首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for the importance of the basal forebrain cholinergic system in the maintenance of cognitive function has stimulated efforts to identify trophic mechanisms that protect this cell population from atrophy and dysfunction associated with aging and disease. Acidic fibroblast growth factor (aFGF) has been reported to support cholinergic neuronal survival and has been localized in basal forebrain with the use of immunohistochemical techniques. Although these data indicate that aFGF is present in regions containing cholinergic cell bodies, the actual site of synthesis of this factor has yet to be determined. In the present study, in situ hybridization techniques were used to evaluate the distribution and possible colocalization of mRNAs for aFGF and the cholinergic neuron marker choline acetyltransferase (ChAT) in basal forebrain and striatum. In single-labeling preparations, aFGF mRNA-containing neurons were found to be codistributed with ChAT mRNA+ cells throughout all fields of basal forebrain, including the medial septum/diagonal band complex and striatum. By using a double-labeling (colormetric and isotopic) technique, high levels of colocalization (over 85%) of aFGF and ChAT mRNAs were observed in the medial septum, the diagonal bands of Broca, the magnocellular preoptic area, and the nucleus basalis of Meynert. The degree of colocalization was lower in the striatum, with 64% of the cholinergic cells in the caudate and 33% in the ventral striatum and olfactory tubercle labeled by the aFGF cRNA. These data demonstrate substantial regionally specific patterns of colocalization and support the hypothesis that, via an autocrine mechanism, aFGF provides local trophic support for cholinergic neurons in the basal forebrain and the striatum. © 1996 Wiley-Liss, Inc.  相似文献   

2.
In the central nervous system, nerve growth factor (NGF) affects basal forebrain cholinergic neurons during early development and in the adult mammalian brain. These neurons are located in medial septum, diagonal band of Broca, and nucleus basalis of Meynert. While the effects of NGF on the development of septal cholinergic neurons are well documented, only little is known about the influence of NGF on development of cholinergic neurons in the nucleus basalis. In addition to the basal forebrain cholinergic neurons, there are cholinergic interneurons in the corpus striatum, which form an anatomically and functionally distinct population of cholinergic neurons. These striatal interneurons have been reported to respond to NGF during early development; however, it is not known whether the effects of NGF on their development are similar to those on septal cholinergic neurons. We prepared cultures of dissociated cells from fetal rat septum, striatum, and nucleus basalis and investigated the development of cholinergic neurons localized in these three different areas in the presence or absence of NGF. We now report that, first, cholinergic neurons of striatum and nucleus basalis develop a more extensive fiber network and contain more acetylcholinesterase (AChE) per neuron than do cholinergic neurons of septum. The amount of choline acetyltransferase (ChAT) per cholinergic neuron is approximately the same in all three culture types when grown in the absence of NGF. Second, NGF treatment increases and anti-NGF treatment decreases the number of AChE-positive neurons in cultures of low plating density, suggesting that NGF is able to promote survival of cholinergic neurons of all three areas studied. Third, NGF increases the total length of fibers and the number of branching points of cholinergic neurons in septal cultures but not in cultures of striatum and nucleus basalis. Fourth, NGF treatment increases AChE activity in septal but not in nucleus basalis or striatal cultures, suggesting that AChE activity reflects the extent of the fiber network of cholinergic neurons of all areas. Fifth, NGF treatment produces severalfold elevations in ChAT activity in septal cultures and more modest increases in cultures of nucleus basalis and striatum, suggesting that NGF is able to stimulate ChAT activity also in the absence of a stimulatory effect on survival and fiber growth. Our results demonstrate that, during early development, NGF is able to affect survival and differentiation of all three populations of forebrain cholinergic neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Recent studies have demonstrated that estrogen administration can produce significant increases in relative levels of choline acetyltransferase (ChAT) mRNA and protein in specific regions of the female, but not the male, rat basal forebrain. In the present study immunocytochemical techniques were used to identify and compare relative numbers of cholinergic neurons containing estrogen receptors within the medial septum, horizontal limb of the diagonal band of Broca, nucleus basalis magnocellularis, and striatum of gonadectomized male and female rats to determine whether there are differences in the percentage of cholinergic neurons expressing estrogen receptors which might contribute to the different regional- and sex-specific effects of estrogen which have been described. Counts of choline acetyltransferase-immunoreactive cells revealed significant regional differences in the average number of cholinergic neurons/section; however, no difference between males and females in the numbers of cholinergic neurons in each of the four regions analyzed was observed. Fifty to eighty percent of the cholinergic neurons detected in both males and females contained estrogen receptor-like immunoreactivity. A small but significant difference between males and females was detected with females having slightly more (10.5%) double-labeled cells than males overall. Individual comparisons revealed that significantly more (18–33%) double-labeled cells were detected in the horizontal limb of the diagonal band, but not in the medial septum, nucleus basalis, or striatum of females vs. males. There was also a small but significant regional difference in the percentage of double-labeled cells with the highest percentage (74.2%) detected in the striatum and the lowest percentage (63.4%) detected in the horizontal limb. None of these differences appear to account for the regional- and sex-specific effects of estrogen on cholinergic neurons which have been observed. We conclude that differences in the effects of estrogen on cholinergic neurons in males vs. females and in different Subregions of the female basal forebrain are not due to differences in the percentage of cholinergic neurons expressing estrogen receptors.  相似文献   

