seven mutations were T790M and one was a novel D761Y mutation found in a brain metastasis. When combined with a drug-sensitive L858R mutation, the D761Y mutation modestly reduced the sensitivity of mutant EGFR to TKIs in both surrogate kinase and cell viability assays. In an autopsy case, the T790M mutation was found in multiple visceral metastases but not in a brain lesion. CONCLUSIONS: The T790M mutation is common in patients with acquired resistance. The limited spectrum of TKI-resistant mutations in EGFR, which binds to erlotinib in the active conformation, contrasts with a wider range of second-site mutations seen with acquired resistance to imatinib, which binds to ABL and KIT, respectively, in closed conformations. Collectively, our data suggest that the type and nature of kinase inhibitor resistance mutations may be influenced by both anatomic site and mode of binding to the kinase target.  相似文献   

11.
Mutations of the epidermal growth factor receptor (EGFR) in patients with non-small cell lung cancer (NSCLC) were identified by re-sequencing all exons of this gene to evaluate the frequencies of EGFR gene mutation and identify rare or novel EGFR mutations. A total of 55 NSCLC samples from 55 patients were included in the study. Genomic DNA was extracted and exons 1-28 of the EGFR gene were sequenced to identify mutations. The cDNA of the EGFR gene with P848L and T790M double mutants was constructed by introducing point mutations into the wild-type EGFR vector using a site-directed mutagenesis kit. Among the 55 patients with NSCLC, 8 patients carried mutations of the EGFR gene. Notably, of the mutation-harboring patients with a pathological type of adenocarcinoma, 6 were non-smokers. The in vitro study demonstrated that the P848L mutant had a similar response to that of the wild-type EGFR after gefitinib treatment, and the P848L and T790M double mutant exhibited high resistance to gefitinib. These EGFR mutations preferentially occurred in lung adenocarcinoma patients, most of whom were non-smokers. In the in vitro study, P848L mutant EGFR had a similar response as the wild-type EGFR to gefitinib treatment, suggesting that lung cancer patients with a rare mutation of EGFR, such as the P848L mutation, do not respond to gefitinib treatment.  相似文献   

12.
非小细胞肺癌人群中c-MET基因的扩增检测   总被引:2,自引:0,他引:2       下载免费PDF全文
目的:c-MET基因扩增是非小细胞肺癌对EGFR TKIs(吉非替尼或厄罗替尼)产生耐药的主要机制之一。本研究探讨没有接受TKIs治疗与TKIs治疗后耐药的NSCLC中c-MET基因的扩增是否存在差异。方法:获得55例术后非小细胞肺癌(NSCLC)的肿瘤组织(基线组)以及23例对TKIs耐药的肿瘤组织(耐药组)后,通过激光显微切割筛选癌细胞后提取基因组DNA,实时荧光定量PCR TaqMan探针法检测所有标本的c-MET基因的拷贝数。 结果:1.基线组和耐药组的临床病理特征均与c-MET基因的扩增无关。2.基线组中c-MET基因扩增阳性率为5.5% (3/55);耐药组的c-MET基因扩增阳性率为21.7% (5/23)。两组之间有统计学差异(Fisher精确概率法,P=0.045)。3.在7例获得TKI治疗前后肿瘤组织的NSCLC中,TKI治疗前没有出现c-MET的基因扩增,TKI治疗后有2例患者出现了c-MET的基因扩增(2/7)。TKI治疗前后的c-MET基因扩增差异无统计学意义。结论:NSCLC的临床病理特征不能预测c-MET基因扩增;在没有接受EGFR TKIs治疗的NSCLC中,c-MET基因扩增仅为少见事件。但经过吉非替尼或厄罗替尼治疗后出现耐药情况NSCLC中,部分患者的c-MET基因出现扩增。  相似文献   

