首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maile LA  Capps BE  Ling Y  Xi G  Clemmons DR 《Endocrinology》2007,148(5):2435-2443
IGF-I stimulation of smooth muscle cell (SMC) migration and proliferation requires alphaVbeta3 ligand occupancy. We hypothesized that changes in the levels of extracellular matrix proteins induced by alterations in glucose concentrations may regulate the ability of SMCs to respond to IGF-I. IGF-I stimulated migration and proliferation of SMCs that had been maintained in 25 mM glucose containing media, but it had no stimulatory effect when tested using SMCs that had been grown in 5 mM glucose. IGF-I stimulated an increase in Shc phosphorylation and enhanced activation of the MAPK pathway in SMCs grown in 25 mM glucose, whereas in cells maintained in 5 mM glucose, IGF-I had no effect on Shc phosphorylation, and the MAPK response to IGF-I was markedly reduced. In cells grown in 25 mM glucose, the levels of alphaVbeta3 ligands, e.g. osteopontin, vitronectin, and thrombospondin, were all significantly increased, compared with cells grown in 5 mM glucose. The addition of these alphaVbeta3 ligands to SMCs grown in 5 mM glucose was sufficient to permit IGF-I-stimulated Shc phosphorylation and downstream signaling. Because we have shown previously that alphaVbeta3 ligand occupancy is required for IGF-I-stimulated Shc phosphorylation and stimulation of SMC growth, our data are consistent with a model in which 25 mM glucose stimulates increases in the concentrations of these extracellular matrix proteins, thus enhancing alphaVbeta3 ligand occupancy, which leads to increased Shc phosphorylation and enhanced cell migration and proliferation in response to IGF-I.  相似文献   

2.
Insulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell (SMC) proliferation and migration. The response of smooth muscle cells to IGF-I is determined not only by activation of the IGF-I receptor but also by at least three other transmembrane proteins, alphaVbeta3, integrin-associated protein (IAP), and SHPS-1. This regulation seems to be attributable to their ability to regulate the transfer of SHP-2 phosphatase, a key component of IGF-I signaling. Ligand occupancy of SHPS-1 with IAP is required for the recruitment and transfer of SHP-2 and subsequent signaling in response to IGF-I. The extracellular matrix protein thrombospondin-1 stimulates an increase in the cell proliferation response to IGF-I. Because thrombospondin-1 is a ligand for IAP, we wished to determine whether the enhancing effect of thrombospondin-1 was mediated through IAP binding. To examine the effect of thrombospondin-1 binding to IAP, we used a peptide termed 4N1K derived from the IAP binding site of thrombospondin-1. Preincubation with 4N1K increased IGF-I-stimulated mitogen-activated protein kinase activation and DNA synthesis. This enhancement seemed to be attributable to its ability to increase the duration of IGF-I-stimulated receptor and insulin receptor substrate-1 (IRS-1) phosphorylation. Preincubation with 4N1K delayed IGF-I stimulation of SHPS-1 phosphorylation (attributable to an alteration in IAP-SHPS-1 interaction), resulting in a delay in SHP-2 recruitment. This delay in SHP-2 transfer seems to account for the increase in the duration of IGF-I receptor phosphorylation and for enhanced downstream signaling. These observations support the conclusion that thrombospondin-1 and IGF-I seem to function coordinately in stimulating smooth muscle proliferation via the thrombospondin-1 interaction with IAP.  相似文献   