4.
Immunocytochemical techniques were used to examine and compare the effects of intracerebroventricular administration of nerve growth factor (NGF) on Fos expression within identified cholinergic and non-cholinergic neurons located in different regions of the adult rat basal forebrain. Animals were killed 1, 3, 6, and 12 h after receiving NGF (0.5 or 5.0 μg) or vehicle into the left lateral ventricle and sections through the medial septum, diagonal band of Broca, nucleus basalis magnocellularis, and striatum were processed for the combined immunocytochemical detection of Fos and choline acetyltransferase (a marker for cholinergic neurons), or Fos and parvalbumin (a marker for gamma aminobutyric acid (GABA)-containing neurons). NGF produced a significant increase in the percentage of cholinergic neurons containing Fos-like immunoreactivity within all four regions examined. The largest increases were detected in the medial septum (47.8%) and the horizontal limb of the diagonal band of Broca (67.7%). In these areas, NGF-mediated induction of Fos-like immunoreactivity was detected as early as 3 h, peaked at 6 h, and was reduced by 12 h, postinfusion. Small but significant increases in the percentage of cholinergic neurons containing Fos-like immunoreactivity were also detected in the striatum (4.2%) and in the nucleus basalis magnocellularis (19.2%) 3–12 h following administration of the higher dose of NGF. No evidence for an NGF-mediated induction of Fos within parvalbumin-containing neurons was detected in any of the four regions at any of the time-points examined; however, evidence for an NGF-mediated induction of Fos within epithelial cells lining the lateral ventricle was observed. These data demonstrate that NGF induces Fos expression within cholinergic, and not parvalbumin-containing (GABAergic), neurons in the basal forebrain, and furthermore that intracerebroventricular administration of NGF influences the different subgroups of basal forebrain cholinergic neurons to different degrees. ©1977 Elsevier Science B.V. All rights reserved.  相似文献   

5.
The role of forebrain cholinergic projections in place navigation learning was assessed in two experiments. Following surgery, rats were required to learn the spatial location of an underwater platform on the basis of distal room cues. Bilateral injections of ibotenic acid into the nucleus basalis magnocellularis depleted choline acetyltransferase (ChAT) from the anterior and temporoparietal cortex but not the hippocampus. Separate histological studies confirmed the accuracy of the lesions and demonstrated a marked loss of cortical acetylcholinesterase. These rats subsequently showed no deficits in spatial learning or memory. In a second experiment, bilateral lesions of the vertical limb of the diagonal band of Broca and medial septum depleted ChAT from the hippocampus and posterior cortex but not the anterior cortex. Histological studies confirmed the accuracy of the lesion and showed a pronounced loss of acetylcholinesterase from the hippocampus. These rats were deficient in spatial learning and showed reduced spatial bias during transfer tests. The data are discussed in the light of the hypothesis that the cholinergic innervation of the hippocampus plays a key role in spatial reference memory processes involved in place navigation.  相似文献   