13.
  目的  探讨真实世界中Super-ARMS法检测肺腺癌患者外周血标本循环肿瘤脱氧核糖核酸(circulating tumor DNA,ctDNA)中表皮生长因子受体(epidermal growth factor receptor,EGFR)T790M基因突变的临床应用价值。  方法  收集2019年1月至2020年6月在首都医科大学附属北京胸科医院确诊的肺腺癌患者307例,突变扩增系统(amplification refractory mutation system, ARMS)检测组织中EGFR基因突变情况,Super-ARMS法检测血浆中EGFR的基因突变情况。通过生存分析比较不同标本检测EGFR T790M基因突变患者的无进展生存时间(progression-free survival,PFS)。  结果  153例患者疾病进展接受再活检。74例进行组织再活检,其中34例(45.9%)检测到EGFR T790M基因突变。141例患者进行液体再活检,其中51例(36.2%)EGFR T790M基因突变。Kaplan-Meier生存分析显示,组织和外周血EGFR T790M突变阳性患者接受第三代EGFR酪氨酸激酶抑制剂(EGFR-tyrosine kinase inhibitors,EGFR-TKIs)的中位PFS比较差异无统计学差异(16.3个月 vs. 11.4个月,x2=1.138,P>0.05)。组织和外周血EGFR T790M突变阴性患者未接受第三代EGFR-TKIs治疗的中位PFS比较差异无统计学意义(7.0个月 vs. 7.0个月,x2=0.470,P>0.05)。  结论  真实世界中Super-ARMS法检测外周血标本有望应用于检测EGFR T790M 基因突变情况,外周血标本可一定程度上补充组织标本检测EGFR T790M基因突变结果,预测患者对第三代EGFR-TKIs治疗的疗效。   相似文献   

14.
Overall benefits of EGFR‐TKIs are limited because these treatments are largely only for adenocarcinoma (ADC) with EGFR activating mutation. The treatments also usually lead to development of resistances. We have established a panel of patient‐derived xenografts (PDXs) from treatment naïve Asian NSCLC patients, including those containing “classic” EGFR activating mutations. Some of these EGFR‐mutated PDXs do not respond to erlotinib: LU1868 containing L858R/T790M mutations, and LU0858 having L858R mutation as well as c‐MET gene amplification, both squamous cell carcinoma (SCC). Treatment of LU0858 with crizotinib, a small molecule inhibitor for ALK and c‐MET, inhibited tumor growth and c‐MET activity. Combination of erlotinib and crizotinib caused complete response, indicating the activation of both EGFR and c‐MET promote its growth/survival. LU2503 and LU1901, both with wild‐type EGFR and c‐MET gene amplification, showed complete response to crizotinib alone, suggesting that c‐MET gene amplification, not EGFR signaling, is the main oncogenic driver. Interestingly, LU1868 with the EGFR L858R/T790M, but without c‐met amplification, had a complete response to cetuximab. Our data offer novel practical approaches to overcome the two most common resistances to EGFR‐TKIs seen in the clinic using marketed target therapies.  相似文献   

15.
Mutations of the epidermal growth factor receptor (EGFR) gene have been reported in non-small-cell lung cancer (NSCLC), especially in patients with adenocarcinoma and never smokers. Some common somatic mutations in EGFR, including deletion mutations in exon 19 and leucine-to-arginine substitution at amino acid position 858 (L858R) in exon 21, have been examined for their ability to predict sensitivity to gefitinib or erlotinib, which are selective EGFR tyrosine kinase inhibitors (EGFR-TKIs). On the other hand, reports have shown that the threonine-to-methionine substitution at amino acid position 790 (T790M) in exon 20 is related to gefitinib resistance. Some studies have indicated that high copy numbers of the EGFR gene may be a more effective molecular predictor to responsiveness and prolonged survival in patients treated with EGFR-TKIs. Here, we describe two NSCLC patients with the L858R mutation who did not respond to gefitinib. Case 1 harbored both the T790M and L858R mutations, and fluorescence in situ hybridization showed EGFR gene amplification. Case 2 harbored both the L858R and aspartic acid-to-tyrosine substitution at amino acid position 761 in exon 19 of EGFR mutations and had a high polysomy status for EGFR. In these two cases, tumors showed resistance to gefitinib treatment despite the presence of EGFR L858R mutation and increased copy number. Our findings encourage further molecular analysis to elucidate the relationship between the EGFR status, including mutations and amplifications, and the responsiveness of NSCLC to gefitinib.  相似文献   

16.

Purpose

Sensitivity to a tyrosine kinase inhibitor (TKI) is correlated with the presence of somatic mutations that affect the kinase domain of epidermal growth factor receptor (EGFR). Development of resistance to TKI is a major therapeutic problem in non-small cell lung cancer (NSCLC). Aim of this study is to identify agents that can overcome TKI resistance in NSCLC.