3.
Sekimoto H  Boney CM 《Endocrinology》2003,144(6):2546-2552
IGF-I stimulates both proliferation and differentiation of adipocyte-precursor cells, preadipocytes in vivo and in vitro. We have previously shown that IGF-I stimulates proliferation of 3T3-L1 preadipocytes through activation of MAPK and MAPK activation by IGF-I is mediated through the Src family of nonreceptor tyrosine kinases. In addition, we have shown that when 3T3-L1 cells reach growth arrest and are stimulated to differentiate, IGF-I can no longer activate the MAPK pathway. We hypothesized that the loss of IGF-I signaling to MAPK in differentiating 3T3-L1 cells is due to loss of IGF-I activation of Src family kinases. We measured c-Src kinase activity in cell lysates from proliferating, growth-arrested and differentiating 3T3-L1 cells. Src activity increased 2- to 4-fold in IGF-I-stimulated proliferating cells; however, IGF-I had a marginal affect on Src activity in growth-arrested cells and inhibited Src activity localized at the membrane in differentiating cells. C-terminal Src kinase (CSK), a ubiquitously expressed nonreceptor tyrosine kinase, negatively regulates the Src family kinases by phosphorylation of the Src C-terminal tyrosine. IGF-I decreased phosphorylation of the Src C-terminal tyrosine in proliferating cells and increased phosphorylation of this site in differentiating cells. IGF-I stimulated CSK kinase activity 2-fold in differentiating 3T3-L1 cells. An association between CSK and c-Src was detected by immunoprecipitation following IGF-I stimulation of differentiating but not proliferating 3T3-L1 cells. These results suggest that the loss of IGF-I downstream mitogenic signaling in differentiating 3T3-L1 cells is due to a change in IGF-I activation of c-Src and CSK may mediate the inactivation of c-Src by IGF-I in 3T3-L1 adipogenesis.  相似文献   

4.
Maile LA  Clemmons DR 《Endocrinology》2002,143(11):4259-4264
The alphaVbeta3 integrin is an important determinant of IGF-I-stimulated receptor phosphorylation and biological actions. Blocking ligand occupancy of alphaVbeta3 with the distintegrin echistatin reduces IGF-I-stimulated receptor phosphorylation, and it inhibits cellular migration and DNA synthesis responses to IGF-I. We have shown that recruitment of the tyrosine phosphatase Src-homology 2-containing phosphotyrosine phosphatase-2 (SHP-2) to the IGF-I receptor (IGF-IR) is an important determinant of the duration of IGF-IR phosphorylation. These studies were undertaken to determine whether an alteration in the recruitment of SHP-2 to the receptor in the presence of echistatin could account for the decrease in receptor phosphorylation. Following an overnight exposure of smooth muscle cell cultures to echistatin, the addition of IGF-I was accompanied by rapid dephosphorylation of IGF-IR compared with cells exposed to media alone. This was associated with an increase in the rate of SHP-2 recruitment to the IGF-IR. In cells expressing a catalytically inactive form of SHP-2, prior exposure to echistatin had no effect on the rate of receptor dephosphorylation. In contrast to the usual physiologic situation in which following IGF-I exposure SHP-2 is recruited to IGF-IR via SHP-2 substrate-1 (SHPS-1) in the presence of echistatin, SHPS-1 was not used for SHP-2 recruitment. Our findings show that IRS-1 may substitute for SHPS-1 under these conditions. These results demonstrate that the activation state of alphaVbeta3 is an important regulator of the duration of IGF-IR phosphorylation and subsequent downstream signaling and that this regulation is mediated through changes in the subcellular localization of SHP-2.  相似文献   

5.
Clemmons DR  Maile LA 《Endocrinology》2003,144(5):1664-1670
Integral membrane proteins that are present on cell surfaces bind to extracellular ligands, and this binding influences multiple cellular processes. Three cell surface proteins, alpha V beta 3 integrin, integrin associated protein, and SHPS-1, have been shown to modulate both IGF-I receptor-linked signaling and cellular growth and migration responses that are stimulated by IGF-I. Ligand occupancy of these three proteins influences the recruitment of the phosphatase SHP-2 to the IGF-I receptor and thereby modulates the duration of IGF-I receptor tyrosine phosphorylation. In addition, changes in ligand occupancy of these three integral membrane proteins can regulate the transfer of SHP-2 phosphatase to downstream signaling molecules, which is also required for stimulation of cell migration and DNA synthesis by IGF-I. Determination of the spectrum of ligands for these three integral membrane proteins and the mechanisms by which each ligand functions to alter IGF-I signaling are important objectives of future research.  相似文献   