6.
Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus‐specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4‐SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en‐passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing.  相似文献   

7.
In mammals, the suprachiasmatic nucleus is responsible for the generation of most circadian rhythms and their entrainment to environmental cues. Cholinergic agents can alter circadian rhythm phase, and fibres immunoreactive for choline acetyltransferase, the biosynthetic enzyme for acetylcholine, are present in the suprachiasmatic nucleus. Since there are no cholinergic somata in the suprachiasmatic nucleus, these fibres must represent the terminals of cholinergic neurons whose cell bodies are located elsewhere in the brain. This study was aimed at locating the cholinergic neurons that project to the suprachiasmatic nucleus by retrograde and anterograde tract-tracing and immunohistochemistry for choline acetyltransferase in the rat. After injection of fluorogold, a retrograde tracer, into the suprachiasmatic nucleus, retrogradely labelled neurons that were immunopositive for choline acetyltransferase were located throughout the rostrocaudal extent of the cholinergic basal nuclear complex, with highest densities in the substantia innominata and the nucleus basalis magnocellularis. A few cells were also located in the medial septum and in the vertical and horizontal limbs ofthe diagonal band of Broca. In the brainstem, double-labelled neurons were located in the laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus and the parabigeminal nucleus. Injections of the anterograde tracer biocytin in these three brainstem nuclei resulted in fibre labelling in the suprachiasmatic nucleus, consistent with the retrograde findings. No clearly double-labelled cells were located in the retina. These results suggest that the suprachiasmatic nucleus receives cholinergic afferents from both the basal forebrain and mesopontine tegmentum which may mediate cholinergic effects on circadian rhythms. © 1993 Wiley-Liss, Inc.  相似文献   

8.
The forebrain cholinergic and GABAergic projections to the habenula and nucleus interpeduncularis have been investigated by means of surgical and kainic acid lesions. Bilateral transection of the stria medullaris caused a 50% decrease of choline acetyltransferase in both the habenula and nucleus interpeduncularis, and a 65% decrease of glutamate decarboxylase in the habenula. Electrolytic lesions of the posterior septum (nucleus triangularis septi and nucleus septo-fimbrialis) accounted for at least 30–40% decrease of the cholinergic parameter in the habenula and nucleus interoeduncularis. Moreover, the choline acetyltransferase decrease in the habenula appeared restricted to the medial part of the nucleus. Kainic acid injections causing very large neuronal destruction in the nucleus of the diagonal band of Broca, and more than 70% decrease of choline acetyltransferase in the dorsal hippocampus, did not affect the cholinergic parameter in either the medial or lateral habenula or nucleus interpeduncularis. Kainic acid injections in the nucleus entopeduncularis resulted in a 40% decrease of glutamate decarboxylase in the habenula. Kainic acid injections in the nucleus of the diagonal band were accompanied by a 40% decrease of glutamate decarboxylase in the medial subdivision only.The present study points at the nuclei of the posterior septum as the source of a major cholinergic projection to the habenula and nucleus interpeduncularis, and reveals a previously unsuspected GABAergic input from the nucleus of the diagonal band to the medial habenula.  相似文献   