Methods

We used a carefully selected panel of 12 NSCLC cell lines to address this clinical problem. Initially, the cell lines were treated with a variety of 10 compounds. Cellular proliferation was measured via MTT assay. We then focused on the gefitinib-resistant, EGFR mutant cell lines [H1650: exon 19 and PTEN mutations; and H1975: exons 20 (T790M) and 21 (L858R)] to identify agents that could overcome TKI resistance.

Results

Both 17-DMAG (Hsp90 inhibitor) and belinostat (histone deacetylase inhibitor, HDACi) effectively decreased the growth of almost all NSCLC lines. Also, belinostat markedly decreased the expression of EGFR and phospho-Akt in the cells. Combination of 17-DMAG and belinostat synergistically inhibited in vitro proliferation of these cells. Furthermore, both agents and their combination almost completely prevented TKI-resistant tumor formation (EGFR T790M mutation) in a xenograft model.

Conclusion

These results suggest that the combination of 17-DMAG and belinostat should be examined in a clinical trial for TKI-resistant NSCLC cell.  相似文献   

17.
AimsPresently, three generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are approved against oncogene addicted EGFR-mutant non-small cell lung cancer (NSCLC). Patients with actionable EGFR mutations invariably develop resistance. This resistance can be intrinsic (primary) or acquired (secondary).Materials and methodsThis was a retrospective study carried out between January 2016 and April 2021 analysing 486 samples of NSCLC for primary and secondary resistance to first- (erlotinib, gefitinb), second- (afatinib) and/or third-generation (osimertinib) TKIs in EGFR-mutant NSCLCs by next generation sequencing (NGS). Tissue NGS was carried out using the Thermofischer Ion Torrent? Oncomine? Focus 52 gene assay; liquid biopsy NGS was carried out using the Oncomine Lung Cell-Free Total Nucleic Acid assay. All cases were previously tested for a single EGFR gene with the Therascreen® EGFR RGQ PCR kit.ResultsThe results were divided into four groups: (i) group 1: primary resistance to first- and/or second-generation TKIs. This group, with 21 cases, showed EGFR exon 20 insertions, dual, complex mutations and variant of unknown significance, de novo MET gene amplification besides other mutations. (ii) Group 2: primary resistance to third-generation TKIs. This group showed two cases, with one showing dual EGFR mutation (L858R and E709A) and EGFR gene amplification. (iii) Group 3: secondary resistance to first- and second-generation TKIs. This group had 27 cases, which were previously reported negative for EGFR T790M by single gene testing. Significant findings were MET gene amplification in four cases, with one also showing MET exon 14 skipping mutation. Three cases showed small cell change and one showed loss of primary mutation. (iv) Group 4: secondary resistance to third-generation TKIs. The latter group was further subgrouped into group 4A: secondary resistance to osimertinib (third-generation TKI) when offered as second-line therapy after first- and second-generation TKIs on detection of T790M mutation. This group had 15 cases. EGFR T790M mutation was lost in 10 (10/15; 67%) cases and was retained in five cases. Patients with T790M loss experienced early resistance (6.9 months versus 12.6 months mean, P = 0.0024) compared with cases that retained T790M. Two cases gained MET amplification as the resistance mechanisms. Other mutations that were found when EGFR T790M was lost were in FGFR3, KRAS, PIK3CA, CTNNB1, BRAF genes. One case had EML4-ALK translocation. Two cases showed driver EGFR deletion 19, retained T790M and C797S mutation in Cis form. Group 4B: secondary resistance to osimertinib (when given as first-line therapy) in EGFR-mutant NSCLC. This group had three cases. The duration of osimertinib treatment ranged from 11 to 17 months. Two patients showed additional C797S mutation along with primary EGFR mutation.ConclusionThis study shows the wide spectrum of primary and secondary EGFR resistance mechanisms to first, second and third generation of TKIs and helps us to identify newer therapeutic targets that could carry forward the initial advantage offered by EGFR TKIs.  相似文献   