6.
Y Imai  D R Clemmons 《Endocrinology》1999,140(9):4228-4235
Insulin-like growth factor-I (IGF-I) is a potent stimulator of vascular smooth muscle cell (SMC) migration, a process that contributes to the accumulation of SMC within atherosclerotic lesions. Our previous studies have shown that IGF-I increases the affinity of the alphaVbeta3 integrin toward ligands and that occupancy of this integrin is indispensable for IGF-I to stimulate cell migration. In this study, the role of phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase (MAPK) pathways in IGF-I induced cell motility and integrin activation was studied using porcine aortic smooth muscle cells (pSMC). Two structurally different inhibitors of PI 3-kinase decreased IGF-I-stimulated pSMC migration in a dose-dependent manner. The IC50 of wortmannin for inhibiting migration was 10 nM, and that of LY294002 was 0.3 microM. These inhibitors also suppressed IGF-I-induced phosphorylation of protein kinase B PKB/Akt at Ser437 using concentrations that also inhibited cell motility. PD98059, an inhibitor of the MAPK pathway, was somewhat less potent than PI 3-kinase inhibitors in blocking cell migration that had been stimulated by IGF-I. When IGF-I increased migration of pSMC 2.1-fold above control, 100 nM wortmannin inhibited this response by 79%, 1 microM LY294002 inhibited it by 58%, and 50 microM PD98059 caused a 34% reduction. In comparison, 100 nM wortmannin inhibited IGF-I stimulated DNA synthesis by 57%, 1 microM LY294002 inhibited it by 59%, whereas 50 microM PD98059 suppressed it completely. Thus, activation of PI 3-kinase plays the major role in IGF-I-stimulated migration and proliferation of pSMC. While the activation of the MAPK pathway seems to be necessary for stimulation of mitogenesis by IGF-I, the contribution of this pathway in IGF-I-induced cell migration is limited in pSMC. Interestingly, neither PI 3-kinase inhibitors nor PD98059 blocked the increase in alphaVbeta3 integrin affinity that followed IGF-I treatment. Therefore, although both the PI 3-kinase and MAPK pathways were used by IGF-I to increase migration of pSMC, alphaVbeta3 integrin activation did not depend on either PI 3-kinase or MAPK activation, suggesting the possible importance of some other signal transduction pathway to account for its full actions on pSMC.  相似文献   

7.
Insulin-like growth factor-I (IGF-I) is a potent stimulant of smooth muscle cell (SMC) migration and proliferation and has been implicated in the development of experimental atherosclerotic lesions. Because optimal stimulation of SMC in vitro by IGF-I requires ligand occupancy of alphaVbeta3, these studies were conducted to determine whether alphaVbeta3 antagonists would result in a change in lesion size and whether they could alter IGF-I-mediated actions. Clamps were placed on the carotid and femoral arteries of normal pigs that had been fed a high-cholesterol diet for 4 weeks. alphaVbeta3 inhibitors (SC-69000, SC-65811) (10(-6) mol/L) or saline were infused for 2 weeks into the peristenotic area. Lesion area, the number of SMC layers, and proliferating cell nuclear antigen positive cells were determined in a 1.2-mm segment of each artery. Lesion areas were 304 788+/-113 453 micron(2) (saline), compared with 149 799+/-35 456 micron(2) (SC-69000) (P<0.01). Lesion areas in arteries treated with SC-64258, a compound that does not bind to alphaVbeta3, were 310 284+/-160 467 micron(2), P=not significant. In a second experiment, lesion areas were 110 391+/-17 347 micron(2) (saline) and 59 533+/-17 568 micron(2) (SC-65811, P<0.001). Neointimal SMC layers were reduced by SC-65811 from 7.4+/-4.5 to 3.0+/-0.4 (P<0.001). To determine whether IGF-I action was altered, IGF binding protein-5, which is synthesized in response to IGF-I, was analyzed. IGF-I binding protein-5 mRNA abundance was reduced by 67+/-8% in the 6 lesions treated with SRL-69000 compared with saline controls (P<0.001). We conclude that alphaVbeta3 antagonists block the development of lesions in pigs that have been induced by a high-cholesterol diet and stenosis, and the effect of these compounds is associated with their ability to inhibit IGF-I-mediated signaling.  相似文献   