9.
Ovariectomized aged rats, some of which received long-term hormone replacement with oestrogen or oestrogen plus progesterone, were evaluated for the number and size of basal forebrain cholinergic neurones, as well as relative levels of choline acetyltransferase (ChAT) and trkA mRNA, in order to determine whether effects on basal forebrain cholinergic cell survival and function correspond with differences in cognitive performance previously described. The results show that ageing combined with long-term loss of ovarian function produced substantial reductions in the levels of ChAT and trkA mRNA in the medial septum and nucleus basalis magnocellularis, relative to much younger ovariectomized controls. In contrast, no significant effects on the number or size of the cholinergic cells were detected, indicating that loss of ovarian function does not cause a loss of cholinergic neurones with age. Long-term hormone replacement had no apparent effect on the number of ChAT-positive neurones detected, and did not prevent the reductions in ChAT and trkA mRNA associated with ovariectomy and ageing. Collectively, the data suggest that ageing combined with long-term loss of ovarian function has a severe negative impact on basal forebrain cholinergic function, but not on cholinergic cell survival per se.  相似文献   

10.
Basal forebrain neuronal atrophy in Alzheimer's disease (AD) may be caused by a deficit in the NGF responsiveness of magnocellular cholinergic neurons which project to the cerebral cortex and hippocampal formation. We have used in situ hybridization to show that NGF-receptor (NGF-R) mRNA-positive neurons are lost within all divisions of the nucleus basalis of Meynert (Ch4 cell group) in AD patients as compared to normal aged controls. The posterior division of the nucleus basalis showed the largest decrease in NGF-R mRNA hybridization in the disease, with no overlap in neuronal number between AD cases and normal controls. Northern (RNA) blotting showed decreased levels of NGF-R mRNA in the nucleus basalis in the disease. No differences in the number of NGF-R mRNA-positive neurons between normal aged and AD patients were detected within the NGF-responsive cell groups of the medial septum (Ch1) and nucleus of the vertical limb of the diagonal band (Ch2). These results show that NGF-R gene expression is selectively reduced within basal forebrain neuronal populations which exhibit degenerative changes in AD.  相似文献   

11.
Borna disease virus (BDV)-induced meningoencephalitis is associated with the dysfunction of the cholinergic system. Temporal development of this cholinergic decline during pre-encephalitic and encephalitic stages of BDV infection remains however elusive. Changes in choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were therefore determined in the cerebral cortex, hippocampus, striatum, amygdala and cholinergic basal forebrain nuclei (ChBFN) of rats infected with BDV. Immunocytochemistry for ChAT and vesicular acetylcholine transporter (VAChT) was employed to identify morphological consequences of BDV infection on cholinergic neurons. Whereas both ChAT and AChE activities changed only slightly under pre-encephalitic conditions, the encephalitic stage was characterized by a significant decrease of ChAT activity in the cerebral cortex, horizontal diagonal band of Broca (hDBB), hippocampus and amygdala concomitant with a marked reduction of AChE activity in the cerebral cortex, hDBB and hippocampus. The striatum and medial septum remained unaffected. ChAT and VAChT immunocytochemistry revealed prominent axonal degeneration in affected cortical and limbic projection areas of ChBFN. In summary, our data indicate progressive deterioration of forebrain cholinergic systems that parallels the progression of BDV encephalitis.  相似文献   