18.
《Annals of oncology》2013,24(8):2080-2087
BackgroundThe mechanism of primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small-cell lung cancer (NSCLC) has not been clearly understood.Patients and methodsEleven patients exhibiting primary resistance (disease progression <3 months) were identified among 197 consecutive NSCLC patients with TKI-sensitive EGFR mutations who received EGFR TKIs at Seoul National University Hospital. Treatment-naïve tumors were examined for concurrent genetic alterations using fluorescence in situ hybridization and targeted deep sequencing of cancer-related genes. Deletion polymorphism of Bcl-2-interacting mediator of cell death (BIM) gene was examined to validate its predictive role for TKI outcome.ResultsThe median progression-free survival (PFS) for patients receiving EGFR TKIs was 11.9 months, and the response rate 78.8%. Among the 11 patients exhibiting primary resistance, a de novo T790M mutation was identified in one patient, and two exhibited mesenchymal-epithelial transition amplification and anaplastic lymphoma kinase fusion. Targeted deep sequencing identified no recurrent, coexistent drivers of NSCLC. Survival analysis revealed that patients with recurrent disease after surgery had a longer PFS than those with initial stage IV disease. However, BIM deletion polymorphism, line of treatment, EGFR genotype, and smoking were not predictive of PFS for EGFR TKIs.ConclusionsWe identified coexistent genetic alterations of cancer-related genes that could explain primary resistance in a small proportion of patients. Our result suggests that the mechanism of primary resistance might be heterogeneous.  相似文献   

19.
Osimertinib is the only Food and Drug Administration-approved third-generation epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitor (TKI). A meta-analysis was performed to aggregate the mixed results of published clinical trials to assess the efficacy and safety of osimertinib. A systematic search of the PubMed, Web of Science, and Cochrane Library electronic databases was performed to identify eligible literature. The primary endpoints were overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and adverse events (AEs). A total of 3,086 advanced nonsmall cell lung cancer (NSCLC) patients from 11 studies have been identified. The aggregate efficacy parameters for treatment-naïve patients with EGFR-TKI-sensitizing mutations are as follows: ORR 79% (95% CI 75–84%), DCR 97% (95% CI 95–99%), 6-month PFS 83% (95% CI 80–87%), and 12-month PFS 64% (95% CI 59–69%). The aggregate efficacy parameters for advanced NSCLC harboring T790M mutations after earlier-generation EGFR-TKI therapy are as follows: ORR 58% (95% CI 46–71%), DCR 80% (95% CI 63–98%), 6-month PFS 63% (95% CI 58–69%), and 12-month PFS 32% (95% CI 17–47%). EGFR-TKI-naïve patients with EGFR-positive mutations tend to have longer median PFS than EGFR-TKI-pretreated counterparts (19.17 vs. 10.58 months). The most common AEs were diarrhea and rash, of which the pooled incidences were 44 and 42%, respectively. Generally, osimertinib is a favorable treatment option for previously treated T790M mutation-positive advanced NSCLC as well as a preferable therapy for untreated EGFR mutation-positive advanced NSCLC. Additionally, osimertinib is well tolerated by most patients.  相似文献   

20.

Background

Recently, we have reported that EGFR mutation-specific antibodies performed well in immunohistochemical analysis, with good sensitivity. We investigated whether this method could detect non-small-cell lung cancer (NSCLC) carrying EGFR mutations in malignant effusions and cerebrospinal fluid (CSF), comparable to the peptide nucleic acid–locked nucleic acid (PNA–LNA) PCR clamp assay. Furthermore, we compared activating EGFR mutations between primary and recurrent NSCLC.

Patients and methods

Twenty-four patients with NSCLC effusions and CSF were examined by immunocytochemistry using antibodies specific for the E746-A750 deletion mutation in exon 19 and the L858R point mutation in exon 21. The PNA–LNA PCR clamp assay was used to detect the E746-A750 deletion at exon 19, L858R mutation at exon 21, and T790M mutation at exon 20.

Results

We were able to identify EGFR mutations in NSCLC effusion and CSF with a sensitivity of 100% (5/5) using the anti-delE746-A750 antibody and 100% (8/8) using the anti-L858R antibody. Furthermore, in samples without these EGFR mutations, immunocytochemistry with the two specific antibodies identified 91% (10/11) as negative for both the deletion and the point mutations in EGFR. Activating EGFR mutations decreased in recurrent NSCLC compared with primary NSCLC, and the T790M mutation was detected in recurrent NSCLC of patients receiving gefitinib treatment.

Conclusions

Identification of EGFR mutations is important for patients with primary and recurrent NSCLC. Rapid and sensitive immunocytochemistry using mutation-specific antibodies to detect EGFR mutations will be useful for diagnosing responsiveness to EGFR-targeted drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号