8.
Prior published reports have demonstrated that glucose-oxidized low-density lipoproteins (g-OxLDL) enhance the proliferative response of vascular smooth muscle cells (SMC) to IGF-I. Our previous studies have determined that the regulation of cleavage of integrin-associated protein (IAP) by matrix-metalloprotease-2 (MMP-2) in diabetic mice in response to hyperglycemia is a key regulator of the response of SMC to IGF-I. Because chronic hyperglycemia enhances glucose-induced LDL oxidation, these studies were conducted to determine whether g-OxLDL modulates the response of SMC to IGF-I by regulating MMP-2-mediated cleavage of IAP. We determined that exposure of SMC to g-OxLDL, but not native LDL, was sufficient to facilitate an increase in cell proliferation in response to IGF-I. Exposure to an anti-CD36 antibody, which has been shown to inhibit g-OxLDL-mediated signaling, inhibited the effects of g-OxLDL on IGF-I-stimulated SMC proliferation. The effect of g-OxLDL could be attributed, in part, to an associated decrease in proteolytic cleavage of IAP leading to increase in the basal association between IAP and Src homology 2 domain-containing protein tyrosine phosphatase substrate-1, which is required for IGF-I-stimulated proliferation. The inhibitory effect of g-OxLDL on IAP cleavage appeared to be due to its ability to decrease the amount of activated MMP-2, the protease responsible for IAP cleavage. In conclusion, these data provide a molecular mechanism to explain previous studies that have reported an enhancing effect of g-OxLDL on IGF-I-stimulated SMC proliferation.  相似文献   

9.
Biedi C  Panetta D  Segat D  Cordera R  Maggi D 《Endocrinology》2003,144(12):5497-5503
Caveolae are lipid raft microdomains that regulate endocytosis and signal transduction. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates caveolin 1, supporting a role for these subcellular regions in the compartmentalization of IGF-I signaling. Src homology 2/alpha-collagen related protein (Shc) is the main mediator of IGF-I mitogenic action, coupling IGF-IR phosphorylation to Ras-MAPK activation. Here we show that IGF-I induces Shc tyrosine phosphorylation in the caveolae with a time course significantly different from that observed in the nonraft cellular fractions. In the same time, IGF-I recruits growth factor receptor bound protein 2 (Grb2) to caveolae and activates p42/p44 MAPKs in these microdomains. Src family kinases regulate IGF-I action through an Shc-dependent mechanism. In R-IGF-IRWT cells, IGF-I causes Fyn enrichment in the caveolae with a time course consistent with Shc phosphorylation and Grb2 recruitment in these regions. Finally, we have observed that after IGF-I stimulation, IGF-IR and Fyn colocalize in lipid raft caveolin 1-enriched microdomains. As insulin and IGF-I share common substrates, the effect of insulin on these cellular processes was measured. Here we show that insulin also induces Shc phosphorylation and Grb2 recruitment to caveolae, but with a significantly different time course compared with IGF-I. Our results suggest that 1) IGF-I causes the colocalization of signaling proteins in caveolae through a phosphorylation-regulated mechanism; and 2) the time course of phosphorylation and recruitment of substrates in caveolae by insulin receptor and IGF-IR could determine the specific actions of these receptors.  相似文献   

10.
IGF-I stimulates smooth muscle cell (SMC) migration and the phosphatidylinositol-3 (PI-3) kinase pathway plays an important role in mediating the IGF-I-induced migratory response. Prior studies have shown that the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase (SHP)-2 is necessary to activate PI-3 kinase in response to growth factors and expression of a phosphatase inactive form of SHP-2 (SHP-2/C459S) impairs IGF-I-stimulated cell migration. However, the mechanism by which SHP-2 phosphatase activity or the recruitment of SHP-2 to other signaling molecules contributes to IGF-I stimulated PI-3 kinase activation has not been determined. SMCs that had stable expression of SHP-2/C459S had reduced cell migration and Akt activation in response to IGF-I, compared with SMC-expressing native SHP-2. Similarly in cells expressing native SHP-2, IGF-I induced SHP-2 binding to p85, whereas in cells expressing SHP-2/C459S, there was no increase. Because the C459S substitution results in loss of the ability of SHP-2 to disassociate from its substrates, making it inaccessible not only to p85 but also the other proteins, a p85 mutant in which tyrosines 528 and 556 were changed to phenylalanines was prepared to determine whether this would disrupt the p85/SHP-2 interaction and whether the loss of this specific interaction would alter IGF-I stimulated the cell migration. Substitution for these tyrosines in p85 resulted in loss of SHP-2 recruitment and was associated with a reduction in association of the p85/p110 complex with insulin receptor substrate-1. Cells stably expressing this p85 mutant also showed a decrease in IGF-I-stimulated PI-3 kinase activity and cell migration. Preincubation of cells with a cell-permeable peptide that contains the tyrosine556 motif of p85 also disrupted SHP-2 binding to p85 and inhibited the IGF-I-induced increase in cell migration. The findings indicate that tyrosines 528 and 556 in p85 are required for SHP-2 association. SHP-2 recruitment to p85 is required for IGF-I-stimulated association of the p85/p110 complex with insulin receptor substrate-1 and for the subsequent activation of the PI-3 kinase pathway leading to increased cell migration.  相似文献   