12.
To characterize the specificity of a novel cholinergic immunotoxin (conjugate of the monoclonal antibody 192IgG against the low-affinity nerve growth factor receptor with the cytotoxic protein saporin), coronal sections through the basal forebrain of adult rats, that received a single intracerebro-ventricular injection of 4 pg of 192IgG-saporin conjugate, were subjected to histochemical and immunocytochemical procedures to evaluate cholinergic (choline acetyltransferase (ChAT)-immunoreactive, acetylcholinesterase-positive, NADPH-diaphorase-positive) and GABAergic structures (parvalbumin-immunoreactive, labeling of perineuronal nets with Wisteria floribunda agglutinin) as well as microglia (visualized with Griffonia simplicifolia agglutinin) and astrocytes (immunostaining for glial fibrillary acidic protein). Seven days following injection of the immunotoxin, ChAT-immunoreactive cells nearly completely disappeared throughout the magnocellular basal forebrain complex, including globus pallidus, as compared to vehicle-injected controls. However, there was no significant difference in the number of ChAT-positive cells in the adjacent ventral pallidum and in the caudate-putamen of immunolesioned and control animals. NADPH-diaphorase-containing cells, including a significant subpopulation of cholinergic cells, also strikingly decreased in number by more than 90% in the magnocellular basal forebrain complex following immunolesion, and only a few noncholinergic diaphorase-positive cells survived in the medial septum, vertical and horizontal diagonal band, and nucleus basalis of Meynert. In contrast, the number of parvalbumin-containing GABAergic projection neurons in the septum-diagonal band of Broca complex and nucleus basalis of Meynert from immunolesioned rats was not different from that of vehicle-injected control animals. Immunolesioning also did not result in any change in either number or shape of cells surrounded by perineuronal nets, which are frequently associated with parvalbumin-containing GABAergic neurons. Seven days following injection of the immunotoxin, a very strong activation of microglia with an identical distribution pattern was observed in all experimental animals. Large numbers of activated microglia were found in all magnocellular basal forebrain nuclei, corresponding to the distribution of degenerating cholinergic cells. Additionally, immunolesioning also resulted in a dramatic activation of microglia in the lateral septal nuclei, which are known to be almost free of cholinergic cells, but not of penetrating cholinergic dendrites in adjacent zones, and in the ventral pallidum, where there was no observed loss of cholinergic cells. There was no significant increase in microglia activation in striatum and cortical areas, and no astrocytic response in any of the basal forebrain nuclei at this particular time point of survival. These results suggest that 192IgG-saporin specifically destroys basal forebrain cholinergic neurons and does not suppress their neuronal activity. Therefore, 192IgG-saporin represents a powerful tool for producing cortical cholinergic dysfunction. © 1995 Wiley-Liss, Inc.  相似文献   

13.
These experiments were conducted to gather information regarding the role of cholinergic innervation to the cortex in the generation of event-related slow potentials. The effects of unilateral drug treatments or lesions on ipsilateral and contralateral frontal cortex slow potential (SP) responses were examined in rats. The SP responses were recorded with silver-silver chloride electrodes and were generated by a 2 sec light cue which preceded rewarding medial forebrain bundle stimulation. The following approaches were used: microinjection of GABA, procaine or saline into the nucleus basalis magnocellularis; microinjection of atropine or saline subdurally in the SP recording area; electrolytic lesion of the nucleus basalis area; and kainic acid lesion of the nucleus basalis area. The following bilateral measurements were obtained lesion studies: choline acetyltransferase (ChAT) in cortex and hippocampus; serotonin in cortex, hippocampus, striatum and nucleus accumbens; norepinephrine in cortex and hippocampus; dopamine in striatum and nucleus accumbens; and metabolites of serotonin, norepinephrine and dopamine in these areas. The cortical SP responses were reduced on the side ipsilateral to the injections of GABA and procaine into the nucleus basalis, and on the side of the subdural atropine injection. With either type of lesion, the SP responses on the lesioned side were significantly reduced as compared to the non-lesioned side. Reductions in cortical ChAT and other measures were observed ipsilateral to the electrolytic lesion, but only cortical ChAT activity was reduced in the kainic acid-lesioned animals. Thus, pharmacological depression of nucleus basalis neurons, blockade of cholinergic muscarinic receptors in the cortex, and nucleus basalis lesions that reduce cortical choline acetyltransferase activity depress event-related slow potentials in the rat frontal cortex. These results provide evidence that cortical slow potential responses in the rat are dependent upon cholinergic innervation from the nucleus basalis.  相似文献   

14.
Galanin immunoreactive fibers hypertrophy and hyperinnervate remaining cholinergic basal forebrain neurons within the septum–diagonal band complex in Alzheimer's disease. The present investigation determined whether a similar hyperinnervation of galanin immunoreactive fibers occurs following intraparenchymal injections of ibotenic acid within the cholinergic medial septum or diagonal band nucleus in young adult rats. Sections through the medial septum and the diagonal band were either concurrently immunostained for galanin and the low-affinity p75 neurotrophin receptor (an excellent marker of cholinergic basal forebrain neurons) or single stained for choline acetyltransferase. Following chemical lesion, an increase in the density of galanin immunoreactivity was seen within the medial septum on the lesion, as opposed to the contralateral control side. In contrast, within diagonal band-lesioned animals, the increase in galanin immunoreactivity was low to moderate. In either lesion paradigm we did not observe hyperinnervation of remaining cholinergic basal forebrain neurons. In fact, there was no correlation between the galanin hypertrophy and the amount of cholinergic cell loss. We hypothesize that galanin hyperinnervation within the cholinergic basal forebrain may provide a protective effect by down-regulating acetylcholine release following brain insult.  相似文献   

15.
In an effort to produce a canine model of basal forebrain ischemia with memory deficits, we have shown that dogs possess a medial striate artery that perfuses basal forebrain territory, homologous to the human recurrent artery of Heubner. In the present study, we set out to delineate the precise topography of the cholinergic neurons in the canine forebrain, a neuronal system implicated in cognitive and memory functions. Floating coronal sections, derived from the head of the caudate nucleus to the rostral border of the hippocampus, were stained for choline acetyltransferase using a monoclonal antibody. Representative sections from one dog brain were drawn. These outlines were used for measurement of cell density, cell size, number of processes, and cell roundness. Choline acetyltransferase-positive neurons constituted four major subdivisions within the basal forebrain. A relatively dense population of cholinergic neurons was present in the medial septal nucleus (Ch1). A continuum of densely packed cells was also delineated within the vertical (Ch2) and horizontal (Ch3) nuclei of the diagonal band of Broca. A fourth group of heterogeneously packed cholinergic neurons represented the nucleus basalis magnocellularis (Ch4). Except for the caudal component of the Ch4 population, the forebrain cholinergic corticopetal system was located within the perfusion territory of the medial striate arteries. The Ch4 cell group in dogs is better defined than that of rodents but is not as sharply demarcated as in human and nonhuman primates. Our findings indicate that the dog may serve as an excellent model for assessing neurological and memory deficits, which, in humans, results from hypoperfusion of the recurrent artery of Heubner. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Aggarwal P  Gibbs RB 《Brain research》2000,882(1-2):75-85
Recent studies have shown that estrogen replacement can enhance the functional status of basal forebrain cholinergic neurons. Studies have also shown that estrogen has neuroprotective effects both in vitro and in vivo on a variety of cells and against a variety of insults. The present study examined the ability of estrogen replacement to protect basal forebrain cholinergic neurons from the effects of neurochemical and mechanical injury. Ovariectomized Sprague-Dawley rats received either estrogen replacement or sham surgery, and then received either a unilateral injection of ibotenic acid into the nucleus basalis magnocellularis, or unilateral transection of the fimbria fornix. Cholinergic neurons in the medial septum and nucleus basalis were detected and quantified using immunohistochemical techniques. The data show that neither 3 weeks nor 13 weeks of continuous estrogen replacement prevented the loss of choline acetyltransferase (ChAT)-containing cells in the nucleus basalis following a unilateral injection of ibotenic acid. Likewise, estrogen replacement did not prevent a decrease in ChAT-positive cells detected in the medial septum following unilateral transection of the fimbria fornix. Notably, increased numbers of ChAT-positive cells were detected in the contralateral nucleus basalis, and in the ipsilateral and contralateral medial septum, at 2 weeks following a unilateral injection of ibotenic acid into the nucleus basalis; however, these effects were not related to hormone treatment. These data suggest that estrogen replacement does not protect cholinergic neurons in the medial septum and nucleus basalis from the effects of excitotoxic or mechanical injury.  相似文献   