11.
Src homology domain 2 (SH2)-containing inositol phosphatase 2 (SHIP2) possesses 5-phosphatase activity and an SH2 domain. The role of SHIP2 in platelet-derived growth factor (PDGF) and IGF-I signaling was studied by expressing wild-type (WT-) and a catalytically defective (Delta IP-) SHIP2 into rat aortic smooth muscle cells by adenovirus-mediated gene transfer. PDGF- and IGF-I-induced tyrosine phosphorylation of their respective receptors and phosphatidylinositol 3-kinase (PI3-kinase) activity were not affected by the expression of either WT- or Delta IP-SHIP2. SHIP2 possessed 5'-phosphatase activity to hydrolyze the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate in vivo. Akt and glycogen synthase kinase 3beta are known to be downstream molecules of PI3-kinase, leading to the antiapoptotic effect. Overexpression of WT-SHIP2 inhibited PDGF- and IGF-I-induced phosphorylation of these molecules and the protective effect of poly(ADP-ribose) polymerase degradation, whereas these phosphorylations and the protective effect were enhanced by the expression of Delta IP-SHIP2, which functions in a dominant negative fashion. Regarding the Ras-MAPK pathway, PDGF- and IGF-I-induced tyrosine phosphorylation of Shc was not affected by the expression of either WT- or Delta IP-SHIP2, whereas both expressed SHIP2 associated with Shc. Importantly, PDGF and IGF-I stimulation of Shc/Grb2 binding, MAPK activation, and 5-bromo-2'-deoxyuridine incorporation were all decreased in both WT- and Delta IP-SHIP2 expression. These results indicate that SHIP2 plays a negative regulatory role in PDGF and IGF-I signaling in vascular smooth muscle cells. As the bifunctional role, our results suggest that SHIP2 regulates PDGF- and IGF-I-mediated signaling downstream of PI3-kinase, leading to the antiapoptotic effect via 5-phosphatase activity, and that SHIP2 regulates the growth factor-induced Ras-MAPK pathway mainly via the SH2 domain.  相似文献   

12.
IGF binding protein (IGFBP)-3 is an important regulator of mammary epithelial cell (MEC) growth and can enhance the ability of both IGF-I and epidermal growth factor ligands such as TGFalpha to stimulate MEC proliferation. Here we investigate the role of the phosphatidylinositol-3 kinase (PI3K) and MAPK pathways in the regulation of IGFBP-3 expression by IGF-I and TGFalpha in bovine MECs. Both growth factors stimulated DNA synthesis, although IGF-I was the stronger mitogen. IGF-I and TGFalpha also stimulated IGFBP-3 mRNA and protein levels. TGFalpha stimulated rapid, transient activation of Akt that was maximal at 5 min and diminished by 15 min. In contrast, IGF-I-induced Akt activation was maximal between 15 and 90 min and was sustained for 6 h. Although ERK 1/2 was maximally stimulated by TGFalpha between 5 and 15 min, IGF-I did not stimulate discernible activation of ERK 1/2. In addition, TGFalpha but not IGF-I induced rapid phosphorylation of Shc, whereas only IGF-I activated insulin receptor substrate-1. Pretreatment with the PI3K inhibitor LY294002 or knockdown of p85 with small interfering RNA inhibited IGF-I or TGFalpha-stimulated IGFBP-3 expression. Similarly, MAPK kinase-1 inhibitors PD98059 and U0126 each abolished TGFalpha-stimulated increases in IGFBP-3 mRNA levels. In contrast to TGFalpha, IGF-I retained the ability to partially increase IGFBP-3 mRNA levels in the presence of MAPK kinase-1 inhibitors, indicating that IGF-I may activate alternative substrates of the PI3K pathway that are involved in IGFBP-3 regulation. In conclusion, stimulation of IGFBP-3 mRNA levels by mitogens is regulated through both the PI3K and MAPK pathways in bovine MECs.  相似文献   

13.
Medullary thyroid carcinoma (MTC) is a rare tumor originating from thyroid parafollicular C cells, where, in the inherited form, constitutive activation of the RET protooncogene is responsible for unrestrained cell proliferation. We previously demonstrated that somatostatin (SRIF) reduces cell growth in the human MTC cell line TT, which expresses all SRIF receptor (SSTR) subtypes and responds differently to selective SSTR agonists. The antiproliferative mechanism of SRIF and its analogs in MTC is still unclear. Src homology-2-containing protein tyrosine phosphatase-1 (SHP-1), a cytoplasmic protein tyrosine phosphatase (PTP), is activated by somatotropin release-inhibiting factor and reduces mutated RET autophosphorylation in a heterologous system. In this study, we explore the role of PTP activation, in particular of SHP-1, in TT cells, where RET is constitutively activated. In TT cells, SRIF stimulated the PTP activity of SHP-1, which was associated with proliferation inhibition and with reduction in the MAPK pathway activation. Blockade of PTP activity with sodium orthovanadate induced cell proliferation and MAPK phosphorylation and blunted the inhibitory effects of SRIF. Moreover, SHP-1 associates with SSTR2 depending on its activation. By using a MAPK kinase inhibitor, we demonstrated that TT cell growth depends on MAPK pathway activation. Furthermore, in TT cells overexpressing SHP-1, cell proliferation and MAPK signaling were strongly down-regulated, whereas in TT cells transfected with a dominant negative form of SHP-1, cell proliferation and MAPK signaling were markedly induced. Our data demonstrate that SRIF inhibitory effects on TT cell proliferation are mediated, at least in part, by SHP-1, which acts through a MAPK-dependent mechanism.  相似文献   

14.
Insulin-like growth factor-1 (IGF-1) and the IGF-1 receptor (IGF-1R) belong to the insulin-like growth factor family, and IGF-1 activates intracellular signaling pathways by binding specifically to IGF-1R. The interaction between IGF-1 and IGF-1R transmits a signal through a number of intracellular substrates, including the insulin receptor substrate (IRS) and the Src homology collagen (Shc) proteins, which activate two major intracellular signaling pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) pathways, specifically the extracellular signal-regulated kinase (ERK) pathways. The PI3K/AKT kinase pathway regulates a variety of cellular processes, including cell proliferation and apoptosis. IGF1/IGF-1R signaling also promotes cell differentiation and proliferation via the Ras/MAPK pathway. Moreover, upon IGF-1R activation of the IRS and Shc adaptor proteins, Shc stimulates Raf through the GTPase Ras to activate the MAPKs ERK1 and ERK2, phosphorylate and several other proteins, and to stimulate cell proliferation. The IGF-1 signaling pathway is required for certain viral effects in oncogenic progression and may be induced as an effect of viral infection. The mechanisms of IGF signaling in animal viral infections need to be clarified, mainly because they are involved in multifactorial signaling pathways. The aim of this review is to summarize the current data obtained from virological studies and to increase our understanding of the complex role of the IGF-1 signaling axis in animal virus infections.  相似文献   

15.
R K Park  K D Izadi  Y M Deo  D L Durden 《Blood》1999,94(6):2112-2120
Cross-linking of Fc receptors for IgA, FcalphaR (CD89), on monocytes/macrophages is known to enhance phagocytic activity and generation of oxygen free radicals. We provide evidence here that the FcalphaR signals through the gamma subunit of FcepsilonRI in U937 cells differentiated with interferon gamma (IFNgamma). Our results provide the first evidence that FcalphaR-mediated signals modulate a multimolecular adaptor protein complex containing Grb2, Shc, SHIP, CrkL, Cbl, and SLP-76. Cross-linking of FcalphaRI using anti-FcalphaRI induces the phosphorylation of the gamma subunit as detected by mobility retardation on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Stimulation of FcalphaRI induced the tyrosine phosphorylation of Shc and increased the association of Grb2 with Shc and CrkL. Grb2 associates constitutively with Sos, and the latter undergoes mobility shift upon FcalphaRI stimulation. The complex adapter proteins, Cbl and SLP-76, are physically associated in myeloid cells and both proteins undergo tyrosine phosphorylation upon FcalphaR stimulation. These data indicate that the stimulation of FcalphaR results in the modulation of adaptor complexes containing tyrosine-phosphorylated Cbl, Shc, SHIP, Grb2, and Crkl. Experiments performed with the Src kinase inhibitor, PP1, provide the first evidence that Src kinase activation is required for FcalphaRI-induced production of superoxide anions and provide insight into the mechanism for FcalphaR-mediated activation of downstream oxidant signaling in myeloid cells.  相似文献   