17.
The presumptive cholinergic elements in the telencephalon of the lizard Gekko gecko were demonstrated with the AB8 anti-choline acetyltransferase (ChAT) antibody. Somata positive for ChAT were observed in the striatum, nucleus accumbens, the dorsal ventricular ridge, nucleus olfactorius anterior, tuberculum olfactorium, diagonal band of Broca, septum, bed nucleus of the medial forebrain bundle and lateral preoptic area. Staining of the neuropil was most conspicuous in the striatum but also occurred in the medial cortex and nucleus septi impar. The results indicate that the distribution of ChAT-positive somata in the telencephalon in reptiles is comparable to that in mammals; however, the relation of cholinergic somata and ChAT-positive neuropil seen in the striatum of G. gecko is different from that in mammals.  相似文献   

18.
Z Henderson 《Brain research》1987,412(2):261-268
The source of cholinergic input to ferret visual cortex was investigated with a combination of retrograde transport of horseradish peroxidase and choline acetyltransferase immunohistochemistry. Cholinergic projections to ferret visual cortex arise from basal forebrain cells in the septum, diagonal and nucleus basalis magnocellularis; the largest contribution comes from cells in the caudal part of the nucleus basalis magnocellularis. There is no discernible source in the brainstem.  相似文献   

19.
Administration of the neuroactive steroid hormone estrogen has been shown to effect cholinergic basal forebrain neuronal function. Antibodies directed against the estrogen receptor alpha (ERalpha) revealed dark (type 1) and light (type 2) nuclear positive neurons within the islands of Calleja, endopiriform nucleus, lateral septum, subfields of the cholinergic basal forebrain, bed nucleus of the stria terminalis, striohypothalamic region, medial preoptic region, periventricular, ventromedial, arcuate and tuberal mammillary nuclei of the hypothalamus, reuniens and anterior medial thalamic nuclei, amygdaloid complex, piriform cortex and subfornical organ. In contrast, only a few scattered ERalpha labeled neurons were found in cortex and hippocampus. ERalpha stained cell bodies were not seen in the striatum. Counts of ERalpha labeled neurons in intact female rats revealed significantly more type 2 neurons within the basal forebrain subfields. Quantitation of ERalpha immunoreactive neurons revealed a significant decrease in the relative number of type 1 neurons within the medial septum (MS), horizontal limb of the diagonal band (HDB) and substantia innominata/nucleus basalis (SI/NB) following ovariectomy. Quantitation following choline acetyltransferease (ChAT) immunohistochemistry revealed a significant decrease in the number of ChAT positive neurons within the MS, HDB and SI/NB, but not VDB following ovariectomy. Following ovx, the percentage of double labeled cholinergic basal forebrain neurons also declined significantly within the MS, VDB, HDB and SI/NB. These observations suggest that estrogen effects a subpopulation of cholinergic basal forebrain neurons and may provide insight into the biologic actions of this steroid in Alzheimer's disease.  相似文献   

20.
Degeneration of cholinergic neurons in the medial septum and the diagonal band of Broca is a frequent neuropathological feature of Alzheimer's disease. To determine whether an immune process can injure these basal forebrain cholinergic neurons, we serially immunized guinea pigs with septal cholinergic hybrid cells (SN-56). Following immunization, a relatively selective damage of septal cholinergic neurons, reduction in septal choline acetyltransferase (ChAT) activity and decrease in acetylcholine release in hippocampus were detected. Serum IgG from guinea pigs immunized with SN-56 cells and stereotactically injected into the medial septal region of rats produced a loss of ChAT activity in the medial septum, frontal cortex and hippocampus, together with impairment of learning and long term spatial memory. These data suggest that relatively selective damage to septal cholinergic neurons can be caused by an immune-mediated process in experimental animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号