16.
17.
Porcine aortic smooth cells respond to insulin-like growth factor-I (IGF-I) with increases in DNA synthesis and cell migration. Because ligand occupancy of the alphaVbeta3 integrin has been shown to be necessary for IGF-I to stimulate maximal increases in both processes, we determined whether synthetic alphaVbeta3 antagonists could inhibit IGF-I-stimulated actions on this cell type. Low-molecular-weight compounds that had been selected based on their ability to compete with vitronectin for binding to purified human alphaVbeta3 in vitro were analyzed for their ability to compete with 125I-kistrin (a known ligand for porcine alphaVbeta3) for binding to porcine alphaVbeta3. Nine compounds were screened, and five were found to be potent competitive inhibitors. The most potent compound, SC-69000, resulted in 88% competition at 10(-7) M and was nearly equipotent with echistatin. The compounds that were the most potent inhibitors of kistrin binding were tested for their capacity to inhibit the cell migration response to IGF-I. Three compounds caused between 81-88% inhibition of IGF-I-stimulated migration at 10(-7) M. To determine whether these compounds could inhibit other IGF-I-stimulated actions, their ability to inhibit IGF-I-stimulated [3H]-thymidine incorporation into DNA was analyzed. The four compounds that were the most potent inhibitors of cell migration also inhibited IGF-I-stimulated DNA replication. IGF-I stimulates the synthesis of IGF binding protein-5 by these cells. Preincubation with the four most active compounds also resulted in significant inhibition of the ability of IGF-I to stimulate IGF binding protein-5 synthesis. AlphaVbeta3 occupancy by the ligand vitronectin has been shown to enhance the capacity of IGF-I to activate its receptor tyrosine kinase. The four most active compounds were shown to inhibit IGF-I-stimulated IGF-I receptor autophosphorylation. These findings suggest that blockade of ligand occupancy of the alphaVbeta3 integrin globally inhibits several IGF-I-stimulated biologic actions and that synthetic inhibitors are very active in this regard. Because these compounds can be administered to whole animals, they should be very useful in determining whether blocking alphaVbeta3 occupancy in vivo results in alteration in responsiveness to IGF-I.  相似文献   

18.
Deprivation of estrogen causes breast tumors in women to adapt and develop enhanced sensitivity to this steroid. Accordingly, women relapsing after treatment with oophorectomy, which substantially lowers estradiol for a prolonged period, respond secondarily to aromatase inhibitors with tumor regression. We have utilized in vitro and in vivo model systems to examine the biologic processes whereby long-term estradiol deprivation (LTED) causes cells to adapt and develop hypersensitivity to estradiol. Several mechanisms are associated with this response, including up-regulation of estrogen receptor-alpha (ERalpha) and the MAP kinase, phosphoinositol 3 kinase (PI3-K) and mammalian target of rapamycin (mTOR) growth factor pathways. ERalpha is four- to tenfold up-regulated and co-opts a classical growth factor pathway using Shc, Grb-2 and Sos. This induces rapid non-genomic effects which are enhanced in LTED cells. The molecules involved in the non-genomic signaling process have been identified. Estradiol binds to cell membrane-associated ERalpha, which physically associates with the adaptor protein Shc, and induces its phosphorylation. In turn, Shc binds Grb-2 and Sos, which result in the rapid activation of MAP kinase. These non-genomic effects of estradiol produce biologic effects as evidenced by Elk-1 activation and by morphologic changes in cell membranes. Additional effects include activation of the PI3-K and mTOR pathways through estradiol-induced binding of ERalpha to the IGF-I and epidermal growth factor receptors. A major question is how ERalpha locates in the plasma membrane since it does not contain an inherent membrane localization signal. We have provided evidence that the IGF-I receptor serves as an anchor for ERalpha in the plasma membrane. Estradiol causes phosphorylation of the adaptor protein, Shc and the IGF-I receptor itself. Shc, after binding to ERalpha, serves as the 'bus' which carries ERalpha to Shc-binding sites on the activated IGF-I receptors. Use of small inhibitor (si) RNA methodology to knockdown Shc allows the conclusion that Shc is needed for ERalpha to localize in the plasma membrane. In order to abrogate growth factor-induced hypersensitivity, we have utilized a drug, farnesylthiosalicylic acid, which blocks the binding of GTP-Ras to its membrane acceptor protein, galectin 1, and reduces the activation of MAP kinase. We have also shown that this drug is a potent inhibitor of mTOR as an additional mechanism of inhibition of cell proliferation. The concept of 'adaptive hypersensitivity' and the mechanisms responsible for this phenomenon have important clinical implications. The efficacy of aromatase inhibitors in patients relapsing on tamoxifen could be explained by this mechanism and inhibitors of growth factor pathways should reverse the hypersensitivity phenomenon and result in prolongation of the efficacy of hormonal therapy for breast cancer.  相似文献   

19.
IGF-I is structurally related to proinsulin and when administered to human subjects it enhances insulin sensitivity. However because of its growth promoting properties and its relationship to growth hormone, it has been proposed as a etiologic factor in the development of diabetic complications. This review discusses recently published data regarding the ability of hyperglycemia to sensitize cells that are capable of dedifferentiating to the growth promoting effects of IGF-I. Under normoglycemic conditions vascular smooth muscle and endothelial cells are cystostatic and stimulation of the IGF-I receptor activates the adaptor protein IRS-1 which leads to PI-3 kinase pathway activation. Following exposure to hyperglycemia these cell types undergo a signaling switch whereby an entirely different mechanism is utilized to activate both the PI-3 kinase and the MAP pathways. This leads to increased cell proliferation and migration. This molecular mechanism involves the coordinate regulation of signaling molecules and scaffolding proteins. Activation of this alternative signaling mechanism is directly linked to the stimulation of pathophysiologic processes that are involved in the pathogenesis of both diabetic retinopathy and atherosclerosis. Inhibition of activation of these intermediates has been shown to attenuate glucose induced pathophysiologic changes and results in the inhibition of both atherosclerotic lesion progression and diabetic retinopathy. In summary, hyperglycemia induces a signaling switch in vascular endothelial and smooth muscle cells that results in enhanced sensitivity to the growth promoting effects of IGF-I. This may be an important variable for determining the progression of atherosclerosis in poorly controlled diabetes and in the development of retinopathy.  相似文献   

20.
IGF-I regulates bone acquisition and maintenance, even though the cellular targets and signaling pathways responsible for its action in human bone cells are poorly understood. Whether abnormalities in IGF-I action and signaling occur in human osteoblasts under conditions of net bone loss has not been determined. Herein we carried out a comparative analysis of IGF-I signaling in primary cultures of human osteoblasts from osteoporotic and control donors. In comparison with control cells, osteoporotic osteoblasts showed increased tyrosine phosphorylation of the IGF-I receptor in the basal state and blunted stimulation of receptor phosphorylation by IGF-I. Augmentation of basal IGF-I receptor phosphorylation was associated with coordinate increases in basal tyrosine phosphorylation of insulin receptor substrate (IRS)-2 and activation of Erk, which were also minimally responsive to IGF-I stimulation. By contrast, phosphorylation levels of IRS-1, Akt, and glycogen synthase kinase-3 were similar in the basal state in control and osteoporotic osteoblasts and showed marked increases after IGF-I stimulation in both cell populations, even though these responses were significantly lower in the osteoporotic osteoblasts. The IGF-I signaling abnormalities in osteoporotic osteoblasts were associated with reduced DNA synthesis both under basal conditions and after stimulation with IGF-I. Interestingly, treatment of the osteoporotic osteoblasts with the MAPK kinase inhibitor PD098059 reduced the elevated levels of Erk phosphorylation and increased basal DNA synthesis. Collectively, our data show that altered osteoblast proliferation in human osteoporosis may result from dysregulation of IGF-I receptor signaling, including constitutive activation of the IRS-2/Erk signaling pathway, which becomes unresponsive to IGF-I, and defective induction of the IRS-1/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号